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Abstract
In this paper, we compare the method of Gunter et al. (2011) for variable selection in treatment
comparison analysis (an approach to regression analysis where treatment-covariate interactions
are deemed important) with a simple stepwise selection method that we introduce. The stepwise
method has several advantages, most notably its generalization to regression models that are not
necessarily linear, its simplicity and its intuitive nature. We show that the new simple method
works surprisingly well compared to the more complex method when compared in the linear
regression framework. We use four generative models (explicitly detailed in the paper) for the
simulations and compare spuriously identified interactions and where applicable (generative
models 3 and 4) correctly identified interactions. We also apply the new method to logistic
regression and Poisson regression and illustrate its performance in Table 2 in the paper. The
simple method can be applied to other types of regression models including various other
generalized linear models, Cox proportional hazard models and nonlinear models.

Keywords: Stepwise selection, Treatment-covariate interactions, Qualitative
interactions, Variable selection, Prescriptive variables.

1. Introduction
There are numerous ways to select a subset of variables to be used in a
regression model (e.g. stepwise selection, variable ranking, all possible subsets,
penalized regression, regression tree importance weighting) These techniques
vary widely in complexity and integration with the model fitting process. Along
with these methods there are a variety of optimization criteria to pick the best
model out of a set of candidate models (e.g. adjusted 2R , Mallows Cp statistic,
F-test thresholds, Akaike's Information Criteria, and Schwarz's Bayesian
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Information Criteria, individual p-values)  (Draper and Smith 1981). However, all
but a small minority of the techniques are specifically designed to either improve
prediction or understand the predictive relationship better.

In this paper we discuss a different motivation for variable selection in regression
models, variable selection to aid in treatment comparison analysis (using the
regression variables to decide for specific patients which treatment is best to
prescribe). We discuss some of the reasons why prediction based variable
selection techniques lack appeal in this situation and propose a new technique
for use when comparing treatments. This new technique is much simpler than
previously proposed techniques (Gunter et al. 2011).

We provide summary comments about its performance and also demonstrate the
use of this new technique on a real clinical data set. The rest of this paper is
arranged as follows: Section 2 provides background on variable selection
methods with particular emphasis on techniques for finding qualitative
interactions in treatment comparison analysis. Section 3 describes the new
method and briefly discusses its key features. In Section 4, we present simulation
results comparing the new simple method to a more complex method in
situations where both can be applied and we also simulate the new method for
other regression models including logistic regression and Poisson regression. In
Section 5, we apply the new technique to data from the Advanced Cognitive
Training for Independent and Vital Elderly (ACTIVE) clinical trial  (Tennstedt et al.
1999). Finally, in Section 6, we provide discussion and conclusions.

2. Background
Regression models are most commonly used for prediction or forecasting. As a
consequence most of the variable selection techniques designed to be used with
regression models are geared towards improving the predictive power of the
model. As such these methods tend to select variables that have the most
substantial effect on the accuracy of the prediction and neglect the variables that
have small or no effect on the predictive capabilities of the model.

We focus on an alternate application of variable selection in regression models
that has not received much attention in the past. The paper's main focus is
variable selection with specific attention to treatment comparison analysis.
Treatment comparison analysis involves both the model fitting and optimization
of treatment effects on the subjects. Obtaining a good predictive model is part of
the process, but focusing exclusively on prediction with regards to variable
selection takes the focus away from what is commonly the most important part of
the model, how the treatment interacts with the covariates.

The goal in a treatment comparison analysis is to optimize a response variable,
Y , by selecting the best treatment action A for a given set of baseline covariates

),...,(= 1 pXXX . More formally, suppose the distribution of X is a fixed
distribution f , and the distribution of Y given ),( AX is a fixed distribution g (i.e.
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the distribution is completely specified involving no unknown parameters). Then
when treatment actions are chosen according to a set of decision rules  , the
trajectory ),,( YAX has distribution

),,|()|()( axygxaxf 
We compare alternate decision rules using their expected mean response, often
referred to as their Value (Sutton and Barto, 1998). If []E denotes the
expectation over the above distribution, then the Value of  is defined as

 YEV  = (1)
Then the goal in a treatment comparison analysis is to find the optimal decision
rule, * , defined as

 ,a=a=* YEmaxrgVmaxrg 







or equivalently

].=,=|[a=)(* aAxXYEmaxrgx
a

 (2)

Simply put, we seek the treatment that gives the best expected response given
the observed covariate vector xX = for that patient. These types of analyses are
commonly used in medical research, but can be generalized to any study
involving the data collection and analysis comparing two or more possible actions
to take. In many of these applications, especially medical research, a large
number of baseline variables are collected. Many of the variables are commonly
known to be good predictors by experienced clinicians. However, it is less
common for clinicians to know how to pick variables that play a role in
determining the optimal treatment for various baseline characteristics of the
subject. This may be one of the reasons for the collection of a large number of
baseline variables. Yet, in clinical practice, only a small number of variables can
be realistically collected to determine the best treatment. For this reason variable
selection plays a crucial role in treatment comparison analyses.

Looking at Equation 2 it can be inferred that the only portion of the predictive
equation that directly affects the optimization is the portion that involves the
treatment action a . This can include the direct effect of the treatment action and
any treatment-covariate interactions.

Certain types of treatment-covariate interactions are more important than others.
The types of interactions that are most critical to the optimization and which play
a role in determining the optimal treatment, are qualitative interactions (Peto
1982). Qualitative treatment-covariate interactions are important because they
result in a reversal of the treatment effect for some subset of the patient
population. Thus when a qualitative treatment-covariate interaction is included in
the model, the optimization of the model with respect to A results in some of the
subjects being assigned a different optimal treatment than the majority of
subjects who are assigned the overall optimal treatment. We refer to these
variables as prescriptive variables since they help decipher which treatment is
optimal for different subsets of the patient population.
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This idea is best illustrated through a simple plot; see Figure 1. These plots
depict two different possible relationships between the conditional mean of Y , A
and a particular jX , when averaged over all other iX , ji  . Figure  1(a), shows
a variable, 1X , which interacts with the action, A , but does not qualitatively
interact with the action. Figure 1(b), shows a variable, 2X , which qualitatively
interacts with the action. In both of the plots, the overall optimal action is 1=A .
But in Figure  1(b) there is an apparent reversal of the treatment effect for 2X
values smaller than 0.3 which results in 0=A being the optimal optimal treatment
action for this subset of patients.

Figure  1: Plots demonstrating qualitative and non-qualitative interactions

Qualitative treatment-covariate interactions can have a significant influence on
the treatment effect while only contributing minimally to the total predictive power
of the model. This is the main reason why models based solely on predictive
variable selection methods may not work so well when treatment comparison
analysis is the application. Proper selection of variables in treatment comparison
analysis requires methods which pay special attention to treatment-covariate
interactions. Only a small number of methods have been suggested for doing
variable selection in this setting  (Ernst et al. 2005, Loth et al. 2006, Su et al.
2009, Gunter et al. 2011, Imai and Strauss 2011). A few of these proposed
methods are just direct application of predictive variable selection techniques to
the particular model  (Ernst et al. 2005, Loth et al. 2006). The remaining methods
are complicated to use and even more difficult to interpret  (Su et al. 2009,
Gunter et al. 2011, Imai and Strauss 2011). In this paper we propose a method
which is easy to both understand and implement, yet still performs well.

While variable selection techniques designed to improve prediction or assess
relationships may be directly applied to treatment comparison problems, without
adjustment these techniques may neglect certain types of variables that are
critical to finding optimal treatments. None-the-less insight can be gained from
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looking at predictive variable selection methods and some of the general ideas
utilized by the methods provide a good backbone to build from using new
methods more geared toward treatment comparison problems.

Predictive variable selection techniques often involve the maximization or
minimization of some criterion which weighs the predictive performance of the
model as compared to the complexity of the model  (Hocking 1976, Tibshirani
1996, Fan and Li 2001) This optimization of criterion can be done either internally
or externally from the model fitting process  (Guyon and Elisseeff 2003)) . While
internal optimization is more efficient, it offers less flexibility in the choice of the
criterion that can be used.

One category of predictive variable selection methods that offers a great deal of
flexibility in its implementation is called Stepwise Regression  (Morrison 1967,
Pedhazur 1973, Hocking 1976, Lindman and Meranda 1980, Neter et al. 1985,
Stevens 1986, Darlington 1990) . Initially proposed by  Efroymson (1960),
stepwise procedures progressively add or eliminate variables from the predictive
model one at a time based on which variable addition or elimination optimizes an
external criterion. While the most commonly used stepwise procedure utilizes
linear regression for the predictor and p-values or the F-statistic for the
optimization criterion (on variables to add or take out), the basic idea defining the
procedure can be used much more generally. In particular, any type of predictive
model could be used to estimate the response variable and a wide variety of
complimentary criteria could be used in the external optimization.

Many times we may be interested in regression models where the outcome or
response variable is a non-negative integer. The methods that have been
previously suggested for doing variable selection in treatment comparison
analyses can only be used with a specific type of outcome variable, such as
either continuous outcomes  (Su et al. 2009, Gunter et al. 2011) or binary
outcomes  (Imai and Strauss 2011). These methods have not been designed to
handle a variety of different outcome variables that we might be interested in
using for medical applications where treatment-interaction remains important in
the selection of variables. However the simple method we propose is easily
applied to a large number of different outcome variables. We apply the simple
method successfully in this paper to both logistic regression and Poisson
regression, in addition to linear regression. We now provide some background on
the types of count models where our proposed method can be used.

Many variables in our analysis are categorical, such as educational level, race,
hearing loss, etc. Other variables such as age are integers. The common feature
of variables such as age is that they take on a finite number of non-negative
integer, or count values. Thus when these variables play the role of outcome
variables we need a regression model based on a probability distribution that
takes into account of the discrete nature of count data. One such model is the
Poisson regression model (PRM). Alternatives to PRM are the binomial
regression model and the negative binomial regression model, which are based
on the binomial and negative binomial probability mass functions respectively.
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Unlike the Poisson distribution which is equi-dispersed, (i.e. the mean and the
variance of a Poisson-distributed random variable are equal) the binomial
regression model and the negative binomial regression model can accommodate
either under-dispersion or over-dispersion. However, PRM is more commonly
used due to its simplicity. As we can see, if a discrete random variable Y has
Poisson distribution, then its probability mass function is given by

   exp
= = , 0,1,2,...

!

y

f Y y y
y
 



By the properties of Poisson distribution, we know   =YE and   =YVar . The
PRM takes the form that

  ,== iiiii YEY  
where  iY are a series of independently distributed Poisson random variables
with means i and  i are the stochastic or error terms. In our case the i s are
the responses we would like to model. For example say previously we used
multiple linear regression to estimate ]=;=|[ aAxXYE , we have

  0 1 2 3
ˆ ˆ ˆ ˆˆ | = , = = ,E Y X x A a x a xa      (3)

where A is the treatment variable. In the PRM case, Equation (3) becomes (4)
below

   0 1 2 3
ˆ ˆ ˆ ˆˆ | = , = = ( , ) = exp .E Y X x A a x a x a xa       (4)

Here  0 1 2 3
ˆ ˆ ˆ ˆexp x a xa      provides an estimate of the mean value of Y , and

since the mean and variance are the same, it also provides an estimate for the
variance when the PRM is appropriate. We also note that the model described by
Equation 4 is a generalized linear model with link function being the natural
logarithm  (Nelder and Wedderburn 1972) . The link is the natural logarithm
function because it is the inverse of the exponential function which is the
necessary transformation to the outcome variable to make it a linear function of
the parameters.

Again, because many of our variables are nominal rather than numerical, it would
be more suitable to use one of the qualitative response regression models. One
of the simplest qualitative response regression models is the logit model, which is
useful when describing the relationship between the independent variables and a
binary response variable. To be more specific when our dependent variable Y is
categorical, with 0=Y denoting being in the 1st category, and 1=Y being in the
2nd category, we can assume the outcome variable Y is a Bernoulli random
variable with the probability of being in the second category, or the probability of
`success' being p . Given a set of explanatory variables X , that might inform us
about p , we can then model

 aAxXYEaxp =,=|=),(
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The log of the odds ratio, or the logit, of the probability ),( axp is modeled as a
linear function of x and a

  0 1 2 3
( , ) ˆ ˆ ˆ ˆ( , ) = ln = .

1 ( , )
p x aLOGIT p x a x a xa
p x a

   
 

    
(5)

The model (5) can also be expressed as

 0 1 2 3

1( , ) = .
ˆ ˆ ˆ ˆ1 exp

p x a
x a xa         

Thus model (5) is then a generalized linear model with a logit link function
(Nelder and Wedderburn 1972) .

In the next section, we propose a method which utilizes the basic idea of
stepwise procedures, but is geared more toward finding variable subsets which
are most useful to the treatment comparison setting. We leave the choice of
predictive model up to the user, but suggest an optimization criterion based on
the Value function defined in Equation  1.

3. Methods
We propose a stepwise variable selection procedure that uses a function of the
estimated Value of the optimal policy for the fitted model as a criterion to
compare different models. Given an estimated model for the response Y
conditional on X and A , an easy way to obtain this estimated Value of the
optimal policy is to just optimize the fitted model with respect to the treatment,

].=,=|[ˆmax=ˆ * aAxXYEV
a

(6)

We refer to this estimator as *̂V in our proposed algorithm.

Outline of Stepwise variable selection for optimizing treatment:

1. Fit a model on the treatment action(s) only
2. Estimate the Value of the overall optimal treatment, *

0̂V by optimizing the
treatment only model over the treatment action(s)

3. Define the initial variable set C to contain all known important predictive
variables and the treatment variable(s)

4. Estimate the predictive model using all the variables in C
5. Estimate the Value of the optimal policy using the estimated predictive

model for C , *
ĈV by optimizing the fitted model over the treatment actions

6. Calculate the Adjusted Value of the model for C as ||)/ˆˆ(= *
0

* CVVAV CC  ,
where ||C is the rank of the model matrix for model C .

7. At each step perform either a forward selection or backward elimination as
follows

(a) Forward Selection:
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i. Set C = the set of all variables currently in the model and the
treatment variable(s)

ii. Set E = the set of all eligible predictive variables and all eligible
treatment-covariate interactions not currently in the model

iii. For each variable e in E

A.  Estimate the predictive model using all the variables in C plus the
variable e using the first data subset

B.  Estimate the Value of the optimal policy, *
êV by optimizing the

estimated predictive model over the treatment action(s)
C.  Calculate the Adjusted Value, ||)/ˆˆ(= *

0
* eCVVAV ee 

iv. Define *e to be the variable which results in the largest eAV

(b) Backward Elimination

i. Set C = the set of all variables currently in the model and the
treatment variable(s)

ii. For each variable c in C

A.  Estimate the predictive model using all the variables in C except
the variable c using the first data subset

B.  Estimate the Value of the optimal policy, *ˆ
cV by optimizing the

estimated predictive model over the treatment action(s)
C.  Calculate the Adjusted Value, ||)/ˆˆ(= *

0
* cCVVAV cc 

iii. Define *c to be the variable which results in the largest cAV

(c) If 0<CAV , 0<*eAV and 0<*cAV


, exit stepwise method

(d) If Ce
AVAV >* and ** > ce

AVAV


, add *e to C and set *=
eC AVAV

(e) If Cc
AVAV >*

and ** > ec
AVAV


and remove *c from C and set

*=
cC AVAV



8. If no forward selection or backward elimination can be performed, exit the
stepwise method.

The estimated optimal decision rules will only involve the treatment variable(s)
and any treatment-covariate interactions present in the model. Thus, the type of
variable more likely to lead to an increase in *V̂ and get added to the model is a
treatment-covariate interaction. Predictive variables will only enter the model if
they produce a meaningful change in the estimate of the direct effect of treatment
or the estimate of the effect of one or more treatment-covariate interactions. For



A Simple Method for Variable Selection in Regression with Respect to Treatment Selection

Pak.j.stat.oper.res. Vol.VII No. 2-Sp 2011 pp363-380 371

this reason we initiate the stepwise method with all known important predictive
variables already included in the model. This will give the important predictors a
better chance of being included in the final model and will help to ensure better
estimates of the effects of treatment throughout.

It should be noted that when adding or eliminating any variable from the model it
is preferable to maintain a hierarchical ordering (Wu and Hamada 2000). Thus
the direct effect of a variable jX should be included in the model anytime the
treatment covariate interaction AX j is included in the model, regardless of
whether the direct effect has been selected for entry in the model. This will help
to avoid including interactions which may only appear important because the
direct effect of the covariate is important but omitted from the model. Likewise, it
is a good idea to simultaneously add or eliminate variables that come in groups,
such as the dummy variables used to code categorical variables with more than
two levels.

The adjusted Value criterion, AV , used in the algorithm is simply a modification
of the Adjusted Gain in Value (AGV) criterion suggested in Gunter et al. (2011) to
allow for comparison of non nested subsets. Given a group of nested subsets of
variables 1 to K the AGV criterion for the subset of k variables is defined as

,ˆˆ
ˆˆ

=
*
0

*

*
0

*












k
m

VV
VVAGV

m

k
k

where *ˆa= kkVmaxrgm and *
0̂V is the estimated Value of the decision rule

 aAYEmaxrg a =|ˆa=ˆ *0 . This criterion attempts to trade off between the
complexity of a model and its observed Value. It selects the subset of variables
that results in the maximum proportionate increase in Value per variable. When
doing the above suggested stepwise algorithm, the subsets we are comparing
are not nested, so there is not a clear best way to select the model

*ˆa= kkVmaxrgm . However, if we assume that there exists a model *m which
maximizes *

ŝV among all possible subsets S1,..., of the full variable set, then this
would be a reasonable choice for m . Then using *m for all subset comparisons
our AGV for a subset k would be

.ˆˆ
ˆˆ

=ˆˆ
ˆˆ

=
*
0

*
*

**
0

**

*
0

*
*

*
0

*





























VV
m

k
VV

k
m

VV
VVAGV

m

k

m

k
k

But the quantity















 *
0

*
*

*

ˆˆ VV
m

m

is constant for all subsets, thus we can just simplify to

k
VVAV k

k

*
0

* ˆˆ
= 
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There are several publications which caution about using stepwise procedures
for variable selection (Harrell 2001, Miller 2002, Mundry and Nunn 2009). We
understand their concerns but would like to address several of the criticisms
against stepwise procedures with respect to our proposed method. Most of the
arguments against stepwise procedures are directed at versions which use either
the p-value of the individual coefficient estimates or the F-statistic for the overall
model to determine which variables enter or exit the model. Due to the nature of
multiple testing, this type of stepwise procedure suffers from many problems
such as inflated coefficient estimates, underestimation of the standard errors of
the parameters, overly small p-values, and overly narrow confidence intervals
(Harrell 2001, Miller 2002, Mundry and Nunn 2009). Using p-values or the
F-statistic to determine stepwise inclusion or exclusion in the model does have
drawbacks and we are not recommending it. Our proposed method does not
utilize p-values or the F-statistic.

Another suggested problem with stepwise procedures is that they do not utilize
expert knowledge. Clearly if expert knowledge is available we believe it should
be taken into account. We try to incorporate any available expert knowledge
concerning good predictors into our proposed method by including them in the
initial model. But as was stated earlier, it is very common for experts to which
variables are good predictors, but not very common for them to know which
variables are good prescriptive variables (possibly because of the lack of
familiarity of the concept of prescriptive variables). Our approach can be useful
when expert knowledge is lacking.

Another problem often cited about stepwise procedures is that not all subsets are
tried so there is no guarantee that the optimal subset will be found. This is true of
all stepwise procedures, no matter the predictive method or optimization criterion
that is used. While this can be a drawback when using a stepwise procedure,
there are a couple of reasons why it may still be a better choice than looking at
every possible subset, namely computational cost and variability  (Hastie et al.
2009) . Clearly as the number of candidate variables increases, it becomes
computationally infeasible to compare all possible models. One also pays for the
cost of increased variance of the model predictions when checking all possible
subsets. Aside from these two issues, the performance between stepwise
procedures and checking all possible subsets is often quite similar  (Hocking
1976, Hastie et al. 2009).

We would also like the reader to note a few other important issues when
considering this method. First off, the method is exclusively designed for variable
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selection. The final model estimation procedure should be conducted once
important variables have been selected for the model. It is also important to
explicitly state that our goal is not to find the optimal predictive model. Thus we
not as concerned if good predictors have been excluded from the model, just as
long as we are finding the important prescriptive variables and we have precise
enough predictor variables to decipher their effects. Excluded predictors that are
deemed important may be added to the model during model estimation following
variable selection if the user desires.

The proposed variable selection procedure can be applied to any modeling
technique where a treatment-covariate interaction could be important (e.g.
logistic regression, nonlinear regression, Cox proportional hazard regression).
For our simulation analysis in the following section we test the method using
linear regression, logistic regression and Poisson regression. We also
demonstrate the use of the method using data from the Advanced Cognitive
Training for Independent and Vital Elderly (ACTIVE) study, a clinical trial
conducted to compare alternative cognitive interventions.

4. Simulation Analysis

We tested the performance of the new technique in simulations. We used
realistically designed simulation data and where applicable, we compared the
results to the method proposed in  Gunter et al. (2011) referred to as Method S.

To generate realistic simulation data, we first randomly selected 1401=n
observation vectors from the baseline observation matrix, X , of the ACTIVE trial
data. Information on the data is detailed in Section 5 of the paper. We then
generated new treatments, A , by randomly assigning one of two treatments to
each row of X . To create the response variable Y we applied 3 different types
of outcomes with 4 different generative models for each outcome.

The three different types of outcomes we selected are continuous, binary and
counts. For the continuous outcomes we randomly selected from 14 outcome
variables collected in the ACTIVE trial data. We then added a treatment effect or
treatment-covariate interaction to the outcome variable based on the generative
model we were using and the new treatments A . We used linear regression to
estimate the model.

For the binary outcomes, we dichotomize the newly created continuous
outcomes from above, using a cutoff of a randomly selected quantile between .3
and .7 . We used logistic regression to estimate the model.
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For the counts outcome we randomly selected from 3 outcome variables
collected in the ACTIVE trial data that were count variables. We then added a
treatment effect or treatment-covariate interaction to the outcome variable based
on the generative model we were using and the new treatments A . To ensure
the outcomes remained a positive integer, we then rounded the outcomes to the
nearest positive integer. We used Poisson regression to estimate the model.
The generative models we used are listed below:

1. No treatment effect and no treatment-covariate interactions;
2. Small treatment effect and no treatment-covariate interactions;
3. One small qualitative treatment-covariate interaction with a binary

covariate;
4. One small qualitative treatment-covariate interaction with a continuous

covariate.

In generating models 3-4, for each repetition we randomly selected variables
from our X matrix to be used in the treatment-covariate interaction. The
coefficients for the treatment and qualitative interactions were set such that
Cohen's 2f effect size measure for the treatment effect or the interaction effect
was not larger than the suggested definition for `small' of .02=2f (Cohen 1988).

For each generated data set, we ran our suggested stepwise method to see
which interaction variables were selected by the method. We repeated this 1000
times and recorded the number of spurious interactions selected and whether the
true treatment-covariate interaction was selected in models 3 and 4. For the
continuous outcomes we also ran Method S and recorded the same information
for comparison.

The results of our simulations are given in Tables 1 and 2. Table 1 gives the
results for the continuous outcome using both our suggested stepwise method
and Method S. Table 2 gives the results for the binary and count outcomes for
the stepwise method. In both tables the first column lists the generative model
used to create the outcome variable. Columns 2 and 3 list the percentage of
cases where a spurious treatment-covariate interaction was selected over the
1000 repetitions. Columns 4 and 5 give the average number of spurious
interactions selected per repetition. Columns 6 and 7 list the percentage of cases
that the true treatment-covariate interaction was selected over the 1000
repetitions. Note that since generative models 1 and 2 have no treatment-
covariate interaction in the generative model, there is no selection percentage for
the true treatment-covariate interaction.
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Table 1: Simulation Results for Continuous Outcome. The first column lists the
generative model. The next two columns give the percentage of time a
spurious interaction was selected by Method S and the Stepwise
Method; The next two columns give the average number of spurious
interactions selected by both methods over the 1000 repetitions. The
last two columns give the selection percentage of the qualitative
interaction (when one existed) for each method.

Spurious Selection Ave # of Selection
Generative Percentage Spur. Interact. Percentage

Model Stepwise Method S Stepwise Method S Stepwise Method S
1 53.3 90.2 0.852 2.262 - -
2 21.3 67.3 0.335 1.870 - -
3 8.8 6.0 0.100 0.087 71.9 97.5
4 28.4 25.3 0.377 0.658 48.0 83.8

Looking over Table 1 we see that Method S is better at finding the true treatment-
covariate interaction. As would be expected we lose out a little on performance at
the cost of simplicity and generalizability. However, the performance of the
stepwise method is not bad and in most of the settings it ended up selecting less
spurious interactions than Method S.

In Table 2, we see that the performance of the stepwise method is similar and
sometimes better when applied to binary and count outcome variables. This
demonstrates that the method can be successfully applied to a variety of different
outcomes and models.

Table 2: Simulation Results for Binary and Count Outcomes. The first column
lists the generative model. The next two columns give the percentage
of time a spurious interaction was selected by the Stepwise Method for
both the binary and count outcome models; The next two columns give
the average number of spurious interactions selected for both
outcomes over the 1000 repetitions. The last two columns give the
selection percentage of the qualitative interaction (when one existed)
for each outcome.

Spurious Selection Ave # of Selection
Generative Percentage Spur. Interact. Percentage

Model Binary Count Binary Count Binary Count
1 86.8 58.7 1.375 0.967 - -
2 40.9 6.0 0.716 0.102 - -
3 19.1 5.5 0.279 0.044 79.4 85.9
4 31.9 32.4 0.454 0.454 71.4 46.8

5  Data Example
We illustrate the application of the new method on data from a clinical trial. The
Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study
was a randomized controlled trial to test the effects of cognitive interventions on



Lacey Gunter, Michael Chernick, Jiajing Sun

Pak.j.stat.oper.res. Vol.VII No. 2-Sp 2011 pp363-380376

the daily life functions of the elderly  (Tennstedt et al. 1999) . The study
randomized 2802 people aged 65 or older to one of four treatment groups. The
four treatment groups consisted of a control group and three different cognitive
interventions. The three cognitive interventions each consist of ten training
sessions. One intervention is intended to improve verbal episodic memory, a
second is designed to aid inductive reasoning and the third is to help with speed
of processing. The study collected several different outcomes to measure daily
functioning and cognitive abilities. For more detailed study design and analyses
see  (Jobe et al. 2001, Ball et al. 2002).

We apply the method to two different outcome variables from the data. For both
outcomes, we considered 49 baseline variables containing both categorical and
quantitative information about the subject's background and current cognitive and
health status. All of the variables were considered for both potential predictors
and treatment-covariate interactions. For both outcome variables, we used the
subset of patients who were randomized to either the verbal episodic memory
intervention or the control group. This subset consisted of a total on 1401=n
patients, with 703 assigned to the memory intervention and 698 assigned to the
control group.

The first outcome variable that we used was the Hopkins Verbal Learning Test
(HVLT) total score post treatment. The test was also administered to the patients
at baseline. This outcome was a proximal outcome for the verbal episodic
memory intervention. We used a linear regression model to fit the data and our
initial set of predictors consisted of age, gender, visual acuity, an indicator for
hearing loss, a count of the number of medications the patient was taking, the
patients Mini Mental Status Exam total score and the baseline HVLT total score.

We tried both the stepwise method and Method S on the data. Neither of the
methods selected a treatment-covariate interaction, instead opting for the overall
optimal treatment being the memory intervention.

The second outcome variable that we used was a composite outcome measuring
the complex reaction time of the patient post treatment. The patient's complex
reaction time was also measured at baseline. Since small reaction times are
considered better we used the inverse of the reaction time as our outcome to
optimize with respect to treatment. We again used a linear regression model to fit
the data and our initial set of predictors consisted of age, gender, visual acuity,
an indicator for hearing loss, a count of the number of medications the patient
was taking, the patient's Mini Mental Status Exam total score and the baseline
complex reaction time.

We applied both the stepwise method and Method S on the data. Both of the
methods selected a single treatment-covariate interaction with the covariate
being the baseline complex reaction time. The interaction appeared to suggest
the overall optimal treatment was the memory intervention, but smaller baseline
complex reaction times showed the treatment to be no more effective than no
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treatment at all. This may be the case because there is a floor on the complex
reaction times for the patient population so if the patient is near that floor at
baseline the reaction times have little to no ability to improve regardless of the
treatment.

6. Discussion
In this article, we proposed a simple method for doing variable selection when
the goal is to compare and optimize treatments. The method is a variant of
stepwise regression that can be applied quite generally to a variety of predictive
treatment models. While the method does result in a small loss in performance
over more complex methods, it does surprisingly well for its level of simplicity and
generalizability. As might be expected the suggested method sometimes
includes interaction variables which are spurious. This was seen in the simulation
results. When applying this method to a real data set for analysis, it might be
advisable to incorporate some form of cross-validation or bootstrap validation to
the algorithm if it is important to minimize or control the number or percentage of
false discoveries  (Gong 1986, Chernick 2007).

The proposed method is an attempt to create a variable selection technique that
can be easily applied and used with a variety of different types of response
variables such as binary and count. These are the big advantages of this new
stepwise method: We have many ideas for future research. One avenue we
would like to explore is to modify the way we generate the models for binary and
count data and see how it affects the results. An alternative way to build the
generative model would be to pick one that fits perfectly with the linear
regression model, and then generate the count and binary variables according to
the link functions. For the logit model, we could generate the probabilities and
then generate the response variables according to that probability measure. Also
alternative ways of modeling count data could be explored, such as integer-
valued autoregressive process (INAR). An INAR model is similar to an AR model
in correlation structure under binomial thinning  (Du and Li 1991) , so instead of
assuming that the treatment effect is multiplicative, we could assume the
treatment effect to be a binomial thinning operator. To be more specific, instead
of AX we could use XA  , where it

X

i
XA B=

1= where t1B , t2B ,  , ttX 1
B


are

i.i.d. Bernoulli random variables with APP itit =0)=B(1=1)=B(  , i.e. XA  has,
conditional on X , a binomial distribution with parameters A and X . If we use
this data generating process, we could ensure that the data are made of integers,
and the correlation structures are the same as AX , because the binomial
distribution is discrete by nature and   AXXAE = .

Another avenue we would like to explore is trying the method out on Cox
proportional hazards model and nonlinear regression models and other types of
time related models such as harmonic regression.
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