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Abstract

The relationship between the reference-uncooperative linear bilevel two-follower decision making and the multi-
objective decision making has been recently considered (Sadeghi and Moslemi, 2019). In this paper, we address
the foregoing relation for the uncooperative linear bilevel multi-follower programming (ULBMFP) model with k ≥ 2
followers. Furthermore, we consider some geometric properties of the feasible solutions set of the ULBMFP prob-
lem. Moreover, an algorithm to find an optimal solution for the ULBMFP problem was proposed. Ultimately, some
numerical examples to illustrate the proposed algorithm were provided.
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1. Introduction

Multilevel programming (MLP) problem is developed to deal with the decentralized decision-making situations in
which decision-makers are arranged within a hierarchical structure. Bilevel programming (BLP) problem is a special
case of the MLP problem when only two levels exist. Most of the research concerning the MLP problem have focused
on the BLP problem (Bard, 1998; Dempe, 2003). The BLP problem has many applications in different domains, such
as those in supply chain management (Ma et al., 2014), planning (Miao et al., 2017), logistics (Safaei et al., 2018),
and energy management (Alipour et al., 2018). That is the reason why so much attention has been paid to the BLP
problems in recent years.
In the BLP problem, a decision-maker at the upper level is termed as a leader, and at the lower level is termed as a
follower. The BLP problem may involve multiple decision-makers at the lower level, and these followers may have
different reactions to a possible decision by the leader. In this case, the BLP problem is called a bilevel multi-follower
programming (BLMFP) problem. Based on the relationship among followers, the BLMFP problems are classified into
several classes. In this study, we consider a class of linear BLMFP problems wherein each follower controls a separate
set of decision variables and attempts to optimize its own objective function over its own constraints. It is called an un-
cooperative linear bilevel multi-follower programming (ULBMFP) problem (Zhang et al., 2016). Several researchers
have proposed solution approaches to solving the BLMFP problems. For example, Faı́sca et al. (2007), presented
the multi-parametric programming approach to solving the linear BLMFP problems. Lu et al. (2007), presented an
extended Kuhn-Tuker approach to solving the BLMFP problem in a referential-uncooperative situation. For a good
bibliography, see Zhang et al. (2016). However, there exist very few papers on applying the multi-objective program-
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ming techniques to solving the BLP problems and the BLMFP ones due to their subjective complexity (Pieume et al.,
2009; Wen and Hsu). As an example, in Glackin et al. (2009), two algorithms based on the multi-objective linear
programming (MOLP) techniques to solve the linear bilevel programming (LBLP) problems were presented. The pro-
posed algorithms were usable for LBLP problems containing only one follower while there exist multiple followers in
most applications.
In this paper, a relationship between ULBMFP problems and MOLP problems is presented. This relationship is moti-
vated by the relationship between LBLP problems and MOLP problems (Fülöp, 1993). Furthermore, we investigated
some geometric properties of the feasible solutions set of the ULBMFP problem. Also, an algorithm to solve ULBMFP
problems is presented.

The paper is organized as follows. In Section 2, we introduce some basic definitions and notations about ULBMFP
problems and MOLP problems. In Section 3, we introduce k MOLP problems such that each feasible extreme point
for the ULBMFP problem, with k followers, is an efficient extreme point for all of these k MOLP problems. Next,
we prove that the ULBMFP problem can be reduced to optimize the leader objective function over a certain efficient
set. Moreover, we discuss some geometric properties of the feasible solutions set of the ULBMFP problem in special
cases. Based on these results, Section 4 proposes an algorithm for solving the ULBMFP problem. Section 5 presents
some numerical examples to illustrate the proposed algorithm. Finally, the paper is included in Section 6.

2. Preliminaries

First, we will introduce the formulation of the ULBMFP problem, then, we state the definition of the MOLP problem
and some notations that are used in the rest of the paper.

2.1. Linear bilevel multi-follower programming problem

We consider a linear bilevel programming problem with k (k ≥ 2) followers. We assume that there are no shared
decision variables, objective functions, and constraints among the followers. This is called an uncooperative linear
bilevel multi-follower programming (ULBMFP) problem (Zhang et al., 2016). This model is defined as follows:

min
x∈X

F (x, y1, . . . , yk) = cTx+

k∑
i=1

dTi yi,

s.t. Ax ≤ b, (1)

min
yi∈Yi

fi(x, yi) = eTi yi, i = 1, 2, . . . , k,

s.t. Aix+Biyi ≤ bi,

where x ∈ X ⊂ Rn, yi ∈ Yi ⊂ Rmi , F : X × Y1 × . . . × Yk → R, and fi : X × Yi → R, i = 1, 2, . . . , k. Also,
c ∈ Rn, di, ei ∈ Rmi , A ∈ Rp×n, b ∈ Rp, Ai ∈ Rqi×n, Bi ∈ Rqi×mi , and bi ∈ Rqi , i = 1, 2, . . . , k. Although
x ≥ 0, and yi ≥ 0, for i = 1, 2, . . . , k, do not explicitly appear in this problem, we assume that they exist in the set of
constraints.
Notice that for each follower, the value of variable x is given. Thus, a problem equivalent to the ULBMFP problem
(1) is obtained if the followers’ objective functions are replaced by fi(x, yi) = cTi x+ eTi yi, for i = 1, 2, . . . , k, where
ci ∈ Rn.

We introduce some definitions and notations as to the ULBMFP problem (1) as follows (Bard, 1998; Zhang et al.,
2016):
(1) The constraint region of the ULBMFP problem:

S = {(x, y1, . . . , yk) ∈ X × Y1 × . . .× Yk : Ax ≤ b, Aix+Biyi ≤ bi, i = 1, 2, . . . , k}.

(2) The feasible region of the ith follower for each x ∈ {x ∈ X : Ax ≤ b}:

Si(x) = {yi ∈ Yi : Biyi ≤ bi −Aix}, i = 1, 2, . . . , k.
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Thus the feasible region of the ith follower is affected by the leader’s choice.
(3) The projection of S onto the leader’s decision space:

S(X) = {x ∈ X : ∃ (y1, . . . , yk) ∈ Y1 × . . .× Yk, (x, y1, . . . , yk) ∈ S}.

(4) The ith follower’s rational reaction set for x ∈ S(X):

Pi(x) = {yi ∈ Yi : yi ∈ argmin[fi(x, ŷi) : ŷi ∈ Si(x)]}, i = 1, 2, . . . , k,

where
argmin[fi(x, ŷi) : ŷi ∈ Si(x)] = {yi ∈ Si(x) : fi(x, yi) ≤ fi(x, ŷi), ∀ ŷi ∈ Si(x)}.

The followers observe the leader’s action and simultaneously react by selecting yi from their feasible set to minimize
their objective function.
(5) The inducible region (IR) of the problem (1):

IR = {(x, y1, . . . , yk) : (x, y1, . . . , yk) ∈ S, yi ∈ Pi(x), i = 1, 2, . . . , k}.

The inducible region is the set of feasible solutions to the ULBMFP problem. Thus, determining a solution for the
ULBMFP problem is equivalent to solving the following problem:

min {F (x, y1, . . . , yk) : (x, y1, . . . , yk) ∈ IR}. (2)

To ensure that the ULBMFP problem is well-posed as well as has an optimal solution (Zhang et al., 2016), we assumed
that the following assumptions hold:
(1) S is non-empty and compact.
(2) IR is non-empty.
(3) Pi(x) 6= ∅ and it is a point-to-point map for all leader’s choices of x, for i = 1, 2, . . . , k.

Note that, at the above ULBMFP problem, both the objective function and the set of constraints of each follower only
include the leader variables and one’s own variables. This fact implies that the followers do not share any information.
These kinds of followers are called independent followers by Calvate et al. (2007). In this paper, we used a similar
trick in Glackin et al. (2009) to reformulate the ULBMFP problem as the MOLP problem.

2.2. Multi-objective linear programming problem

Assume that m ≥ 2 is an integer and ci ∈ Rn, i = 1, 2, · · · ,m are row vectors. Let C be a m × n matrix whose
i-th row is given by ci, i = 1, 2, · · · ,m. Also, U is a non-empty, compact and convex polyhedral set in Rn. A
multi-objective linear programming (MOLP) problem is formulated in general as follows:

min {CX : X ∈ U}, (MOLP)

where U is called feasible region.

Definition 2.1. (Steure, 1986) A point X̄ ∈ U is an efficient solution if there exists no X ∈ U such that CX 6 CX̄
and CX 6= CX̄ . Otherwise, X̄ is an inefficient solution.

Let E denote the set of all efficient solutions of the MOLP problem. Then, the set E is non-empty (Ehrgott, 2005,
Theorem 2.19).
Also, the following definitions are used in a sequel:

Definition 2.2. (Steure, 1986) Let U ⊆ Rn, and X̄, ¯̄X ∈ U . The notation γ(X̄, ¯̄X) is the set of all strictly convex
combinations of X̄ and ¯̄X , i.e.,

γ(X̄, ¯̄X) = {X̂ ∈ U : X̂ = α X̄ + (1− α) ¯̄X, for some α, 0 < α < 1}.
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Similarly, γ[X̄, ¯̄X) and γ(X̄, ¯̄X] are defined as follows:

γ[X̄, ¯̄X) = {X̂ ∈ U : X̂ = α X̄ + (1− α) ¯̄X, for some α, 0 < α 6 1},

γ(X̄, ¯̄X] = {X̂ ∈ U : X̂ = α X̄ + (1− α) ¯̄X, for some α, 0 6 α < 1}.

3. Main results

In this section, we will introduce k MOLP problems such a way that each efficient extreme solution for all of these
k problems simultaneously is a feasible extreme solution (in other words, an extreme point of IR) to the ULBMFP
problem.

Note that X̄ = (x̄, ȳ1, . . . , ȳk) ∈ IR, implies that X̄ = (x̄, ȳ1, . . . , ȳk) ∈ S and ȳi ∈ Pi(x̄), for i = 1, 2, . . . , k.
Therefore, ȳi is an optimal solution for the following linear programming (LP):

min
yi

fi(x̄, yi) = eTi yi, (3)

s.t. Biyi ≤ bi −Aix̄. (4)

Consider the ULBMFP problem (1). We assume that r = n+
k∑

j=1

mj , ri = n+
k∑

j=1
j 6=i

mj , and ki = ri+2, i = 1, 2, . . . , k.

Let the ki × r criterion matrices Ci, i = 1, 2, . . . , k be defined as follows:

Ci =



In O . . . O O O . . . O
O Im1 . . . O O O . . . O
...

...
. . .

...
...

...
. . .

...
O O . . . Imi−1

O O . . . O
O O . . . O O Imi+1

. . . O
...

...
. . .

...
...

...
. . .

...
O O . . . O O O . . . Imk

−eT −eT . . . −eT 0 −eT . . . −eT
0 0 . . . 0 eTi 0 . . . 0


,

where In, Imi
, i = 1, 2, . . . , k are identity matrices, O and 0, are zero matrices and zero vectors of conformal

dimension, respectively. Also, e is a vector having each entry equal to 1.
Now, we define the following k MOLP problems:

min {CiX : X ∈ S}, i = 1, 2, . . . , k. (MOLPi)

Let Ei, i = 1, 2, . . . , k be the set of efficient solutions of the MOLPi, i = 1, 2, . . . , k. The following proposition
holds:

Lemma 3.1. Let IR and Ei, i = 1, 2, . . . , k be defined as above. Then IR ⊆ Ei, for all i = 1, 2, . . . , k.

Proof. Assume that X̄ = (x̄, ȳ1, . . . , ȳk) ∈ IR. It suffices to show that X̄ is an efficient solution to the MOLPi,
for all i = 1, 2, . . . , k. Let us suppose the contrary, i.e., there exists X ∈ S and some i ∈ {1, 2, . . . , k} such that
CiX 6 CiX̄ and CiX 6= CiX̄ . Because CiX 6 CiX̄ , using the structure of matrix Ci, one obtains:

x ≤ x̄, yl ≤ ȳl, l = 1, 2, . . . , k, l 6= i, (5)

−eT x−
k∑

l=1
l 6=i

eT yl 6 −eT x̄−
k∑

l=1
l 6=i

eT ȳl.

On solving uncooperative linear bilevel multi-follower programming problems 4



Pak.j.stat.oper.res. Vol.18 No.1 2022 pp 1-12 DOI: https://doi.org/10.18187/pjsor.v18i1.3261

From the relation (5), one obtains:

−eT x−
k∑

l=1
l 6=i

eT yl ≥ −eT x̄−
k∑

l=1
l 6=i

eT ȳl.

The last two relations imply that:

−eT x−
k∑

l=1
l 6=i

eT yl = −eT x̄−
k∑

l=1
l 6=i

eT ȳl. (6)

Thus, from the inequality (5) and equality (6), we conclude that:

x = x̄, yl = ȳl, l = 1, 2, . . . , k, l 6= i. (7)

Obviously, yi is a feasible solution for the problem (3)-(4). Due to CiX 6= CiX̄ and equalities (6) and (7), we
conclude that eTi yi < eTi ȳi which contradicts ȳi being an optimal solution for the problem (3)-(4). This completes the
proof.

Now, assume that

E =

k⋂
i=1

Ei.

One can get from Proposition 3.1:

Remark 3.1. Let IR andEi, i = 1, 2, . . . , k be defined as above. Then, IR ⊆
k⋂

i=1

Ei = E, and regarding Assumption

(2), E is a non-empty set.

Theorem 3.1. The extreme points of IR and E are the same.

Proof. Let X̄ = (x, y1, . . . , yk) ∈ IRex be arbitrary. Then, X̄ is an extreme point of S (Zhang et al., 2016, Corollary
4.3). Because IR ⊆ E, we get X̄ ∈ E. Therefore, X̄ is an extreme point of E. Since X̄ ∈ IRex was chosen
arbitrarily, we get IRex ⊆ Eex. Now, we will show that Eex ⊆ IRex. Suppose that X̄ = (x, y1, . . . , yk) ∈ Eex.
There are two cases, X̄ 6∈ IR or X̄ ∈ IR:
Case 1: X̄ 6∈ IR.
In this case, it follows from the definition of IR that there is at least an index i0, 1 ≤ i0 ≤ k such that yi0 6∈ Pi0(x).
By Assumption (3), Pi0(x) is non-empty and singleton. Then, there exists ŷi0 ∈ Si0(x) such that ŷi0 ∈ Pi0(x) and so
fi0(x, ŷi0) < fi0(x, yi0) . Consequently, we get:

eTi0 ŷi0 < eTi0yi0 . (8)

Set X̂ = (x, y1, . . . , yi0−1, ŷi0 , yi0+1, . . . , yk). Now, we show X̂ ∈ S. Because X̄ ∈ Eex ⊆ S, we have Ax ≤ b and
yi ∈ Si(x) for all i 6= i0. Furthermore, ŷi0 ∈ Si0(x). Hence, X̂ ∈ S. Due to the structure of matrix Ci0 and inequality
(8), we have Ci0X̂ 6 Ci0X̄, Ci0X̂ 6= Ci0X̄ , which contradicts X̄ ∈ E ⊆ Ei0 . Hence X̄ ∈ IR.
Case 2: X̄ ∈ IR.
Because X̄ ∈ Eex, and IR ⊆ E, X̄ is an extreme point of IR. Therefore,Eex ⊆ IRex. This completes the proof.

Now, consider the following mathematical program:

min {F (x, y1, . . . , yk) : (x, y1, . . . , yk) ∈ E}. (9)

It is known that the efficient set E is closed. Also, since E is a closed subset of the compact polyhedral set of S, itself
is a compact set. Thus, problem (9) involves the optimization of a linear function over a compact set. Hence, there
exists an optimal solution to the problem (9), i.e., E∗ 6= ∅ (Bazaraa et al., 2006, Theorem 2.3.1). Therefore, there is
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an extreme point of E, which is an optimal solution for the problem (9) (Sadeghi and Moslemi, 2019, Corollary 1).

The relation between the ULBMFP problem and the problem (9) is as follows:

Theorem 3.2. A point X̄ = (x̄, ȳ1, . . . , ȳk) ∈ IRex is an optimal solution to the ULBMLP problem if and only if it is
an optimal solution to the problem (9).

Proof. The proof is similar to that of Theorem 3 in Sadeghi and Moslemi (2019).

Also, similar to the reference-uncooprative linear bilevel multi-follower programming problem (Sadeghi and Moslemi,
2019), one can prove thatE ⊆ convIR for the ULBMLP problem where convIR is the smallest convex set containing
IR. If the efficient set E is a convex set, one can obtain E = convIR. Also, if the inducible region IR is a convex
set, one can obtain E = IR.

Now, we prove the following lemma:

Lemma 3.2. Let X̄ and ¯̄X be distinct points in S and X̄ 6∈ IR. Then, none of the points on the line segment γ[X̄, ¯̄X)
belong to IR.

Proof. Let X̄ = (x̄, ȳ1, . . . , ȳk), ¯̄X = (¯̄x, ¯̄y1, . . . , ¯̄yk), and X̃ = (x̃, ỹ1, . . . , ỹk) ∈ γ[X̄, ¯̄X) be arbitrary. Then, there
exists 0 < α̃ 6 1 such that X̃ = α̃X̄ + (1 − α̃) ¯̄X . Since X̄ 6∈ IR, there is at least an index i0 ∈ {1, 2, . . . , k}
such that ȳi0 6∈ Pi0(x̄). It follows from Assumption (3) that there exists ŷi0 ∈ Si0(x̄) such that ŷi0 ∈ Pi0(x̄). Thus,
fi0(x̄, ŷi0) < fi0(x̄, ȳi0). We set X̂ = α̃(x̄, ȳ1, . . . , ȳi0−1, ŷi0 , ȳi0+1, . . . , ȳk)+(1−α̃)(¯̄x, ¯̄y1, . . . , ¯̄yi0−1, ¯̄yi0 , ¯̄yi0+1, . . . , ¯̄yk).
Note that x̃ = x̂, and ỹi = ŷi, for i = 1, 2, . . . , k, i 6= i0. Since (x̄, ȳ1, . . . , ȳi0−1, ŷi0 , ȳi0+1, . . . , ȳk) ∈ S, ¯̄X ∈ S
and S is a convex set, X̂ ∈ S. Consequently, we have fi0(X̂) < fi0(X̃), and so ỹi0 6∈ Pi0(x̃). Hence X̃ 6∈ IR. Since
X̃ ∈ γ[X̄, ¯̄X) was chosen arbitrarily, we conclude that γ[X̄, ¯̄X) 6∈ IR. This fact completes the proof.

We immediately get the following corollary to Lemma 3.2.

Corollary 3.1. Let X̄, ¯̄X ∈ IR, and X ∈ γ(X̄, ¯̄X) with X 6∈ IR. Then, none of the points on line segment γ(X̄, ¯̄X)
belongs to IR.

Proof. According to Lemma 3.1, because ¯̄X ∈ IR and X 6∈ IR, then γ[X, ¯̄X) 6∈ IR. Similarly, because X̄ ∈ IR
and X 6∈ IR, then γ(X̄,X] 6∈ IR. Thus, γ(X̄, ¯̄X) 6∈ IR.

Now, consider the following definitions:

Definition 3.1. (Bazaraa et al., 1977) A path is a sequence of edges that joins a sequence of distinct extreme points
X̄, . . . , X̂ .

Definition 3.2. (Bazaraa et al., 1977) A closed path is a path from some extreme point X̄ to X̂ plus the γ(X̂, X̄), i.e.,
the sequence of edges in which the initial and terminal extreme points of the path are the same.

By Remark 3.1, we have IR ⊆ E whereas if E and IR are the connected union of edges without any closed path, this
inclusion turns into equality. The following lemma proves this property:

Lemma 3.3. If the inducible region IR and the efficient set E are the connected union of edges without any closed
path, then E = IR.

Proof. According to Remark 3.1, IR ⊆ E. It is enough to show that E ⊆ IR. Let X̂ ∈ E be arbitrary. Suppose the
contrary, i.e., X̂ /∈ IR. It is clear that X̂ is not an extreme point of E, (Note that IRex = Eex). Hence, there exist
X̄ ∈ Eex and ¯̄X ∈ Eex (and so belong to IRex) such that X̂ ∈ γ(X̄, ¯̄X). According to the Corollary 3.1, because
X̂ /∈ IR, then γ(X̄, ¯̄X) /∈ IR. Since IR is connected, there exists a path of edges between X̄ and ¯̄X in IR and so
in E. Since X̂ ∈ E and E is connected, we get γ(X̄, ¯̄X) ∈ E. Therefore, there exists a closed path in E, which
contradicts the fact that E does not contain a closed path. Thus, E ⊆ IR. This completes the proof.
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4. The algorithm

In this section, we present a modified version of the proposed algorithm in Sadeghi and Moslemi (2019) for the
ULBMFP problem (1). The modified algorithm can be described as follows:

The algorithm

Step 1. Construct the MOLPi, and solve it to obtain the efficient set Ei, for all i = 1, 2, . . . , k.

• One can use the presented approaches in Pieume et al. (2008); Sayin (1996); and Steure (1986) in Step 1.

Step 2. Set E =
k⋂

i=1

Ei.

Step 3. Solve the following LP:

min {F (x, y1, . . . , yk) : (x, y1, . . . , yk) ∈ S}. (10)

LetX∗ be an optimal solution. IfX∗ ∈ E, stop. Thus,X∗ is an optimal solution to the ULBMFP problem. Otherwise,
go to Step 4.

• Note that one can use the known solution methods for LPs (Bazaraa et al., 1977), in Step 3.

Step 4. Find an optimal solution to the problem (9). Let X∗ be an optimal solution for the problem (9). Therefore, it
is an optimal solution to the ULBMFP problem.

• For instance, the developed approaches in Benson (1984); Horst et al. (2007); Jorge (2005); and Metev (2007) can
be used in Step 4.

Similar to the proposed algorithm in Sadeghi and Moslemi (2019), Step 3 of the algorithm checks if X∗ ∈ E. If
X∗ ∈ E then the algorithm stops at Step 3 and does not enter Step 4. Thus, Step 3 leads to a reduction of computations
in some cases and it is not a redundancy. Also, we know that there exists an extreme point of E which is an optimal
solution for the problem (9). Hence, in Step 4, for a few variables, one can find an optimal solution by picking the
minimum value of the objective function among all extreme points of E.

5. Numerical examples

In this section, we solve two numerical examples by the proposed algorithm.

Example 5.1. Consider the following ULBMFP problem.

min
x

F (x, y1, y2) = x+ 2y1 − 5y2,

s.t. x ≥ 0,

min
y1

f1(x, y1) = −y1,

s.t. x+ y1 ≤ 3,

y1 ≥ 0, x ≥ 0,

min
y2

f2(x, y2) = −y2,

s.t. 2x+ y2 ≤ 2,

0 ≤ y2 ≤ 1, x ≥ 0.

In this problem, we have:

S = {(x, y1, y2) : x ≥ 0, x+ y1 ≤ 3, y1 ≥ 0, 2x+ y2 ≤ 2, 0 ≤ y2 ≤ 1}.
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Also, one can see that the extreme points of S are as follows:

a1 = (0, 0, 0), a2 = (0, 3, 0), a3 = (1, 2, 0), a4 = (0, 3, 1),

a5 = (0.5, 2.5, 1), a6 = (1, 0, 0), a7 = (0, 0, 1), a8 = (0.5, 0, 1).

By Faı́sca et al. (2007), one can obtain:

IR ={(x, y1, y2) : 0 ≤ x ≤ 0.5, y1 = 3− x, y2 = 1}
∪{(x, y1, y2) : 0.5 ≤ x ≤ 1, y1 = 3− x, y2 = 2− 2x}.

The Figure 1, displays S and IR. The IR is denoted by the hatched lines.

Figure 1: The constraint region S and IR of Example 5.1.

It is clear that S and IR are non-empty and S is compact. Also, one can obtain:

P1(x) = {(x, y1, y2) ∈ S : y1 = 3− x, 0 ≤ x ≤ 3},
P2(x) = {(x, y1, y2) ∈ S : y2 = 1, 0 ≤ x ≤ 0.5}

∪ {(x, y1, y2) ∈ S : y2 = 2− 2x, 0.5 ≤ x ≤ 1}.

Hence, Pi(x) 6= ∅, and Pi(x) is a point-to-point map for all x, for i = 1, 2. Then, the Assumptions (1)-(3) hold, and
we can apply the proposed algorithm. Using the proposed algorithm, the solution process is as follows:
Step 1. The MOLPi problems, for i = 1, 2 are constructed as follows, respectively:

min {(x, y2, − x− y2, − y1) : (x, y1, y2) ∈ S},

min {(x, y1, − x− y1, − y2) : (x, y1, y2) ∈ S}.

In order to find the efficient sets Ei, i = 1, 2, using the described approach in Sayin (1996), one can obtain:

E1 = conv(a2, a3, a4, a5), E2 = conv(a3, a5, a8, a6) ∪ conv(a5, a4, a7, a8).

The sets Ei, i = 1, 2 are drawn in Figure 2 (a) and (b) by the gray areas, respectively.

(a) S and E1 (b) S and E2

Figure 2: The constraint region S, E1 and E2 of Example 5.1.
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Step 2. Set E = E1 ∩ E2. So, we obtain:

E ={(x, y1, y2) : 0 ≤ x ≤ 0.5, y1 = 3− x, y2 = 1}
∪{(x, y1, y2) : 0.5 ≤ x ≤ 1, y1 = 3− x, y2 = 2− 2x}.

Here, it coincides with IR which is shown in Figure 1 by the hatched lines.
Step 3. Solve the following LP:

min {x+ 2y1 − 5y2 : (x, y1, y2) ∈ S}.

The optimal solution is X∗ = (0, 0, 1) and F (X∗) = −5. Because X∗ 6∈ E, go to Step 4.
Step 4. Solve the following optimization problem:

min {x+ 2y1 − 5y2 : (x, y1, y2) ∈ E}.

Obviously, this problem is a non-convex optimization problem. According to the preceding discussions, we just
consider the extreme points of E. We obtain X∗ = (0.5, 2.5, 1) as the optimal solution which is equal to the obtained
optimal solution by the proposed approach in Faı́sca et al. (2007).

Example 5.2. Consider the following ULBMFP problem:

min
x

F (x, y1, y2) = −x+ y1 − 2y2,

s.t. x ≥ 0,

min
y1

f1(x, y1) = −y1,

s.t. x+ y1 6 8,

y1 ≥ 0, x ≥ 0,

min
y2

f2(x, y2) = 2y2,

s.t. x+ y2 6 2,

y2 ≥ 0, x ≥ 0.

In this problem, we have:

S = {(x, y1, y2) : x+ y1 ≤ 8, x+ y2 6 2, x ≥ 0, y1 ≥ 0, y2 ≥ 0}.

Also, the extreme points of S are as follows:

a1 = (0, 0, 0), a2 = (2, 0, 0), a3 = (2, 6, 0), a4 = (0, 8, 0), a5 = (0, 8, 2), a6 = (0, 0, 2).

By Faı́sca et al. (2007), one can obtain:

IR = {(x, y1, y2) : 0 ≤ x ≤ 2, y1 = 8− x, y2 = 0}.

The Figure 3, displays S and IR. The IR is denoted by the hatched lines.

Figure 3: The constraint region S and IR of Example 5.2.
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Note that the sets S and IR are non-empty and S is compact. Also, one can obtain:

P1(x) = {(x, y1, y2) ∈ S : y1 = 8− x, 0 ≤ x ≤ 8},
P2(x) = {(x, y1, y2) ∈ S : y2 = 0, 0 ≤ x ≤ 2}.

Hence, Pi(x) 6= ∅, and it is a point-to-point map for all x, for i = 1, 2. Thus, the Assumptions (1)-(3) hold, and we
can apply the proposed algorithm. The solution process is as follows:
Step 1. The MOLPi problems, for i = 1, 2 are constructed as follows, respectively:

min{(x, y2, − x− y2,−y1) : (x, y1, y2) ∈ S},
min{(x, y1, − x− y1, 2y2) : (x, y1, y2) ∈ S}.

In order to find the sets Ei, i = 1, 2, using the described approached in Sayin (1996), one can obtain:

E1 = conv(a3, a4, a5), E2 = conv(a1, a2, a3, a4).

The sets Ei, i = 1, 2 are drawn in Figure 4 (a) and (b) by the gray areas, respectively.

(a) S and E1 (b) S and E2

Figure 4: The constraint region S, E1 and E2 related to Example 5.2.

Step 2. Set E = E1 ∩ E2. We obtain E = γ[a3, a4] = IR. It is shown in Figure 3 by the hatched lines.
Step 3. Solve the following LP:

min {−x+ y1 − 2y2 : (x, y1, y2) ∈ S}.

The extreme optimal solution is X∗ = (0, 0, 2) and F (X∗) = −4. Because X∗ 6∈ E, go to Step 4.
Step 4. Solve the following optimization problem:

min {−x+ y1 − 2y2 : (x, y1, y2) ∈ E}.

Since E is convex, this problem is a linear programming problem. We obtain X∗ = (2, 6, 0) as an optimal solution. It
is the same as the obtained optimal solution by the proposed approach in Faı́sca et al. (2007).

6. Conclusions

In this study, we have investigated the relationship between the ULBMFP problems and the MOLP problems. We
defined k MOLP problems, and showed that the extreme points of the set of efficient solutions for all of these k MOLP
problems are identical to the extreme points of feasible solutions set for the ULBMFP problem with k followers.
Moreover, we studied the geometric properties of feasible solutions set of ULBMFP problem and we showed that for
solving the ULBMFP problem, the leader objective function can be optimized over a certain efficient set. Furthermore,
we presented an algorithm to solve the ULBMFP problems. Further studies can be concentrated on the implementation
of the proposed algorithm upon large-scale ULBMFP problems.
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