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Abstract  

 

Although longitudinal and survival data are collected in the same study, they are usually analyzed separately. 

Measurement errors and missing data problems arise because of separate analysis of these two data. Therefore, 

joint model should be used instead of separate analysis. The standard joint model frequently used in the literature 

is obtained by combining the linear mixed effect model of longitudinal data and Cox regression model with survival 

data. Nevertheless, to use the Cox regression model for survival data, the assumption of proportional hazards must 

be provided. Parametric survival sub-models should be used instead of the Cox regression model for the survival 

sub-model of the JM where the assumption is not provided. In this article, parametric joint modeling of longitudinal 

data and survival data that do not provide the assumption of proportional hazards are investigated. For the survival 

data, the model with Exponential, Weibull, Log-normal, Log-logistic, and Gamma accelerated failure time models 

and the linear mixed effect model are combined with random effects and the models were applied in primary biliary 

cirrhosis data set obtained from Mayo Clinic. After determining the best parametric joint model according to Akaike 

and Bayesian information criterions, the best available model was compared with standard joint model and of 

separate analysis of survival data and longitudinal data. As a result, in the studies where longitudinal and survival 

data are obtained together, it is seen that the parametric joint model gives more better results than the standard joint 

model when the proportional hazard assumption is not provided.   

 
 

Key Words: Accelerated failure time models; Longitudinal data; Parametric joint modelling; Standard joint 

modelling; Survival data 
 

 

1. Introduction  

 

The JM is used to investigate the relationship between longitudinal and survival data and the effects of longitudinal 

data on survival. The standard joint model (JM), which is frequently used in the literature, is obtained by combining 

the linear mixed effect model of longitudinal measurement (longitudinal sub-model), and Cox regression model of 

survival data (survival sub-model). However, in order to analyze survival data with Cox regression, the assumption 

of proportional hazard is required. In studies where survival data for which this assumption is not provided, and 

longitudinal observation, parametric survival sub-models should be used for the survival sub-model of the JM. The 

JM was developed for the unbiased and effective estimates of the relationship between longitudinal and survival data 

after 1990s. JM was first applied in 1992 by Self and Pawitan to obtain the JM parameter estimates of the linear mixed 

effect (LME) model for longitudinal data and Cox regression model for survival data (Self and Pawitan, 1992). 

In the literature particularly in the last 20 years, studies on JM appear. Primary studies on basic JM with one covariate 

survival and longitudinal data were performed by Self and Pawitan (1992), DeGruttola and Tu (1994), Tsiatis, 

Pakistan Journal of Statistics and Operation Research 



Pak.j.stat.oper.res.  Vol.16  No. 1 2020 pp295-304  DOI: http://dx.doi.org/10.18187/pjsor.v16i2.3131 

 
Joint Modeling of a Longitudinal Measurement and Parametric Survival Data with Application to Primary Biliary Cirrhosis Study 296 

 

DeGruttola and Wulfsoh (1995), Faucett and Thomas (1996) and Wulfsohn and Tsiatis (1997). Henderson, Diggle, 

and Dobson (2000) have developed a general model that adopts two stationary Gaussian processes, including 

sequential correlation and random effects for longitudinal measurements and survival times. Tsiatis and Davidian 

(2001) proposed a simple model for estimating JM parameters that do not require distribution assumptions over 

random effects. Tseng, Hsieh and Wang (2005) studied the maximization of JM likelihood function in the presence of 

longitudinal data including measurement errors and accelerated failure time. Elashoff, Li and Li (2008) and Hu, Li 

and Li (2009) have done studies on JM in the event of competing risks and multiple failures. Rizopoulos  (2010) 

developed the “JM” package in the R program to obtain the JM estimates of the longitudinal and survival data. Su and 

Wang (2012) investigated the JM of left truncation survival data and longitudinal observations. 

In the next section, we introduce notation and describe the parametric joint models. In addition, we have defined how 

model parameters are obtained. In Section 3, parametric and standard JM have been applied to primary biliary cirrhosis 

(PBC) data obtained from Mayo Clinic in order to determine the effect of longitudinal observation on the survival 

time of patients with liver cirrhosis. And finally in section 4, we provide final comments for compared to standard 

JM, parametric JM and separate analysis for longitudinal and survival data and investigated the effects of using the 

standard JM on parameter estimation when the assumption of proportional hazards is not provided. 

 

2. Material and Method 

 

JM are two fundamental compact the formed longitudinal sub-model and survival sub-model. Standard JM is 

composed of LME model for longitudinal sub-model and Cox regression model for survival sub-model. 

 

Standard JM can be obtained as follows; 

𝒚𝒊(𝒕) = 𝒙𝒊
′(𝒕)𝜷 + 𝒛𝒊

′(𝒕)𝒃𝒊 + 𝜺𝒊(𝒕)  

𝑚𝑖(𝑡) = 𝑥𝑖
′(𝑡)𝛽 + 𝑧𝑖

′(𝑡)𝑏𝑖                                                                                                                                     (1) 

ℎ𝑖(𝑡 | 𝛭𝑖(𝑡) , 𝛼𝑖) = ℎ0(𝑡) 𝑒𝑥𝑝{𝛾 ′𝛼𝑖 + 𝛼𝑚𝑖(𝑡)} , 𝑡 > 0                                                                                        (2)   

 

where Equation (1) shows the longitudinal sub-model of the joint model. 𝑥𝑖
′(𝑡)𝛽 and 𝑧𝑖

′(𝑡)𝑏𝑖 shows the design vectors 

for fixed effect 𝛽 and random effect 𝑏𝑖, respectively. 𝜀𝑖(𝑡) are errors of 𝑚𝑖𝑥1 dimension that is independent of other 

variables. Errors have been normal distribution in 𝑁(0, 𝜎𝜀
2) form (Verbege and Molenberghs 2000; Rizopoulos, 

Verbeke and Molenberghs 2010). Equation (2) shows the survival sub-model of the joint model obtained by Cox 

regression. Where, 𝑚𝑖(𝑡) indicates the unobserved longitudinal data at time 𝑡 and includes measurement errors. 𝛼𝑖 

and 𝛾 shows the covariates (e.g. treatment indicator, disease history etc) and regression coefficient vector 

corresponding to covariates, respectively. ℎ0(. )is the basic risk function and can be defined in a parametric and non-

parametric way as in the Cox model (Cox 1972; Bahçecitapar 2018). 𝛼 in Equation (2) is the association parameter 

for longitudinal sub-model and survival sub-model. There is no relationship between two process when 𝛼 = 0 

(Rizopoulos, Verbeke and Molenberghs 2010; Rizopoulos 2012). 

 

In order to apply Cox regression model for survival data, the assumption of proportional hazard (PH) must be provided. 

Parametric models should be used in cases where the assumption is not provided, and the survival time corresponds 

to a certain distribution. Parametric models are divided into PH and accelerated failure time (AFT) models. Parametric 

PH models are parametric version of Cox regression, and commonly used PH models; Exponential, Weibull and 

Gompertz (Cleves, Gould and Marchenko, 2016). Although parametric PH models are widely used for survival data, 

there is little distribution that can be used in modelling. In this case, AFT models are used an alternative to parametric 

PH models. In addition, AFT models are also used as an alternative to PH models to overcome the statistical problems 

caused by the violation of the assumption of PH (Faruk, 2018). Therefore, survival sub-model for JM should be done 

by parametric regression methods where survival data do not provide the assumption of PH and have a certain 

parametric distribution. Let we redefine the survival sub-model given in Equation (2) for parametric AFT models as 

follows (Pericleous 2016); 
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ℎ(𝑡) ; {
log(𝑡),acceleratedfailuretime
t,other parametric models

 

 

From this form of ℎ(𝑡), risk function ℎ(𝑡) i. for unit can be written as follows; 

ℎ(𝑡𝑖) = 𝜇𝑖(𝑡𝑖) + 𝜎 × 𝜀𝑖                   (3) 

where 𝜎 and 𝜀𝑖 indicates the scale parameter and errors from appropriate survival distribution, respectively and 𝜇𝑖(𝑡𝑖) 

can be defined as follows, 

 

𝜇𝑖(𝑡𝑖) = 𝛼𝑚𝑖(𝑡) + 𝛼𝑖
′𝛾                                 (4) 

Here, parametrical survival sub-models can be written in general form as follows; 

 

ℎ𝑖(𝑡) = 𝛼[𝑥 𝑖
′ (𝑡) 𝛽 + 𝑧 𝑖

′ 𝑏𝑖] + 𝛼𝑖
′𝛾 + 𝜎 × 𝜀𝑖                                            

(5) 

 

The survival and basic hazard functions for the parametric sub models of the JM are given in Table 2.1. 

 

Table 2.1. Parametric sub-models for JM 

 

2.1. Parameter estimates methods for joint modelling 

 

Two methods are used for the parameter estimation of the JMs, namely the two-stage procedure and the solution of 

joint probability. In literature, different two-stage methods have been suggested (Self and Pawitan 1992; Tsiatis, 

DeGruttola and Wulfsohn 1995; Wu et al. 2012). Two-stage method has mainly been defined as follows; 

 

1) The longitudinal covariates are modeled with the LME, and the unit-specific values of the covariates are 

estimated. 

2) The survival model is estimated by the values obtained in stage 1. 

 

This approach reduces bias in parameter estimation of the Cox regression model (Wulfsohn and Tsiatis 1997). The 

approach is simple to implement and allows parameter estimation using existing software (Wu et al. 2012). However, 

this method cannot simultaneously use information from the survival and longitudinal process at the estimation stage 

of each model (Wu et al. 2012). The use of only longitudinal results in the first stage may comprise biased estimates 

in the LME, and as a result, biased and ineffective results may arise in parameter estimates of survival analysis 

Parametric Survival 

Models 
S(t) f(t) 

Exponential 

AFT 

sub-model 

 

 

𝒆𝒙𝒑[−(𝒕𝒆𝒙𝒑[ 𝝁𝒊(𝒕𝒊)])] 
(𝒕𝒆𝒙𝒑[ 𝝁𝒊(𝒕𝒊)])𝒆𝒙𝒑(−(𝒕𝒆𝒙𝒑[𝝁𝒊(𝒕𝒊)])) 

Weibull 

AFT 

sub-model 

 

𝒆𝒙𝒑[−(𝒕𝒆𝒙𝒑[ 𝝁𝒊(𝒕𝒊)])𝒆𝒙𝒑(𝟏/𝝈)] (𝒕𝒆𝒙𝒑[ 𝝁𝒊(𝒕𝒊)])𝒆𝒙𝒑(𝟏/𝝈−(𝒕𝒆𝒙𝒑[𝝁𝒊(𝒕𝒊)])𝒆𝒙𝒑(𝟏/𝝈)) 

Log-Logistic 

AFT 

sub-model 

 

[𝟏 + 𝒆𝒙𝒑{ 𝝈−𝟏(𝒚𝒊 − 𝝁𝒊)}]−𝟏 
𝒆𝒙𝒑{ 𝝈−𝟏(𝒚𝒊 − 𝝁𝒊)}𝝈−𝟏(𝟏

+ 𝒆𝒙𝒑{ 𝝈−𝟏(𝒚𝒊 − 𝝁𝒊)})−𝟐 

Log-Normal 

AFT 

sub-model 
[𝟏 − 𝝓 (

(𝒚𝒊 − 𝝁𝒊

𝝈
()) []] 𝒆𝒙𝒑 [

−(𝑻𝒊( 𝒕𝒊) 𝝈(𝟐𝝅)
𝟏
𝟐)−𝟏(𝒚𝒊 − 𝝁𝒊)

𝟐𝝈𝟐
] 
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(Ibrahim, Chu and Chen 2010). Methods based on the joint probability function allow for unbiased parameter 

estimates. The JM paradigm includes different model strategies such as pattern-mixture models and selection models 

(Pericleous 2016). When random effects are attached to these model structures, random mixed model, random 

selection model and random effect model are obtained. There are the differences and similarities in the definition of 

each model. A simple and detailed study was conducted by Sousa and McCrink to examine this distinction  (Sousa 

2011). Y, T and B denote longitudinal, survival time and random effects, respectively, and can be written follow as; 

Selection Model: [𝑌, 𝑇, 𝐵] = [𝐵] [𝑌 | 𝐵] [𝑇 | 𝑌]  

Mixed Model:[𝑌, 𝑇, 𝐵] = [𝐵] [𝑇 | 𝐵] [𝑌 | 𝑇]                               (6) 

Random Mixed Model: [𝑌, 𝑇, 𝐵] = [𝐵] [𝑌 | 𝐵] [𝑇 | 𝐵] 

 

Among these methods, a random effect model (also is named shared parameter model) that connects survival and 

longitudinal process with random effect is preferred dominantly (Pericleous 2016). Therefore, in this article is used 

the random effect model for linked longitudinal and survival sub model. 

 

The likelihood function of longitudinal measurement and survival data for i-th unit obtained from the random effect 

model can be defined as follows; 

 

𝑙𝑜𝑔 𝑝 (𝑇𝑖 , 𝛿𝑖, 𝑦𝑖 ; 𝜃) = 𝑙𝑜𝑔 ∫ 𝑝(𝑇𝑖 , 𝛿𝑖 , 𝑦𝑖 , 𝑏𝑖 ; 𝜃)𝑑𝑏𝑖  

= 𝑙𝑜𝑔 ∫ 𝑝(𝑇𝑖 , 𝛿𝑖| 𝑏𝑖; 𝜃𝑡 , 𝛽)[∏ 𝑝{𝑦𝑖(𝑡𝑖𝑗)|𝑏𝑖 ; 𝜃𝑦}𝑗 ]𝑝(𝑏𝑖; 𝜃𝑏)𝑑𝑏𝑖                            (7) 

where 𝜃 = (𝜃𝑡
′, 𝜃𝑦

′ , 𝜃𝑏
′ ) has all parameter vector, and 𝜃𝑡, 𝜃𝑦 and 𝜃𝑏 shows survival data parameters, longitudinal data 

parameters, and covariance matrix parameters of random effects, respectively. 𝑝(𝑇𝑖 , 𝛿𝑖|𝑏𝑖; 𝜃𝑡 , 𝛽) shows the conditional 

density of survival sub-model, and  𝑝(𝑦𝑖|𝑏𝑖; 𝜃)𝑝(𝑏𝑖; 𝜃) indicates joint density function for longitudinal measurement 

and random effects. Integral approaches, such as, Gauss-Hermite, Laplace, EM algorithm are needed because the 

integrals of shared parameter models (Equation 7) are very complex and difficult to calculate analytically to obtain 

parameter estimates (Rizopoulos 2010). 

 

3. Results and Discussion 

PBC data in the literature were used to examine and compare different parametric JM structures, standard JM structure, 

and separate analysis of two data. The data were collected to examine the progress of PBC in 312 patients in the Mayo 

Clinic in 1924-1984 years (Murtaugh et al. 1994). This data was obtained from “JM” package in the R program. PBC 

is a chronic liver disease with no effective treatment other than liver transplantation (Gordon 1987). Of the 312 patients 

in the PBC data set, 158 received the D-penicillin drug and the other 154 patients were identified as the placebo group. 

Serum bilirubin levels were measured repeatedly at specific time intervals (6 months and after each year) and total 

1945 consist of unbalanced longitudinal measurements. The main aim of the study was to research the effect of 

treatments on the relationship between serum bilirubin (longitudinal measurement) and time of death. 

Since the patients were started to be followed, the survival time (year) were taken as the period until death. Here the 

failure is considered as death and other patients expressed as censored. At the end of study 140 of the 312 patients 

(44.9%) died and 172 (55.1%) was censored. The data set includes clinical, biochemical, and demographic risk factors 

for each patient. Demographic factors; age and sex of patients, Biochemical factors; drug (D-penicillin and placebo 

group), ascites (accumulation of water in the abdomen due to liver failure-no/yes), hepatomogaly (liver growth status-

no/ yes), skin disorder (blood vessel disorders in the skin-no/yes), edema (swelling condition in hands and feet-no/yes, 

edema despite drug use/ yes) and consists of histological stage. Serum bilirumin (mg/dl) values were taken as 

biochemical properties and because of having a left skewed distribution, the logarithmic transformations of bilirubin. 

The covariates and levels used are given in Table 3.1. 
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Table 3.1. Used covariates and levels 

Covariates Levels n % 

Sex 
1- Female 

2- Male 

276 

36 

88.5 

11.5 

Drug 
1- D-penisilin 

2- Placebo 

158 

154 

50.6 

49.4 

Ascites 
1-No 

2- Yes 

247 

41 

79.2 

13.1 

Hepatomogaly 
1- No 

2- Yes 

131 

157 

42.0 

50.3 

Skin Disorder 
1- No 

2- Yes 

188 

100 

60.3 

32.1 

Edema 

1- No 

2- Edema despite drug 

3- Yes 

43 

64 

205 

13.8 

20.5 

65.7 

Histological stage 

1- Stage1 

2- Stage2 

3- Stage3 

4- Stage4 

11 

45 

102 

154 

3.5 

14.4 

32.7 

49.4 

 

 
Figure 3.1. Temporal graphics of log (serbilir) values for patients 

 

When Figure 3.1 examined, it is seen that the patients who died have been more sharply trend than the censored 

patients. This is a positive relationship between longitudinal observation and survival time and as a result, it can be 

said that the increase in the longitudinal observation levels increases the risk of death. 
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(a) Sex (b) Drug 

  

(c) Hepatomogaly (d) Histological Stage 

Figure 3.2. Graphs for the assumption of PH of some covariates 

The assumption of PH required for Cox regression model before the combined model was examined and graphically 

analyzed in Figure 3.2. When the graphs are investigated, assumption has not been provided since there is overlap in 

the levels of some variables. Therefore, Cox regression model should not be used for survival analysis of the JM. 

However, the results of the standard JM to compare with the parametric JM results are given in Table 3.2. 

Table 3.2. Standard JM results of LME model and Cox regression model 

   �̂� Std. error z p 

Longitudinal 

Sub Model 

Fixedterm 0.4352 0.2714 1.6033 0.1089 

Age    -0.0038 0.0051     -0.7409 0.4588 

Sex2 0.2369 0.1704 1.3904 0.1644 

Drug2 0.1283 0.1053 1.2185 0.2230 

Ascites2 0.1043 0.0415 2.5118 0.0120 

Hepatomo2    -0.0183 0.0247 -0.7427 0.4577 

SkinDisorder2 0.0640 0.0287 2.2273 0.0259 

Edema2 0.1798 0.0344 5.2289 0.0000 

Edema3 0.2706 0.0537 5.0434 0.0000 

HistStage2 0.0340 0.0646 0.5256 0.5992 

HistStage3 0.1021 0.0669 1.5259 0.1270 

HistStage4 0.1642 0.1642 2.2939 0.0218 

Cox 

Sub Model 

Age 0.0306 0.0097 3.1460 0.0017 

Sex2 0.3957 0.2537 1.5596 0.1188 

Drug2 0.2125 0.1840 1.1552 0.2480 

Ascites2 0.2925 0.2292 1.2758 0.2020 

Hepatomo2    -1.6163 0.2042 0.2042 0.0000 

SkinDisorder2    -0.6230 0.1994 -3.1249 0.0018 
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Edema2 0.8477 0.2421 3.5012 0.0005 

Edema3 2.0730 0.2692 7.7003 0.0000 

HistStage2    -1.7986 0.7371    -2.4401 0.0147 

HistStage3    -1.4441 0.5745    -2.5138 0.0119 

HistStage4    -0.4095 0.5468    -0.7488 0.4540 

 Assoct 1.3913 0.1161 11.9833 0.0000 

 

Since the data did not fit the Cox regression model, parametric survival models were examined for JM. Accelerated 

Failure Time (AFT) models with more probability distribution for parametric regression models have been used and 

to determine which of the models are best appropriate have been used the model comparison criteria (AIC and BIC). 

The AIC and BIC values of the JM of the linear mixed effect model with Exponential, Weibull, Log-normal, Log-

logistic and Gamma regression models from parametric models are given in Table 3.3. 

 

Table 3.3. Model comparison criteria results for parametric JMs 

Model AIC BIC 

Exponential 4738.236 4894.281 

Weibull 4721.314 4882.982 

Log-normal 4742.735 4904.352 

Log-logistic 4727.060 4888.678 

Gamma 4722.846 4884.464 

 

According to the model comparison criteria given in Table 3.3, the best model was determined as parametric JM of 

LME model with Weibull regression model. 

Table 3.4. Parametric JM result of LME model and Weibull regression model 

  �̂� Std. error z p 

Longitudinal 

Sub Model 

Fixedterm  0.6535 0.2943  2.22 0.026 

Age     -0.0079 0.0055       -1.42 0.155 

Sex2  0.4905 0.1781  2.75 0.006 

Drug2  0.0945 0.1125  0.84 0.401 

Ascites2  0.1408 0.0506  2.78 0.005 

Hepatomo2 -0.0205 0.0288 -0.71 0.475 

SkinDisorder2  0.1139 0.0334  3.41 0.001 

Edema2  0.3977 0.0393  10.11 0.000 

Edema3  0.6492 0.0569  11.40 0.000 

HistStage2 -0.1207 0.0741 -1.63 0.104 

HistStage3  0.0241 0.0763  0.32 0.752 

HistStage4  0.2189 0.0818  2.68 0.007 

Weibull 

Sub Model 

Age -0.0431 0.0092 -4.64 0.000 

Sex2 -0.4022 0.2682 -1.50 0.134 

Drug2 -0.3059 0.1809 -1.69 0.091 

Ascites2 -0.3434 0.1627 -2.11 0.035 

Hepatomo2  0.7130 0.1491  4.78 0.000 

SkinDisorder2  0.1397 0.1392  1.00 0.315 

Edema2 -0.6588 0.1725 -3.82 0.000 

Edema3 -1.5090 0.1957 -7.71 0.000 

HistStage2  0.9656 0.6554  1.47 0.141 

HistStage3  0.2690 0.5366  0.50 0.616 

HistStage4 -0.3743 0.5217 -0.72 0.473 

Assoct -1.1569 0.0943  -12.27 0.000 
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According to the results given in Table 3.4, gender, acid, skin defect, edema and histological stage4 covariates in 

longitudinal sub-model and age, ascites, hepatomegaly and edema covariates were found statistically significant in 

Weibull sub-model. According to Weibull sub-model, survival time is shortened as age progresses, survival time in 

patients with hepatic insufficiency as fluid accumulation in the abdomen is 1.41 times shorter than those without. 

Survival time in patients with liver growth is 2 times longer than in those without liver growth and in patients with 

hand and foot swelling despite the use of the drug, survival time is 1.9 times shorter than those without hand and foot 

swelling, survival time in patients with hand and foot swelling is 4.5 times shorter than those without. The Assoct 

coefficient shows the association parameter between the longitudinal and survival data. Accordingly, it can be said 

that the increase in serum bilirubin measurements will result in a shortening of survival time. 

 

To compare the results obtained from the JM, the results of separate analysis of the longitudinal and survival data are 

given in Table 3.5 and Table 3.6, respectively. 

 

Table 3.5. LME model results 

 �̂� Std. error z p 

Fixedterm     -0.0679 0.3925 -0.17 0.863 

Age     -0.0132 0.0049 -2.67 0.008 

Sex2 0.4760 0.1539  3.09 0.002 

Drug2     -0.0166 0.0978 -0.17 0.866 

Ascites2 1.1179 0.2717  4.11 0.000 

Hepatomo2 0.7778 0.1539  5.05 0.000 

SkinDisorder2 0.4243 0.1468  2.89 0.000 

Edema2 0.2944 0.1786  1.65 0.100 

Edema3 0.4256 0.2645  1.61 0.109 

HistStage2 0.0515 0.3805  1.35 0.177 

HistStage3 0.6385 0.3459  1.85 0.066 

HistStage4 0.7478 0.3483  2.15 0.033 

 

Table 3.6. Weibull regression model results 

 �̂� Std.  error z p 

Fixedterm 7.8327 0.9469  8.27 0.000 

Age     -0.0309 0.0100 -3.08 0.002 

Sex2     -0.4469 0.2399 -1.86 0.062 

Drug2     -0.1999 0.1761 -1.13 0.256 

Ascites2     -0.7177 0.2333 -3.08 0.002 

Hepatomo2 0.5186 0.1986  2.61 0.009 

SkinDisorder2     -0.0140 0.1945 -0.07 0.943 

Edema2     -0.8790 0.2462 -3.57 0.000 

Edema3     -1.7537 0.2927 -5.99 0.000 

HistStage2 0.6030 0.9179  0.66 0.511 

HistStage3     -0.3688 0.7476 -0.49 0.622 

HistStage4     -1.0932 0.7361 -1.49 0.138 

Log(serBilir)(t)     -0.0001 0.0000 -2.92 0.004 

 

According to the results of Weibull parametric model, it is seen that the hazard ratios and standard errors of parameter 

estimations are higher than the Weibull parametric JM. In addition, the relationship between time-dependent serum 

bilirubin values and survival was found to be lower than the Weibull parametric JM. 
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The hazard ratios and standard errors of parameter estimates in the standard JM were found to be higher than the 

Weibull parametric JM. In addition, the relation between serum bilirubin values and life expectancy was higher than 

the Weibull parametric model according to standard combined model results. 

4. Conclusion 

Survival and longitudinal data obtained in the same study should be analyzed by JM in case there is a relationship 

between them. The standard JM construction which is generally used is based on combining linear mixed effect model 

of longitudinal observations and Cox regression model of survival data by using shared parameter models. 

Nevertheless, on account of using the Cox regression model for survival data, the assumption of PH should be 

provided. In cases where the assumption is not provided, to obtain unbiased and reliable results Exponential, Weibull, 

Log-normal, Log-logistic and Gamma parametric models should be used for the JM survival sub-model. 

In this study, standard JM, parametric JMs and separate analysis of longitudinal and survival data were performed by 

the data obtained from Mayo Clinic in order to investigate the effect of treatments on the relationship between serum 

bilirubin and time of death in PBC patients. Parametric joint model has the indicators that yield better results than 

separate analysis of longitudinal and survival data and the standard joint model when assumption of PH is not 

provided. The standard error and hazard ratio of parameter obtained by from parametric joint model are slower than 

the standard error and hazard ratio of parameter obtained from standard joint model and separate analysis of 

longitudinal and survival data. Furthermore, when the result of separate analyzes are examined, it is seen that the 

effect of longitudinal observation on survival data is calculated as very low. Especially on important issues such as 

human health, it is important to accurately calculate the relationship between longitudinal measurement and survival 

data and the risk factors of covariates. Therefore, in cases where the assumption of proportional hazards is not 

provided, parametric survival models should be used for survival partial of the joint model in order to obtain unbiased 

and effective results. 
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