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Abstract:  

 

We study a new family of distributions defined by the minimum of the Poisson random number of independent 

identically distributed random variables having a Topp Leone-G distribution (see Rezaei et al., (2016)). Some 

mathematical properties of the new family including ordinary and incomplete moments, quantile and 

generating functions, mean deviations, order statistics, reliability and entropies are derived. Maximum 

likelihood estimation of the model parameters is investigated. Some special models of the new family are 

discussed. An application is carried out on real data set applications sets to show the potentiality of the 

proposed family. 
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1. Introduction 

The statistical literature contains many new classes of distributions which have been constructed by extending 

common families of continuous distributions and give more flexibility by adding one or more parameters to the 

baseline model. These new families have been used for modeling data in many applied areas such as engineering, 

economics, biological studies and environmental sciences. So, several classes of distributions have been constructed 

by extending common families of continuous distributions. These generalized distributions give more flexibility by 

adding one "or more" parameters to the baseline model. They were pioneered by Gupta et al. (1998) who proposed 

the exponentiated-G class, which consists of raising the cumulative distribution function (CDF) to a positive power 

parameter. Many other classes can be cited such as the Marshall-Olkin-G family by Marshall and Olkin (1997), beta 

generalized-G family by Eugene et al. (2002), transmuted exponentiated generalized-G family by Yousof et al. (2015), 

generalized transmuted-G by Nofal et al. (2017), the Topp Leone generated family by Rezaei et al. (2017), 

exponentiated transmuted-G family by Merovci et al. (2017), Topp-Leone Odd Log-Logistic Family of Distributions 

by Brito et al. (2017), Burr X-G by Yousof et al. (2017), exponentiated generalized-G Poisson family by Aryal and 

Yousof (2017), type I general exponential class of distributions by Hamedani et al. (2017), Burr XII system of densities 

by Cordeiro et al. (2018), exponential Lindley odd log-logistic G family by Korkmaz et al. (2018a), Marshall–Olkin 

generalized G Poisson family by Korkmaz et al. (2018b), Burr-Hatke family of distributions by Yousof et al. (2018), 

a new extended G family by Hamedani et al. (2018), Type II general exponential class of distributions by Hamedani 

et al. (2019) and odd Nadarajah-Haghighi family of distributions by Nascimento et al. (2019), the Weibull G Poisson 

family by Yousof et al.(2020), among other. 
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Due to Rezaei et al. (2017), the cumulative distribution function (CDF) and the probability density function (PDF) of 

the Topp Leone (TL) generated family of distributions distribution specified by 

𝐻(𝑥; 𝛼, 𝜓) = {𝐺(𝑥; 𝜓)[2 − 𝐺(𝑥;𝜓)]}𝛼 = 𝐺(𝑥; 𝜓)𝛼[2 − 𝐺(𝑥; 𝜓)]𝛼 , (1) 

and 

ℎ(𝑥; 𝛼, 𝜓) = 2𝛼𝑔(𝑥;𝜓)𝐺(𝑥; 𝜓)𝛼−1[1 − 𝐺(𝑥; 𝜓)][2 − 𝐺(𝑥; 𝜓)]𝛼−1, (2) 

 

respectively. Suppose 𝑍1, . . . , 𝑍𝑁 be independent identically random variable (iid) with common CDF Topp Leone-G 

and 𝑁 be random variable with 

𝑃(𝑁 = 𝑛) =
1

𝑒𝜆 − 1
×
𝜆𝑛

𝑛!
,  𝑛 = 1,2, . . . , 𝜆 > 0, 

and define  𝑀𝑁  =  𝑚𝑎𝑥{𝑍1, . . . , 𝑍𝑁} then  

𝐹(𝑥) =∑

𝑛=0

∞

𝑝(𝑀𝑁 ≤ 𝑥|𝑁 = 𝑛)𝑝(𝑁 = 𝑛). 
 

(3) 

Equation (3) can be expressed as 

𝐹(𝑥) =∑

𝑛=0

∞

{
1 − 𝑒𝑥𝑝[−𝜆𝐻(𝑥; 𝛼, 𝜓)]

𝑒𝜆 − 1
}

𝑛
1

𝑒𝜆 − 1

𝜆𝑛

𝑛!
. 

Using equations (2) and the last equation, we can write 

𝐹(𝑥) =
1 − 𝑒𝑥𝑝{−𝜆𝐺(𝑥; 𝜓)𝛼[2 − 𝐺(𝑥;𝜓)]𝛼}

(1 − 𝑒−𝜆)
. 

 

(4) 

Equation (4) is called Poisson Topp Leone-G (PTL-G) family of distributions. Several new models can be generated 

by considering special distributions for  𝐺(𝑥) . The corresponding PDF of reduces to   

𝑓(𝑥) =
2𝜆𝛼𝑔(𝑥; 𝜓)𝐺(𝑥; 𝜓)𝛼−1[1 − 𝐺(𝑥;𝜓)][2 − 𝐺(𝑥; 𝜓)]𝛼−1

(1 − 𝑒−𝜆) 𝑒𝑥𝑝{𝜆𝐺(𝑥; 𝜓)𝛼[2 − 𝐺(𝑥; 𝜓)]𝛼}
. 

 

(5) 

Henceforward  𝐺(𝑥; 𝜓) = 𝐺(𝑥)  and  𝑔(𝑥; 𝜓) = 𝑔(𝑥).  Now we can provide a useful linear representation for the 

PTL-G density function in. Expanding the quantity  𝑒𝑥𝑝{−𝜆𝐺(𝑥)𝛼[2 − 𝐺(𝑥)]𝛼}  in power series, we can write 

𝑓(𝑥) =∑

𝑖=0

∞
𝜆𝑖+1𝛼2𝛼(𝑖+1)(−1)𝑖𝑔(𝑥)[1 − 𝐺(𝑥)]

𝑖! (1 − 𝑒−𝜆)𝐺(𝑥)−[𝛼(𝑖+1)−1]
[1 −

𝐺(𝑥)

2
]

𝛼(𝑖+1)−1

. 
 

(6) 

Consider the power series  

(1 − 𝑛)𝑐 =∑

𝑗=0

∞
(−1)𝑗𝛤(1 + 𝑐)

𝑗! 𝛤(1 + 𝑐 − 𝑗)
𝑛𝑗 , 

 

(7) 

 

which holds for  |𝑧| < 1  and  𝑏 > 0  real non-integer. Using the power series in  and after some algebra the PDF of 

the PTL-G class in  can be expressed as 

𝑓(𝑥) =∑

𝑖,𝑗=0

∞

{ϒ𝑖,𝑗 𝜋𝛼(𝑖+1)+𝑗(𝑥) − ϒ𝑖,𝑗
∗  𝜋𝛼(𝑖+1)+𝑗+1(𝑥)}, 

 

(8) 

 

where  𝜋𝛾(𝑥) = 𝛾𝑔(𝑥)𝐺(𝑥)𝛾−1 . 

ϒ𝑖,𝑗 =
𝛼𝜆𝑖+1(−1)𝑖+𝑗2𝛼(𝑖+1)−𝑗

𝑖! (1 − 𝑒−𝜆)[𝛼(𝑖 + 1) + 𝑗]
(
𝛼(𝑖 + 1) − 1

𝑗
)  and 

ϒ𝑖,𝑗
∗ =

𝛼𝜆𝑖+1(−1)𝑖+𝑗2𝛼(𝑖+1)−𝑗

𝑖! (1 − 𝑒−𝜆)[𝛼(𝑖 + 1) + 𝑗 + 1]
(
𝛼(𝑖 + 1) − 1

𝑗
). 

Equation (8) reveals that the density of  𝑋  can be expressed as a linear representation of exp-G densities. So, several 

mathematical properties of the new family can be obtained by knowing those of the exp-G distribution. The CDF of 

the PTL-G family can also be expressed as a mixture of exp-G densities. By integrating, we obtain the same mixture 

representation 
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𝑓(𝑥) =∑

𝑖,𝑗=0

∞

{ϒ𝑖,𝑗  𝛱𝛼(𝑖+1)+𝑗(𝑥) − ϒ𝑖,𝑗
∗  𝛱𝛼(𝑖+1)+𝑗+1(𝑥)}, 

 

(9) 

where  𝛱𝛾(𝑥)  is the CDF of the exp-G family with power parameter (𝛾). The rest of the paper is outlined as follows. 

In Section 2, we define three special models and provide the plots of their PDF's and hazard rate functions (HRF's). 

In Section 3, we derive some of its mathematical properties including probability weighted moments (PWMs), residual 

life and reversed residual life functions, ordinary, incomplete moments and generating functions, finally order 

statistics and their moments are introduced at the end of the section. Some characterizations results are provided in 

Section 4. Maximum likelihood estimation of the model parameters is addressed in Section 5. In section 6, simulation 

results to assess the performance of the proposed maximum likelihood estimation procedure are discussed. In Section 

7, we provide the applications to real data to illustrate the importance of the new family. Finally, some concluding 

remarks are presented in Section 8. 

2. Special models 

2.2 PTL-Exponential (PTL-E) distribution 

The parent exponential distribution has PDF and CDF given, respectively, by  

𝐺(𝑥, 𝑏) = 1 − 𝑒𝑥𝑝( − 𝑏𝑥). 
The CDF of PTE-Exponential distribution if given by (𝑥 > 0) 

𝐹(𝑥) =
1 − 𝑒𝑥𝑝{−𝜆(1 − 𝑒𝑥𝑝(−𝑏𝑥))𝛼[1 + 𝑒𝑥𝑝(−𝑏𝑥)]𝛼}

(1 − 𝑒−𝜆)
. 

Figures 1 and 2 illustrate some of the possible shapes of the PDF and HRF of the PTL-E distribution. 

 

2.2 The PTL-Weibull (PTL-W) distribution 

The parent Weibull distribution (see Weibull (1951)) has CDF given by  

𝐺(𝑥; 𝑎, 𝑏) = 1 − 𝑒𝑥𝑝(−𝑏𝑥𝑎). 
The CDF of PTL-W distribution is given by (𝑥 > 0) 

 

𝐹(𝑥) =
1 − 𝑒𝑥𝑝{−𝜆(1 − 𝑒𝑥𝑝(−𝑏𝑥𝑎))𝛼[1 + 𝑒𝑥𝑝(−𝑏𝑥𝑎)]𝛼}

(1 − 𝑒−𝜆)
. 

Figures 3 and 4 illustrates possible shapes of the PDF and HRF for some PTL-W distributions.  

 

3.2 The PTL-generalized half normal (PTL-GHN) distribution 

The parent generalized half normal distribution has CDF given by 

 

𝐺(𝑥, 𝑎, 𝑏) = 2𝛷 [(
𝑥

𝑎
)
𝑏

] − 1. 

The CDF and PDF of PTL-GHN distribution are given by  

𝐹(𝑥) =
1 − 𝑒𝑥𝑝 {−𝜆𝐺 {2𝛷 [(

𝑥
𝑎
)
𝑏

] − 1}
𝛼

(2 − {2𝛷 [(
𝑥
𝑎
)
𝑏

] − 1})
𝛼

}

(1 − 𝑒−𝜆)
. 

3. Mathematical properties 

3.1 Probability weighted moments 

The PWMs are expectations of certain functions of a random variable and they can be defined for any random variable 

whose ordinary moments exist. The PWM method can generally be used for estimating parameters of a distribution 

whose inverse form cannot be expressed explicitly. The  (𝑠, 𝑟)th PWM of  𝑋  following the PTL-G family, say  𝜌𝑠,𝑟 , 

is formally defined by 

 

𝜌𝑠,𝑟 = 𝐸{𝑋
𝑠𝐹(𝑋)𝑟} = ∫

∞

−∞

𝑥𝑠𝐹(𝑥)𝑟𝑓(𝑥)𝑑𝑥. 

Using equations (5) and (6), we can write 

 

𝑓(𝑥)𝐹(𝑥)𝑟 = ∑

∞

𝑖,𝑗=0

{𝑝𝑖,𝑗  𝜋𝛼(𝑖+1)+𝑗(𝑥) − 𝑝𝑖,𝑗
∗  𝜋𝛼(𝑖+1)+𝑗+1(𝑥)}, 
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where 

𝑝𝑖,𝑗 =∑

∞

𝑘=0

2𝛼(𝑖+1)−𝑗𝛼𝜆𝑖+1(−1)𝑖+𝑗+𝑘(𝑘 + 1)𝑖 (
𝑟
𝑘
) (
𝛼(𝑖 + 1) − 1

𝑗
)

𝑖! (1 − 𝑒−𝜆)𝑟+1[𝛼(𝑖 + 1) + 𝑗]
, 

and  

𝑝𝑖,𝑗
∗ =∑

∞

𝑘=0

2𝛼(𝑖+1)−𝑗𝛼𝜆𝑖+1(−1)𝑖+𝑗+𝑘(𝑘 + 1)𝑖 (
𝑟
𝑘
) (
𝛼(𝑖 + 1) − 1

𝑗
)

𝑖! (1 − 𝑒−𝜆)𝑟+1[𝛼(𝑖 + 1) + 𝑗 + 1]
. 

Then, the  (𝑠, 𝑟) th PWM of  𝑋  can be expressed as  

𝜌𝑠,𝑟 = ∑

∞

𝑖,𝑗=0

{𝑝𝑖,𝑗𝐸(𝑌𝛼(𝑖+1)+𝑗
𝑠 ) − 𝑝𝑖,𝑗

∗  𝐸(𝑌𝛼(𝑖+1)+𝑗+1
𝑠 )}𝑑𝑥. 

 

Henceforth,  𝑌𝛾  denotes the exp-G distribution with power parameter (𝛾) . 

 

3.2 Residual life and reversed residual life functions 

The  𝑛 th moment of the residual life, say  𝑚𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)𝑛 | 𝑋 > 𝑡] ,  𝑛 = 1,2 ,, uniquely determined  𝐹(𝑥) . 

The  𝑛 th moment of the residual life of  𝑋  is given by  𝑚𝑛(𝑡) =
1

𝑅(𝑡)
∫
∞

𝑡
(𝑥 − 𝑡)𝑛𝑑𝐹(𝑥). Therefore, 

 

𝑚𝑛(𝑡) =
1

𝑅(𝑡)
∑

𝑟=0

𝑛

(
𝑛
𝑟
) (−𝑡)𝑛−𝑟∑

𝑖,𝑗=0

∞

{
 
 

 
 ϒ𝑖,𝑗  ∫

∞

𝑡

𝑥𝑟 𝜋𝛼(𝑖+1)+𝑗(𝑥)𝑑𝑥

−ϒ𝑖,𝑗
∗ ∫

∞

𝑡

𝑥𝑟 𝜋𝛼(𝑖+1)+𝑗+1(𝑥)𝑑𝑥
}
 
 

 
 

. 

Another interesting function is the mean residual life (MRL) function or the life expectation at age  𝑡  defined by  

𝑚1(𝑡) = 𝐸[(𝑋 − 𝑡)| 𝑋 > 𝑡] , which represents the expected additional life length for a unit which is alive at age  𝑡 . 
The MRL of  𝑋  can be obtained by setting  𝑛 = 1  in the last equation. The  𝑛 th moment of the reversed residual life, 

say  𝑀𝑛(𝑡) = 𝐸[(𝑡 − 𝑋)𝑛 | 𝑋 ≤ 𝑡]  for  𝑡 > 0  and  𝑛 = 1,2, …  uniquely determines  𝐹(𝑥) . We obtain  𝑀𝑛(𝑡) =
1

𝐹(𝑡)
∫
𝑡

0
(𝑡 − 𝑥)𝑛𝑑𝐹(𝑥).  Then, the  𝑛 th moment of the reversed residual life of  𝑋  becomes 

 

𝑀𝑛(𝑡) =
1

𝐹(𝑡)
∑

𝑟=0

𝑛

(−1)𝑟 (
𝑛
𝑟
) 𝑡𝑛−𝑟∑

𝑖,𝑗=0

∞

{
 
 

 
 ϒ𝑖,𝑗  ∫

𝑡

0

𝑥𝑟 𝜋𝛼(𝑖+1)+𝑗(𝑥)𝑑𝑥

−ϒ𝑖,𝑗
∗ ∫

𝑡

0

𝑥𝑟  𝜋𝛼(𝑖+1)+𝑗+1(𝑥)𝑑𝑥
}
 
 

 
 

. 

 

The mean inactivity time (MIT) or mean waiting time (MWT) also called the mean reversed residual life function is 

given by  𝑀1(𝑡) = 𝐸[(𝑡 − 𝑋)| 𝑋 ≤ 𝑡] , and it represents the waiting time elapsed since the failure of an item on 

condition that this failure had occurred in  (0, 𝑡) .The MIT of the PTL-G family of distributions can be obtained easily 

by setting  𝑛 = 1  in the above equation. 

3.3 Moments, incomplete moments and generating function 

The  𝑟 th ordinary moment of  𝑋  is given by  𝜇𝑟
′ = 𝐸(𝑋𝑟) =  ∫

∞

−∞
𝑥𝑟𝑓(𝑥)𝑑𝑥. Then we obtain  

𝜇𝑟
′ =∑

𝑖,𝑗=0

∞

{ϒ𝑖,𝑗 𝐸(𝑌𝛼(𝑖+1)+𝑗
𝑟 ) − ϒ𝑖,𝑗

∗  𝐸(𝑌𝛼(𝑖+1)+𝑗+1
𝑟 )}. 

 

(10) 

 

Setting  𝑟 = 1  in (11), we have the mean of  𝑋 . The last integration can be computed numerically for most parent 

distributions. The skewness and kurtosis measures can be calculated from the ordinary moments using well-known 

relationships. The  𝑛 th central moment of  𝑋 , say  𝑀𝑛 , follows as  𝑀𝑛 = 𝐸(𝑋 − 𝜇)𝑛 = ∑
𝑛

ℎ=0
(−1)ℎ (

𝑛
ℎ
) (𝜇1

′ )𝑛𝜇𝑛−ℎ
′ . 

The main applications of the first incomplete moment refer to the mean deviations and the Bonferroni and Lorenz 

curves. These curves are very useful in economics, reliability, demography, insurance and medicine. The  𝑠 th 

incomplete moment, say  𝜙𝑠(𝑡) , of  𝑋  can be expressed from (9) as  𝜙𝑠(𝑡) = ∫
𝑡

−∞
𝑥𝑠𝑓(𝑥)𝑑𝑥. Then  
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𝜙𝑠(𝑡) = ∑

𝑖,𝑗=0

∞

{
 
 

 
 ϒ𝑖,𝑗∫

𝑡

−∞

𝑥𝑠 𝜋𝛼(𝑖+1)+𝑗(𝑥)𝑑𝑥

−ϒ𝑖,𝑗
∗  ∫

𝑡

−∞

𝑥𝑠𝜋𝛼(𝑖+1)+𝑗+1(𝑥)𝑑𝑥
}
 
 

 
 

. 

 

 

(11) 

The mean deviations about the mean  [𝛿1 = 𝐸(|𝑋 − 𝜇1
′ |)]  and about the median  [𝛿2 = 𝐸(|𝑋 − 𝑀|)]  of  𝑋  are given 

by  𝛿1 = 2𝜇1
′𝐹(𝜇1

′ ) − 2𝜙1(𝜇1
′ )  and  𝛿2 = 𝜇1

′ − 2𝜙1(𝑀) , respectively, where  𝜇1
′ = 𝐸(𝑋) ,  𝑀 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) =

𝑄(0.5)  is the median,  𝐹(𝜇1
′ )  is easily calculated from (5) and  𝜙1(𝑡)  is the first incomplete moment given by (12) 

with  𝑠 = 1 . Ageneral equation for  𝜙1(𝑡)  can be derived from (12) as  

𝜙1(𝑡) = ∑

𝑖,𝑗=0

∞

{ϒ𝑖,𝑗𝐉𝛼(𝑖+1)+𝑗(𝑥)𝑑𝑥 − ϒ𝑖,𝑗
∗  𝐉𝛼(𝑖+1)+𝑗+1(𝑥)𝑑𝑥}, 

where  𝐉𝛾(𝑥) = ∫
𝑡

−∞
𝑥𝜋𝛾(𝑥)𝑑𝑥  is the first incomplete moment of the exp-G distribution. The moment generating 

function (mgf)  𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋)  of  𝑋  can be derived from equation (9) as  

𝑀𝑋(𝑡) = ∑

𝑖,𝑗=0

∞

{ϒ𝑖,𝑗  𝑀𝛼(𝑖+1)+𝑗(𝑡) − ϒ𝑖,𝑗
∗  𝑀𝛼(𝑖+1)+𝑗+1(𝑡)}, 

where  𝑀𝛾(𝑡)  is the mgf of  𝑌𝛾 . Hence,  𝑀𝑋(𝑡)  can be determined from the exp-G generating function.   

 

3.4 Order statistics 

Order statistics make their appearance in many areas of statistical theory and practice. Let  𝑋1, … , 𝑋𝑛  be a random 

sample from the PTL-G family of distributions and let  𝑋(1), … , 𝑋(𝑛)  be the corresponding order statistics. The PDF 

of  𝑖 th order statistic, say  𝑋𝑖:𝑛 , can be written as 

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑

𝑛−𝑖

𝑗=0

(−1)𝑗 (
𝑛 − 𝑖
𝑗
) 𝐹𝑗+𝑖−1(𝑥), 

 

(12) 

  

where  𝐵(⋅,⋅)  is the beta function. Substituting (5) and (6) in equation (12) and using a power series expansion,we get 

 

𝑓(𝑥)𝐹(𝑥)𝑗+𝑖−1 = ∑

∞

𝑤,𝑚=0

{𝑡𝑤,𝑚 𝜋𝛼(𝑤+1)+𝑚(𝑥) − 𝑡𝑤,𝑚
∗  𝜋𝛼(𝑤+1)+𝑚+1(𝑥)}, 

where 

𝑡𝑤,𝑚  = ∑

∞

𝑘=0

2𝛼(𝑤+1)−𝑚𝛼𝜆𝑤+1(−1)𝑤+𝑚+𝑘(𝑘 + 1)𝑤 (
𝑗 + 𝑖 − 1

𝑘
) (𝛼

(𝑤 + 1) − 1
𝑚

)

𝑤! (1 − 𝑒−𝜆)𝑗+𝑖[𝛼(𝑤 + 1) +𝑚]
, 

and 

 

 𝑡𝑤,𝑚
∗ =∑

∞

𝑘=0

2𝛼(𝑤+1)−𝑚𝛼𝜆𝑤+1(−1)𝑤+𝑚+𝑘(𝑘 + 1)𝑤 (
𝑗 + 𝑖 − 1

𝑘
) (𝛼

(𝑤 + 1) − 1
𝑚

)

𝑤! (1 − 𝑒−𝜆)𝑗+𝑖[𝛼(𝑤 + 1) + 𝑚 + 1]
. 

The PDF of  𝑋𝑖  :  𝑛  can be expressed as  

𝑓𝑖:𝑛(𝑥) =∑

𝑛−𝑖

𝑗=0

(−1)𝑗 (
𝑛 − 𝑖
𝑗
)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑

∞

𝑤,𝑚=0

{
𝑡𝑤,𝑚 𝜋𝛼(𝑤+1)+𝑚(𝑥)

−𝑡𝑤,𝑚
?  𝜋𝛼(𝑤+1)+𝑚+1(𝑥)

}. 

Then, the density function of the PTL order statistics is a mixture of exp-G densities. Based on the last equation, we 

note that the properties of  𝑋𝑖  :  𝑛  follow from those properties of  𝑌𝛼(𝑤+1)+𝑚  and  𝑌𝛼(𝑤+1)+𝑚+1 . For example, the 

moments of  𝑋𝑖  :  𝑛  can be expressed as  

𝐸(𝑋𝑖:𝑛
𝑞
) =∑

𝑛−𝑖

𝑗=0

(−1)𝑗 (
𝑛 − 𝑖
𝑗
)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑

∞

𝑤,𝑚=0

{
𝑡𝑤,𝑚 𝐸(𝑌𝛼(𝑤+1)+𝑚

𝑞
)

−𝑡𝑤,𝑚
∗  𝐸(𝑌𝛼(𝑤+1)+𝑚+1

𝑞
)
}. 

 

(13) 

 

The L-moments are analogous to the ordinary moments but can be estimated by linear combinations of order statistics. 

They exist whenever the mean of the distribution exists, even though some higher moments may not exist, and are 
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relatively robust to the effects of outliers. Based upon the moments in equation (14), we can derive explicit expressions 

for the L-moments of  𝑋  as infinite weighted linear combinations of the means of suitable PTL order statistics. They 

are linear functions of expected order statistics defined by  

𝜆𝑟 =
1

𝑟
∑

𝑟−1

𝑑=0

(−1)𝑑 (
𝑟 − 1
𝑑

)𝐸(𝑋𝑟−𝑑  :  𝑟),  𝑟 ≥ 1. 

 

4.  Characterizations 

In this section we present certain characterizations of PTL-G distribution. The first characterization is based on hazard 

function and the second one is in terms of the ratio of two truncated moments. 

4.1   Characterization based on hazard function 

It is known that the hazard function,  ℎ𝐹 , of a twice differentiable distribution function,  𝐹 , satisfies the first order 

differential equation 
𝑓′(𝑥)

𝑓(𝑥)
=
ℎ𝐹
′ (𝑥)

ℎ𝐹(𝑥)
− ℎ𝐹(𝑥). 

 

(14) 

 

For many univariate continuous distributions, this is the only characterization available in terms of the hazard function. 

The following characterizations establish a non-trivial characterization for (5) in terms of the hazard function which 

is not of the trivial form given in (14). 

 

Proposition 4.1.1.  Let  𝑋  :   𝛺 → 𝑅  be a continuous random variable. Then  𝑋   has   𝑝𝑑𝑓   of (5) if and only if its 

hazard function  ℎ𝐹(𝑥)  satisfies the differential equation 

ℎ𝐹
′ (𝑥) −

𝑔′(𝑥)ℎ𝐹(𝑥)

𝑔(𝑥)
=
2𝑔(𝑥)

(𝛼𝜆)−1
𝑑

𝑑𝑥
{

(𝐺(𝑥))
𝛼−1

[2 − 𝐺(𝑥)]𝛼−1𝐺(𝑥)

1 − 𝑒𝑥𝑝{𝜆((𝐺(𝑥))
𝛼
[2 − 𝐺(𝑥)]𝛼 − 1)}

}. 
 

(15) 

 

Proof.  If   𝑋   has  𝑝𝑑𝑓  of (5), then clearly  (4.1.2)  holds.  Now, if (15) holds, then 

 

𝑑

𝑑𝑥
{(𝑔(𝑥))

−1
ℎ𝐹(𝑥)} = 2𝛼𝜆

𝑑

𝑑𝑥
{

(𝐺(𝑥))
𝛼−1

[2 − 𝐺(𝑥)]𝛼−1𝐺(𝑥)

1 − 𝑒𝑥𝑝{𝜆((𝐺(𝑥))
𝛼
[2 − 𝐺(𝑥)]𝛼 − 1)}

}, 

 

or 

 

ℎ𝐹(𝑥) =
2𝛼𝜆𝑔(𝑥)(𝐺(𝑥))

𝛼−1
[2 − 𝐺(𝑥)]𝛼−1𝐺(𝑥)

1 − 𝑒𝑥𝑝{𝜆((𝐺(𝑥))
𝛼
[2 − 𝐺(𝑥)]𝛼 − 1)}

,   𝑥 ∈ 𝑅, 

 

which is the hazard function of (5). 

Remark 4.1.1.  For   𝛼 = 1  , the differential equation (15) will have the following form 

 

ℎ𝐹
′ (𝑥) −

𝑔′(𝑥)ℎ𝐹(𝑥)

𝑔(𝑥)
=

2𝜆(𝑔(𝑥))2

(1 − 𝑒𝑥𝑝{𝜆((𝐺(𝑥))[1 + 𝐺(𝑥)] − 1)})
2 

× {(2𝐺(𝑥)𝐺(𝑥) + 1) 𝑒𝑥𝑝{𝜆((𝐺(𝑥))[1 + 𝐺(𝑥)] − 1)} − 1}. 

 

4.2   Characterizations in terms of two truncated moments 

In this subsection we present characterizations of (5) in terms of a simple relationship between two truncated moments. 

Our first characterization result employs a theorem due to Glänzel (1987) ,  see Theorem 1 below. Note that the result 

holds also when the interval  𝐻   is not closed. Moreover, it could be also applied when the 𝑐𝑑𝑓 𝐹 does not have a 

closed form.  As shown in Glänzel (1990), this characterization is stable in the sense of weak convergence. 

 

Theorem 1.  Let  (𝛺, 𝐹, 𝑃)  be a given probability space and let  𝐻 = [𝑑, 𝑒]  be an interval for some   𝑑 < 𝑒    

(𝑑 = −∞, 𝑒 = ∞  might as well be allowed).  Let  𝑋  :   𝛺 → 𝐻   be a continuous random variable with the 

distribution function  𝐹  and let  𝑞1  and  𝑞2  be two real functions defined on  𝐻  such that 
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𝐸[𝑞2(𝑋) | 𝑋 ≥ 𝑥] = 𝐸[𝑞1(𝑋) | 𝑋 ≥ 𝑥]𝜂(𝑥),   𝑥 ∈ 𝐻, 
 

is defined with some real function  𝜂 . Assume that  𝑞1, 𝑞2 ∈ 𝐶
1(𝐻) ,  𝜂 ∈ 𝐶2(𝐻)  and  𝐹  is twice continuously 

differentiable and strictly monotone function on the set  𝐻 . Finally, assume that the equation  𝜂𝑞1 = 𝑞2  has no real 

solution in the interior of  𝐻 . Then  𝐹  is uniquely determined by the functions  𝑞1, 𝑞2  and  𝜂  , particularly 

 

𝐹(𝑥) = ∫
𝑥

𝑎

𝐶 |
𝜂′(𝑢)

𝜂(𝑢)𝑞1(𝑢) − 𝑞2(𝑢)
| 𝑒𝑥𝑝(−𝑠(𝑢))  𝑑𝑢 , 

where the function   𝑠   is  a solution of the differential equation  𝑠′ =
𝜂′ 𝑞1

𝜂 𝑞1−𝑞2
  and  𝐶  is the normalization constant, 

such that  ∫
𝐻

𝑑𝐹 = 1 . 

Here is our characterization. 

 

Proposition 4.2.1.  Let  𝑋  :   𝛺 → 𝑅  be a continuous random variable and let 

𝑞1(𝑥) = 𝑒𝑥𝑝{𝜆(𝐺(𝑥))
𝛼
[2 − 𝐺(𝑥)]𝛼} 

 and 

𝑞2(𝑥) = 𝑞1(𝑥)(𝐺(𝑥)[2 − 𝐺(𝑥)])
𝛼  for  𝑥 ∈ 𝑅.   

 

The random variable  𝑋  belongs to the family (5) if and only if the function  𝜂  defined in Theorem1 has the form 

𝜂(𝑥) =
1

2
{1 + (𝐺(𝑥)[2 − 𝐺(𝑥)])𝛼},   𝑥 ∈ 𝑅. 

 

(16) 

Proof.  Let   𝑋   be a random variable with  𝑝𝑑𝑓  (5), then 

 

(1 − 𝐹(𝑥))𝐸[𝑞1(𝑥) | 𝑋 ≥ 𝑥] =
𝜆

1 − 𝑒−𝜆
{1 − (𝐺(𝑥)[2 − 𝐺(𝑥)])𝛼},   𝑥 ∈ 𝑅, 

 

and 

 

(1 − 𝐹(𝑥))𝐸[𝑞2(𝑥) | 𝑋 ≥ 𝑥] =
𝜆

2(1 − 𝑒−𝜆)
{1 − (𝐺(𝑥)[2 − 𝐺(𝑥)])2𝛼}   𝑥 ∈ 𝑅, 

 

and finally 

 

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) =
𝑞1(𝑥)

2
{1 − (𝐺(𝑥)[2 − 𝐺(𝑥)])𝛼} > 0   𝑓𝑜𝑟  𝑥 ∈ 𝑅. 

 

Conversely, if  𝜂  is given as above, then 

 

𝑠′(𝑥) =
𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
=
2𝛼𝑔(𝑥)(𝐺(𝑥)[2 − 𝐺(𝑥)])𝛼−1𝐺(𝑥)

1 − (𝐺(𝑥)[2 − 𝐺(𝑥)])𝛼
,   𝑥 ∈ 𝑅, 

 

and hence 

 

𝑠(𝑥) = − 𝑙𝑜𝑔{(𝐺(𝑥)[2 − 𝐺(𝑥)])𝛼} ,   𝑥 ∈ 𝑅. 
 

Now, in view of Theorem 1,  𝑋   has density (5). 

 

Corollary 4.2.1.  Let  𝑋  :   𝛺 → 𝑅   be a continuous random variable and let  𝑞1(𝑥)  be as in Proposition (17). Then  

𝑋  has  𝑝𝑑𝑓  (5) if and only if there exist functions  𝑞2  and  𝜂  defined in Theorem 1 satisfying the differential equation 

𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
=
2𝛼𝑔(𝑥)(𝐺(𝑥)[2 − 𝐺(𝑥)])𝛼−1𝐺(𝑥)

1 − (𝐺(𝑥)[2 − 𝐺(𝑥)])𝛼
,   𝑥 ∈ 𝑅. 

 

 

(17) 

The general solution of the differential equation in Corollary 4.2.1 is 
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𝜂(𝑥) = {1 − (𝐺(𝑥)[2 − 𝐺(𝑥)])𝛼}−1 

× [−∫ 2𝛼𝑔(𝑥)(𝐺(𝑥)[2 − 𝐺(𝑥)])𝛼−1(𝑞1(𝑥))
−1
𝑞2(𝑥)𝑑𝑥 + 𝐷], 

 

where  𝐷  is a constant.  

 

5. Estimation 

Several approaches for parameter estimation were proposed in the literature but the maximum likelihood method is 

the most commonly employed. The maximum likelihood estimators (MLEs) enjoy desirable properties and can be 

used for constructing confidence intervals and regions and also in test statistics. The normal approximation for these 

estimators in large samples can be easily handled either analytically or numerically. So, we consider the estimation of 

the unknown parameters of this family from complete samples only by maximum likelihood. Let  𝑥1, … , 𝑥𝑛  be a 

random sample from the PTL-G distribution with parameters  𝛿, 𝑎  and  𝜓 . Let  𝛩   be the  𝑝 × 1  parameter vector. 

For determining the MLE of  𝛩 , we have the log-likelihood function 

ℓ = ℓ(𝛩) = 𝑛 𝑙𝑜𝑔(2) + 𝑛 𝑙𝑜𝑔 𝜆 + 𝑛 𝑙𝑜𝑔 𝛼 − 𝑛 𝑙𝑜𝑔(1 − 𝑒−𝜆) 

+∑

𝑛

𝑖=1

𝑙𝑜𝑔 𝑔 (𝑥𝑖 ; 𝜓) + (𝛼 − 1)∑

𝑛

𝑖=1

𝑙𝑜𝑔 𝐺 (𝑥𝑖; 𝜓) 

+∑

𝑛

𝑖=1

𝑙𝑜𝑔[1 − 𝐺(𝑥𝑖; 𝜓)] + (𝛼 − 1)∑

𝑛

𝑖=1

𝑙𝑜𝑔[2 − 𝐺(𝑥𝑖; 𝜓)] 

−𝜆∑

𝑛

𝑖=1

𝐺(𝑥𝑖; 𝜓)
𝛼[2 − 𝐺(𝑥𝑖; 𝜓)]

𝛼 . 

The components of the score vector are 

 

𝑈𝜆 =
𝑛

𝜆
−

𝑛𝑒−𝜆

(1 − 𝑒−𝜆)
−∑

𝑛

𝑖=1

𝐺(𝑥𝑖; 𝜓)
𝛼[2 − 𝐺(𝑥𝑖; 𝜓)]

𝛼 , 

 

𝑈𝛼 =
𝑛

𝛼
+∑

𝑛

𝑖=1

𝑙𝑜𝑔 𝐺 (𝑥𝑖; 𝜓) +∑

𝑛

𝑖=1

𝑙𝑜𝑔[2 − 𝐺(𝑥𝑖 ; 𝜓)] 

−𝜆∑

𝑛

𝑖=1

{𝑙𝑜𝑔[2 − 𝐺(𝑥𝑖; 𝜓)] + 𝑙𝑜𝑔 𝐺 (𝑥𝑖; 𝜓)}

[2 − 𝐺(𝑥𝑖 ; 𝜓)]
−𝛼𝐺(𝑥𝑖 ; 𝜓)

−𝛼
, 

and 

𝑈𝜓 =∑

𝑛

𝑖=1

𝑔′(𝑥𝑖 ; 𝜓)

𝑔(𝑥𝑖 ; 𝜓)
+ (𝛼 − 1)∑

𝑛

𝑖=1

𝐺′(𝑥𝑖 ; 𝜓)

𝐺(𝑥𝑖; 𝜓)
 

−∑

𝑛

𝑖=1

𝐺′(𝑥𝑖 ; 𝜓)

1 − 𝐺(𝑥𝑖 ; 𝜓)
− (𝛼 − 1)∑

𝑛

𝑖=1

𝐺′(𝑥𝑖 ; 𝜓)

2 − 𝐺(𝑥𝑖 ; 𝜓)
 

−𝜆𝛼∑

𝑛

𝑖=1

𝐺′(𝑥𝑖 ; 𝜓) {
[2 − 𝐺(𝑥𝑖; 𝜓)]

𝛼𝐺(𝑥𝑖 ; 𝜓)
𝛼−1

− 𝐺(𝑥𝑖; 𝜓)
𝛼[2 − 𝐺(𝑥𝑖 ; 𝜓)]

𝛼−1}, 

where  𝑔′(𝑥𝑖 ; 𝜓) = 𝜕𝑔(𝑥𝑖 ; 𝜓)/𝜕𝜓, 𝐺
′(𝑥𝑖 ; 𝜓) = 𝜕𝐺(𝑥𝑖; 𝜓)/𝜕𝜓. Setting the nonlinear system of equations  𝑈𝜆 = 𝑈𝑎 =

0  and  𝑈𝜓 = 0  and solving them simultaneously yields the MLE. To solve these equations, it is usually more 

convenient to use nonlinear optimization methods such as the quasi-Newton algorithm to numerically maximize  ℓ. 

6. Simulation of PTL-E distribution 

In this section, we study the performance of the PTL-E distribution by conducting various simulations for different 

sizes (n=50, 150, 300) by using R-Language. We simulate 500 samples for the true parameters values I:  𝜆 = 4, 𝛼 =
5.5, 𝛾 = 0.5  in order to obtain average estimates (AEs), biases and mean square errors (MSEs) of the parameters. 

They are listed in Table 1. The small values of the biases and MSEs indicate that the maximum likelihood method 

performs quite well in estimating the model parameters of the proposed distribution.  
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7. Application 

In this section, we use a real data set to show that the PTL-Weibull distribution can be a better model than one based 

on Beta-exponential, Kumaraswamy-exponential, PTL-Weibull, Modified Weibull and Weibull distribution. The data 

set given below and represents the failure times of 50 components (per 1000h) 

 
0.036 0.058 0.061 0.074 0.078 0.086 0.102 0.103 0.114 0.116

0.148 0.183 0.192 0.254 0.262 0.379 0.381 0.538 0.570 0.574

0.590 0.618 0.645 0.961 1.228 1.600 2.006 2.054 2.804 3.058

3.076 3.147 3.625 3.704 3.931 4.073 4.393 4.534 4.893 6.274

6.816 7.896 7.904 8.022 9.337 10.940 11.020 13.880 14.730 15.080

 

 

The values in table Tab1 indicate that the PTL-W distribution leads to a better fit than the Weibull distribution, 

modified Weibull distribution, exponential distribution, beta exponential distribution, Kumaraswamy exponential 

distribution and PTL-E distribution. Also, from Table 2 PTL-G family of distribution is better than Beta-G and 

Kumaraswamy-G distribution. 

 

Many other useful real data sets can be found and analyzed see Ibrahim (2019), Ibrahim et al. (2019), Ibrahim  (2020a, 

b), Mansour et al. (2020) and Ibrahim and Yousof (2020). 

 

8. Concluding remarks 

We have proposed and presented results on a new family of distributions called Poisson Topp Leone-G family of 

distributions. This family of distributions have applications in Reliability, Economics and Survival data analysis. 

Properties of this family are studied including reliability properties, quantile function, series expansion of CDF and 

PDF, moments, moment generating function, mean deviation. Expression for  𝑖𝑡ℎ  order statistics is given, and 

estimation of parameters are carried out by Maximum likelihood method. A special sub-model is discussed in detail 

for illustration propose. Finally, an application is carried out on real data set to check the performance of the proposed 

family which provides consistently better fit than other models. 
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Appendix 

  
Figure 1: The PDF’s of various PTL-E distributions. Figure 2: The hazard functions of various PTL-E 

distributions. 

  
Figure 3: The PDF’s of various PTL-W distributions. Figure 4: The hazard functions of various PTL-W 

distributions. 

 

Table 1: Estimated AEs, Biases, and MSEs of the MLEs of parameters of 

PTL-E distribution based on 500 

simulations of with n=50, 150 and 300. 

50 parameters A.E Bias MSE 

 𝛼 3.351 0.759 1.763 

 𝜆 5.010 0.510 0.351 

 𝛾 0.735 0.335 0.073 

150     

 𝛼 3.559 0.551 0.651 

 𝜆 5.953 0.553 0.355 

 𝛾 0.776 0.376 0.103 

300     

 𝛼 3.368 0.633 0.539 

 𝜆 5.996 0.596 0.310 

 𝛾 0.755 0.355 0.083 
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Table 2: Estimated parameters for the failure times of 50 components(per 1000h). 

Model  Estimates  Standard Error -logL AIC  K-S 

Weibull α=0.429 0.104 103.0572 210.114 0.175 

 λ=0.638 0.073    

      

      

Modified Weibull α=0.043 0.131 102.320 210.640 0.138 

 β=0.492 0.181    

 γ=0.619 0.154    

      

      

PTL-Weibull λ=2.118 0.899 100.818 209.636 0.122 

 α=0.146 0.024    

 a=3.902 0.021    

 b=1.3×10⁻⁵ 0.13×10⁻⁵    

      

      

Exponential λ=0.299 0.042 110.342 222.685 0.478 

      

      

Beta-Exponential a=0.529 0.101 102.358 210.716 0.144 

 b=0.717 0.308    

 λ=0.281 0.132    

      

      

Kumaraswamy-

Exponential 

a=0.605 0.204 102.166 210.332 0.131 

 b=3.274 1.308    

 λ=0.044 0.012    

      

      

PTL-Exponential λ=0.823 0.304 102.094 210.189 0.128 

 α=0.606 0.122    

 γ=0.083 0.029    

 

  
Figure 5: Estimated densities of the models for data set. Figure 6: Fitted CDFs plots of the considered 

distribution for the real data set. 
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Figure 7: The P-P plots for the real data set 

 


