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Abstract 

  

In this paper, a general base of power transformation under the kernel method is suggested and applied in the line 

transect sampling to estimate abundance. The suggested estimator performs well at the boundary compared to the 

classical kernel estimator without using the shoulder condition assumption. The transformed estimator show 

smaller value of mean squared error and absolute bias from the efficiency results obtained using simulation. 
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1. Introduction   

Line transect sampling is considered as a common technique to estimate population abundance (density). For this 

method, the study area 𝐴 divides into non-overlapping parts (strips) with total length 𝐿, assuming that an observer 

follows each strip and records the perpendicular distance of each detected animal (object). The perpendicular distances 

 𝑥1, 𝑥2, … 𝑥𝑛 are a random sample that has a probability density function 𝑓(𝑥). The density of the objects is computed 

by 𝐷 = 𝑛𝑓(0)/2𝐿, and its estimate is �̂� = 𝑛𝑓(0)/2𝐿 (Buckland et al., 2001). 

The intuitive condition in the line transect sampling is that the probability of detecting an object, 𝑔(𝑥), is a conditional 

and non-increasing function of exposing an object given that the object is far away from the line by distance 𝑥. 

Assuming a random sample of perpendicular distances  𝑥1, 𝑥2, … 𝑥𝑛, the probability density function 𝑓(𝑥) is related 

to the detection function 𝑔(𝑥) by 𝑓(𝑥) = 𝑔(𝑥)/ ∫ 𝑔(𝑢)𝑑𝑢, i.e. the functions 𝑔(𝑥) and 𝑓(𝑥) have the same distribution 

shape (Buckland et al., 2001). 

The shape of both functions 𝑔(𝑥) and  𝑓(𝑥) at 𝑥 = 0 can be generally characterized into two types; the one that has a 

shoulder shape at 𝑥 = 0 (i.e. the probability of detecting objects around the transect line is usually certain) which is 

equivalent to the mathematical form 𝑓′(0) = 0, and the one that is without a shoulder shape at 𝑥 = 0. Several tests 

can be applied to examine whether the random sample of perpendicular distances satisfies the shoulder condition (see 

Zhang (2001)). In practice, several studies indicated that the shoulder condition is not valid for the line transect data 

of a particular community (see Bauer, Fromentin, Demarcq, Brisset, & Bonhommeau, 2015; Buckland, 1985). 

Several approaches can be found in the literature for the estimation of 𝑓(0). This article considers a common method 

for the estimation which is known as “the non-parametric kernel method”. The method allows the data to demonstrate 

itself. Silverman (1986) stated and summarized the general frame of the non-parametric kernel method which is given 

by: 
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 𝑓𝑋(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

, −∞ < 𝑥 < ∞ (1) 

where ℎ is the bandwidth parameter and 𝐾(. ) is the kernel function. 

The kernel “Rosenblatt–Parzen” density estimator is commonly applied in the literature to find a reliable estimate of 

𝑓𝑋(0); the estimator is direct, easy, and allows the sample to illustrate its characteristic density value at a chosen value 

of 𝑥.  For the case of reducing the estimation bias, several studies were considered on the related kernel estimator. For 

examples, Jones, Linton, and Nielsen (1995) proposed a simple bias reduction method for density estimation, Cheng, 

Fan, and Marron (1997) investigated the best weight functions for local polynomial fitting at endpoints to fix the 

boundary correction, Mack (2002) suggested several techniques to reduce bias, Eidous (2005) proposed frequency 

nonparametric histogram estimators, Karunamuni and Alberts (2006) used a transformation that is easy to implement 

to correct bias around the boundary, Koekemoer and Swanepoel (2008) proposed a semi-parametric kernel density 

estimator based on transformation, Eidous (2011a)  introduced an additive histogram frequency estimator based on 

the case of the shoulder condition doesn’t valid using line transect method, Eidous (2012) proposed a new kernel 

estimator for abundance without the shoulder condition, Wen and Wu (2015) made an improved transformation-based 

kernel estimator of densities on the unit interval, and Eidous (2015) improved the histogram estimation for 𝑓(0) 

applying line transect data with and without the shoulder condition. Recently, Albadareen and Ismail (2017) 

introduced several kernel estimators for 𝑓𝑋(0), Eidous and Al-Eibood (2018) proposed a bias-corrected histogram 

estimator for line transect sampling, Albadareen and Ismail (2018) suggested a generalized form of Epanechnikov 

kernel function to the adaptive estimation of 𝑓𝑋(0), and Albadareen and Ismail (2019) proposed a form of power-

transformation to the adaptive estimation of 𝑓𝑋(0) when the shoulder condition is violated.  

Assume that a random sample of the line transect method with non-negative distances are 𝑥1, 𝑥2, … , 𝑥𝑛. When an 

asymmetric kernel function is assumed, Chen (1996) derived the classical reflection estimator of 𝑓𝑋(𝑥) at 𝑥 = 0 as: 

 𝑓𝑋(0) =
2

𝑛ℎ
∑ 𝐾 (

𝑥𝑖

ℎ
)

𝑛

𝑖=1

 (2) 

The bias and variance of the estimator (2) are: 

 𝐵𝑖𝑎𝑠[𝑓𝑋(0)] =  2ℎ𝑓𝑋
′(0) ∫ 𝑢𝐾(𝑢)

∞

0

𝑑𝑢 + ℎ2𝑓𝑋
′′(0) ∫ 𝑢2𝐾(𝑢)

∞

0

𝑑𝑢 + 𝑜(ℎ2) (3) 

 =  2ℎ𝑓𝑋
′(0) ∫ 𝑢𝐾(𝑢)

∞

0

𝑑𝑢 + 𝑂(ℎ2)                      (4) 

 𝑉𝑎𝑟[𝑓𝑋(0)] =
4

𝑛ℎ
𝑓𝑋(0) ∫ 𝐾2(𝑢)

∞

0

𝑑𝑢 + 𝑜 (
1

𝑛ℎ
) (5) 

The asymptotic mean squared error (AMSE) is: 

 𝐴𝑀𝑆𝐸[𝑓𝑋(0)] =
4

𝑛ℎ
𝑓𝑋(0) ∫ 𝐾2(𝑢)

∞

0

𝑑𝑢 + (2𝑓𝑋
′(0)ℎ ∫ 𝑢 𝐾(𝑢)

∞

0

𝑑𝑢)

2

 (6) 

In this study, a general base of power-transformation of perpendicular distance under the kernel method is proposed 

for the population density when the shoulder condition is violated. The asymptotic theoretical properties (bias, 

variance, and mean squared error) of the estimator are derived and compared to the classical reflection of the kernel 

estimator. The efficiency results are supported by simulation studies, and the performance comparison is carried out 

between the proposed estimator and the classical kernel estimator. 

 

2. Methodology 

In some cases, the kernel estimator in (2) yields underestimated values and has a large negative bias under the line 

transect method (see Eidous (2011b)). Several bias reduction techniques were suggested in the literature, and one of 

the common method is the transformation approach (see Charpentier & Flachaire, 2015; Devroye & Gyorfi, 1985; 

Marron & Ruppert, 1994). In this article, we propose the power transformation with general base form and apply the 

transformation on the kernel estimator when 𝑓𝑋
′(0) ≠ 0. Assuming that the range of the perpendicular distances 𝑋 are 

0 ≤ 𝑋 ≤ 𝑤, the proposed transformation is 𝑌 = 𝑎𝑋/𝑤 − 1, 𝑎 > 1, where 𝑎 is a general base of power transformation. 

This function transforms the perpendicular distances by a non-decreasing function that produces estimator 𝑓𝑌(0). The 

original estimator in equation (2), which is 𝑓𝑋(𝑥), is applied to the original data and the transformed estimator, 𝑓𝑌(0), 

is obtained from the back-transformation such that: 
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 𝑓𝑌(𝑦) = 𝑓𝑋(𝑥) |
𝑑𝑥

𝑑𝑦
| = 𝑓𝑋(𝑤 log𝑎(𝑦 + 1)) (

𝑤

(𝑦 + 1) log(𝑎)
) (7) 

so that 𝑓𝑌(0) = 𝑓𝑋(0) (
𝑤

log(𝑎)
), i.e. when 𝑥 = 0 then 𝑦 = 0. 

In the line transect method, the estimation of  𝑓𝑋(𝑥) is required at 𝑥 = 0. For this proposed method (estimation by 

back-transformation), an equivalent estimation value 𝑓𝑌(0) (
log(𝑎)

𝑤
) is substituted. To obtain the estimation value at 

𝑦 = 0, the kernel estimator with respect to 𝑌 in equation (2) can be applied, and the transformed kernel estimator 

𝑓𝑌(0) is: 

 𝑓𝑌(0) =
2

𝑛ℎ
∑ 𝐾 (

𝑦𝑖

ℎ
) , 𝑦𝑖 = 𝑎𝑥𝑖/𝑤 − 1

𝑛

𝑖=1

 (8) 

 

If the kernel function 𝐾(𝑢) is assumed to follow a Gaussian density, the estimated values obtained from (2) and (8) 

converge to zero as  𝑥 > 𝑤, when considering that 𝑤 is large (such as 𝑤 ≥ max(𝑥𝑖) + 4ℎ). The density value of 

𝐾 (
𝑥∓𝑥𝑖

ℎ
) disappear when |𝑥 ∓ 𝑥𝑖| > 4ℎ. 

The bias and variance of 𝑓𝑌(0) are: 

 𝐵𝑖𝑎𝑠[𝑓𝑌(0)] = 2ℎ𝑓𝑌
′(0) ∫ 𝑢𝐾(𝑢)

∞

0

𝑑𝑢 + ℎ2𝑓𝑌
′′(0) ∫ 𝑢2𝐾(𝑢)

∞

0

𝑑 + 𝑜(ℎ2) (9) 

                          = 2ℎ ((
𝑤

log(𝑎)
)

2

𝑓𝑋
′(0) − (

𝑤

log(𝑎)
) 𝑓𝑋(0)) ∫ 𝑢𝐾(𝑢)

∞

0

𝑑𝑢 + 𝑂(ℎ2) (10) 

 𝑉𝑎𝑟[𝑓𝑌(0)] =
4

𝑛ℎ
𝑓𝑌(0) ∫ 𝐾2(𝑢)

∞

0

𝑑𝑢 + 𝑜 (
1

𝑛ℎ
) (11) 

                                        =
4

𝑛ℎ
(

𝑤

log(𝑎)
) 𝑓𝑋(0) ∫ 𝐾2(𝑢)

∞

0

𝑑𝑢 + 𝑜 (
1

𝑛ℎ
) (12) 

 

The asymptotic mean squared error is obtained by assuming the small terms 𝑜(. ) and 𝑂(. ) to be zero, 

 

𝐴𝑀𝑆𝐸[𝑓𝑌(0)] =
4

𝑛ℎ
((

𝑤

log(𝑎)
) 𝑓𝑋(0)) ∫ 𝐾2(𝑢)

∞

0

𝑑𝑢

+ [2ℎ ((
𝑤

log(𝑎)
)

2

𝑓𝑋
′(0) − (

𝑤

log(𝑎)
) 𝑓𝑋(0)) ∫ 𝑢𝐾(𝑢)

∞

0

𝑑𝑢]

2

 

(13) 

 

It should be noted that 𝑉𝑎𝑟[𝑓𝑌(0)] ≤ 𝑉𝑎𝑟[𝑓𝑋(0)] if 
𝑤

log(𝑎)
≤ 1. The value of 𝑎 that produces a smaller theoretical 

variance is defined as 
𝑤

log(𝑎)
≤ 1, i.e. 𝑎 ≥ 𝑒𝑤, under the constrain 𝑎 > 1. Without loss of generality, the base value 

𝑎 = 𝑒𝑤 will be assumed throughout this article. 

 

3. Simulation 

The theoretical asymptotic value in (13) is derived based on a large sample assumption. The simulation study is carried 

out to compare and examine the proposed estimator 𝑓𝑌(0) with the classical kernel estimator 𝑓𝑋(0) using different 

small sample sizes, which are 𝑛 = 50, 100, and 500. The efficiency measurements are the relative bias 𝑅𝐵 =

{𝐸[𝑓(0) −  𝑓(0)]} /𝑓(0) and the relative mean error 𝑅𝑀𝐸 = √𝑀𝑆𝐸[𝑓(0)]/𝑓(0). 

Random samples from two common density families are generated. These families are the reference densities when 

the shoulder condition is violated. Four different detection functions are also chosen for each model which cover wide 

possibility of density shapes. The two density models considered are: 

a) Beta (BE) model (Eberhardt, 1968) 

The detection function is 𝑔(𝑥) = (1 − 𝑥)𝛽 , 0 ≤ 𝑥 ≤ 𝜔, 𝛽 ≥ 1, and 𝑓(𝑥) = (1 + 𝛽)(1 − 𝑥)𝛽 , 0 ≤ 𝑥 ≤ 𝜔,
𝛽 ≥ 1. The density parameter values 𝛽 = 3.0, 4.0, 5.0 and 6.0  are chosen with the truncation point 𝜔 = 1 

for these models. 
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b) Negative exponential model (Gates, Marshall, & Olson, 1968) 

The detection function is 𝑔(𝑥) = 𝑒−𝛽𝑥, 𝛽 > 0, 0 ≤ 𝑥 ≤ 𝑤, and 𝑓(𝑥) = 𝛽𝑒−𝛽𝑥, 0 ≤ 𝑥 ≤ 𝑤. The density 

parameter values 𝛽 = 1.5, 2.0, 2.5, and 3. 0 are chosen with the truncation point 𝜔 = 3.0 for these models. 

Bandwidth selection 

The efficiency of the kernel estimator is based on the value of bandwidth. Since the mean squared error of the kernel 

estimator in equation (2) does not produce large variability by applying different symmetric kernel functions such as 

Gaussian, Epanechnikov, and biweight (Ghosh, 2018), the kernel function 𝐾(𝑢) is assumed to follow the standard 

normal distribution for comparison purposes.  

For our study, recommended bandwidth approaches are applied for the original data and the transformed data. The 

two estimators considered are: 

• Estimator 1 (Est1): The kernel estimator given by equation (2) is considered using the original data with the 

bandwidth method recommended by Silverman (1986), which minimizes the mean integrated squared error; 

ℎ = 1.06 𝜎 ̂𝑛−
1

5, where �̂� = √∑ 𝑥𝑖
2/𝑛𝑛

𝑖=1 . Although these bandwidth value was computed based on a 

reference density has a shoulder (i.e. the half-normal density), it is better to compute ℎ based on another 

density hasn't a shoulder as it is assumed with the proposed estimator (i.e. the negative exponential function). 

• Estimator 2 (Est2): The proposed estimator given by equation (8) is considered using the transformed data 

with the bandwidth method that minimizes 𝐴𝑀𝑆𝐸[𝑓𝑌(0)]. The bandwidth is ℎ =

(
((

𝑤

log(𝑎)
)𝑓𝑋(0)) ∫ 𝐾2(𝑢)

∞
0 𝑑𝑢

2𝑛[((
𝑤

log(𝑎)
)

2
𝑓𝑋

′ (0)−(
𝑤

log(𝑎)
)𝑓𝑋(0)) ∫ 𝑢𝐾(𝑢)

∞
0 𝑑𝑢]

2)

1/3

. A suitable reference density is assumed to substitute the 

estimated values of 𝑓𝑋(0) 𝑎𝑛𝑑 𝑓𝑋
′(0) for the case that the shoulder condition is violated. The reference density 

is the negative exponential function (see Al-Bassam & Eidous, 2018; Mack & Quang, 1998; Silverman, 

1986), such that (𝑓𝑋(0) =
1

�̅�
) and (𝑓𝑋

′(0) =
−1

�̅�2). The bandwidth of estimator 2 is ℎ =

(
((

𝑤

log(𝑒𝑤)
)(

1

�̅�
))(

1

4√𝜋
)

2𝑛[((
𝑤

log(𝑒𝑤)
)

2
(

−1

�̅�2)−(
𝑤

log(𝑒𝑤)
)(

1

�̅�
))(

1

√2𝜋
)]

2)

1/3

. 

4. Simulation results 

Table 1 and Table 2 provide the simulation results. The transformed estimator (Est2) shows smaller absolute relative 

bias and relative mean error than the traditional kernel estimator (Est1) under both families. Likewise, the relative 

mean errors of estimator 2 (Est2) decrease as the sample sizes increase, i.e. (Est2) provides a more consistent fit 

asymptotically as illustrated in Figure 1. 

Table 1. Simulation results of negative exponential family 
  𝑛 = 50 𝑛 = 100 𝑛 = 500 

𝛽 Estimator RB RME RB RME RB RME 

1.5 
Est1 -0.3445 0.3577 -0.3067 0.3146 -0.2419 0.2452 

Est2 -0.1488 0.2930 -0.1113 0.2253 -0.0670 0.1408 

2 
Est1 -0.3638 0.3753 -0.3264 0.3349 -0.2594 0.2621 

Est2 -0.1536 0.2799 -0.1072 0.2236 -0.0773 0.1398 

2.5 
Est1 -0.3645 0.3760 -0.3389 0.3464 -0.2672 0.2697 

Est2 -0.1479 0.2703 -0.1382 0.2259 -0.0783 0.1381 

3 
Est1 -0.3638 0.3759 -0.3388 0.3462 -0.2680 0.2708 

Est2 -0.1466 0.2664 -0.1337 0.2212 -0.0780 0.1368 
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Table 2. Simulation results of the beta model 
  𝑛 = 50 𝑛 = 100 𝑛 = 500 

𝛽 Estimator RB RME RB RME RB RME 

3 
Est1 -0.2483 0.2691 -0.2231 0.2374 -0.1706 0.1767 

Est2 -0.1019 0.2606 -0.0802 0.2176 -0.0547 0.1320 

4 
Est1 -0.2695 0.2868 -0.2430 0.2556 -0.1878 0.1930 

Est2 -0.1015 0.2510 -0.0901 0.2106 -0.0530 0.1263 

5 
Est1 -0.2862 0.3040 -0.2577 0.2696 -0.1984 0.2027 

Est2 -0.1092 0.2595 -0.0861 0.2047 -0.0503 0.1255 

6 
Est1 -0.2891 0.3063 -0.2682 0.2789 -0.2089 0.2133 

Est2 -0.1042 0.2545 -0.0923 0.2124 -0.0584 0.1271 

 

 
Figure 1. RB and RME of the simulation results of the Beta and the negative exponential model 

5. Conclusion 

This article proposed an adaptive method of the kernel estimator to estimate the population abundance (density) at the 

boundary under the line transect method. A general base of power-transformation is suggested to improve the 

estimation efficiency when the shoulder condition is violated. The proposed transformation estimator presents more 

efficient and consistent results than the traditional kernel estimator. The asymptotic bias, variance and mean squared 

error of the proposed estimator are also derived. The simulation results show that the proposed estimator is more 

efficient than the traditional kernel estimator. 
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