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Abstract  

A new class of distributions called Marshall-Olkin Zubair-G family is proposed in this study. Some statistical 

properties of the family are derived and two special distributions namely, Marshall-Olkin Zubair Nadarajah-

Haghighi and Marshall-Olkin Zubair Weibull distributions are developed. The plots of the density and hazard rate 

functions of the special distributions exhibit different shapes for chosen parameter values, making them good 

candidates for modeling different types of datasets. A real life application using the Marshall-Olkin Zubair 

Nadarajah-Haghighi distribution revealed that it performs better than other existing extensions of the Nadarajah-

Haghighi distribution for the given dataset. 
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1.  Introduction 

The quest to develop flexible probability distributions have become an issue of interest to myriad of researchers 

owing to the usefulness of these distributions in modeling datasets and making inference in areas such as 
engineering, financial and biological modeling among others. This recent development has led to the proposition of 

several generalized classes of distributions called generators in literature for modifying existing distributions. The 

generators usually add one or more extra parameter (s) to the existing classical distributions to make them capable of 

modeling datasets that exhibit different traits such as bimodality, heavy-tail, monotonic and non-monotonic failure 

rates, symmetric and non-symmetric shapes. Hence, the aim is to develop new distributions that provide reasonable 

parametric fit to datasets obtained from different fields. 

However, it is worth noting that no single probability distribution can provide good fit to all kinds of datasets. Thus, 

there is the need to develop new probability distributions for modeling datasets. Some common generators that have 

been developed for modifying existing distributions include: Marshall-Olkin alpha power family (Nassar et al., 

2019); extended odd Fréchet-G family (Nasiru, 2018); Marshall-Olkin extended family (Marshall and Olkin, 1997); 

Zubair-G family (Zubair, 2018); Kumaraswamy-G family (Cordeiro and de Castro, 2011); odd Fréchet-G family 

(Haq and Elgarhy, 2018); odd Burr-G Poisson family (Nasir et al., 2018); alpha power transformed family (Mahdavi 

and Kundu, 2017); exponentiated generalized transformed-transformer family (Nasiru et al., 2017), Marshall-Olkin 

extended generalized Rayleigh (MirMostafaee et al., 2017) and Marshall-Olkin Burr X family (Jamal et al., 2017). 

 

Recently, Zubair (2018) proposed the Zubair-G family of distributions with cumulative distribution function (CDF) 

as 
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where ( ; )G x   is the CDF of the baseline distribution. The objective of this study is to develop another extension 

of the Zubair-G family called Marshall-Olkin Zubair (MOZ)-G family by adding an extra shape parameter to the 

Zubair-G family to make it more flexible. The Zubair-G family adds only a single scale parameter 0  to the 

baseline distribution. Thus, if the baseline distribution has no shape parameter as in the case of the exponential 
distribution, the resulting distribution will lack shape parameter. But to produce distribution with heavy-tail, and 

control skewness and kurtosis, a shape parameter is required. It is therefore necessary to add an extra shape 

parameter to the Zubair-G family. 

Suppose ( )Z x  is a baseline CDF which depends on a parameter vector 1 2( , ,..., )T

p  =  of dimension p . 

Then the CDF of the Marshall-Olkin family is defined as 
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where   is an extra shape parameter. Substituting equation (1) into equation (2), the CDF of the MOZ-G family of 

distribution is defined as 
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The probability density function (PDF) related to the MOZ-G family is given by 
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If we set 1 = , we obtain the Zubair-G family. A physical interpretation of the new family is as follows: given N  

independent components each with probability mass function 
1( ) (1 ) , 1,2,...nP N n n  −= = − =  and 

0 1   connected in series. Suppose the lifetime of each component 1 2, ,..., NX X X  are independent and 

identically distributed Zubair-G random variables with parameters   and  . Then a random variable 

(1) 1min( ,..., )NX X X=  denotes the time to the first failure with distribution function 
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Hence, the CDF of the MOZ-G family is obtained. Alternatively, the CDF in equation (3) can be interpreted as 

follows: suppose the random variable N  with probability mass function  
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1 1( ) (1 ) , 0,1,..., 1nP N n n  − −= = − =   denotes independent components of a parallel system. If 

1,..., NX X  constitute independent and identically distributed lifetime of the components and are assumed to be 

Zubair-G random variables with parameters   and  . Then the random variable ( ) 1max( ,..., )n NX X X=  

denotes the lifetime of the system and has the distribution function defined in equation (3). 

The corresponding hazard rate function of the MOZ-G family is 

2
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For the sake of simplicity, ( ; )G x   can be written as ( )G x  and a random variable X  that follows the MOZ-G 

family is represented by ( ; , , )X MOZ G x  −  . The MOZ-G family has a tractable CDF making it easy to 

obtain random observations from the family provided the CDF of the baseline distribution is also tractable. The 

quantile function of the MOZ-G family is given by 

1
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where ( )GQ   is the quantile function of the baseline distribution. Using some algebraic manipulation, the density 

function of the MOZ-G family can be expressed in an infinite mixture form as 
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The mixture representation of the density function is useful when deriving the structural properties of the MOZ-G 

family of distributions. 

 

2. Statistical Properties 

This section presents some useful statistical properties of the MOZ-G family of distributions. The statistical 
properties derived are the moments, moment generating function (MGF), entropies, stochastic ordering and order 

statistics. 

2.1. Moments and Moment Generating Function 

The 
thr  non-central moment is very important when estimating measures of central tendency, dispersion and 

measures of shapes. The 
thr  non-central moment of the MOZ-G family is given by 
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The 
thr  non-central moment can be expressed in terms of the quantile function of the baseline distribution. Letting 

( )G x u= , the 
thr  non-central moment can be expressed as 
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where ( )GQ u  is the quantile function of the baseline distribution with CDF ( )G x . The MGF of a random variable 

X  that follows the MOZ-G family of distributions if it exists is given by 
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Alternatively, the MGF can be expressed in terms of the quantile function of the baseline distribution as 
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2.2 Entropy Measures 

Entropies are measures of variation of a random variable. This section presents the Rényi and  − entropies. The 

Rényi entropy (Rényi, 1961) of a random variable X  with density function ( )f x  is given by 

1
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Expanding ( )f x 
, the Rényi entropy of the MOZ-G random variable is 
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where 
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The  −entropy is defined as 
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Hence, the  −entropy for the MOZ-G random variable is 
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2.3.  Stochastic Ordering 

A random variable 
1X  is said to be stochastically greater than 

2X  ( )2 1stX X  if 
2 1
( ) ( )X XF x F x  for all x . 

Also, 
1X  is said to be stochastically greater than 

2X  in the  

i. hazard rate order 
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If 
1X  is MOZ-G random variable and 

2X  is Zubair-G random variable, then the likelihood ratio is 
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Finding the first derivative of the likelihood ratio with respect to x  yields 
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If  1  , then 1
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0
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 . Thus, 1 2lrX X . It is important to note that the likelihood ratio order implies 

hazard rate order 1 2( )hrX X and stochastic order ( )1 2stX X . 

2.4.  Order Statistics 

Order statistics are useful in quality control and reliability analysis. This section presents the density function of the 
thp  order statistic and its 

thr  non-central moment. Let 1: 2: :n n n nX X X     represent the order statistics of a 

random sample 1 2, ,..., nX X X  from MOZ-G family of distributions, then the density function of :p nX , for 
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thr  non-central moment of :p nX  is given by 
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3.  Parameter Estimation 

The maximum likelihood technique is employed to estimate the parameters of the MOZ-G family of distributions. 

Suppose that 
1 2, ,..., nx x x  is a random sample of size n  from the MOZ-G family of distributions. Then, the 

corresponding log-likelihood function is given by 
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Finding the first partial derivative of the total log-likelihood function with respect to the parameters, the score 

functions are given by 
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To obtain the estimators for the parameters, the score functions are equated to zero and the resulting system of 

equations are solved numerically. In order to find the interval estimates of the parameters, the observed information 

matrix can be computed as 
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  , whose elements are obtained numerically. To 

determine whether the MOZ-G distributions are superior to the Zubair-G distributions for given datasets, the 
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likelihood ratio (LR) test is carried out using the following hypotheses: 
0 1 0: 1 versus :  is falseH H H = . The 

test statistic for the LR test is given by 2{ ( ) ( )}LR = −  , where   is the vector of unrestricted maximum 

likelihood estimates of parameters under 
1H  and   is the vector of restricted parameter estimates under 

0H . The 

LR test statistic asymptotically follows the Chi-square distribution with degrees of freedom equal to the difference 
between the numbers of parameters of the two models. The null hypothesis is rejected at level   when the LR test 

statistic exceeds the upper 100(1 )%−  quantile function of the Chi-square distribution. 

4.  Special Distributions     

In this section, two special cases of the MOZ-G family of distributions are discussed. 

4.1.  Marshall-Olkin Zubair Nadarajah-Haghighi (MOZNH) Distribution 

Given that the baseline CDF is that of the Nadarajah-Haghighi (NH) distribution. That is, 
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  − += −     and the corresponding density function is 

1 1 (1 )( ) (1 ) , 0xg x x e x
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where 0, 0    are scale parameters and 0, 0   are shape parameters. The PDF of MOZNH 

distribution can exhibit different shapes such as symmetric, right skewed and left skewed with different degrees of 

kurtosis as shown in Figure 1. 

 

Figure 1: Plot of density function of MOZNH distribution 
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The hazard rate function of the MOZNH distribution is given by 

1 (1 ) 2
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− − −

+ −
= 
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      

 

The hazard rate function for the MOZNH distribution can exhibit non-monotonic failure rates such as the upside-

down bathtub for some given parameter values. 

 

Figure 2: Plot of hazard rate function of MOZNH distribution 

 

The quantile function of the MOZNH distribution is 
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 4.2.  Marshall-Olkin Zubair Weibull (MOZW) Distribution 

Suppose the baseline CDF is that of Weibull distribution. That is ( ) 1 , 0, 0, 0xG x e x
  −= −     and the 

corresponding density function is 
1( ) , 0.xg x x e x

  − −=   The PDF of  the MOZW distribution is given by 
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where 0, 0    are scale parameters and 0, 0    are shape parameters. The density function of the 

MOZW distribution can exhibit symmetric and right skewed shapes with different degrees of kurtosis as shown in 

Figure 3 for some selected parameter values. 

 

Figure 3: Plot of density function of MOZW distribution 

 

The hazard rate function of the MOZW distribution is given by 

2

2 2

1 (1 )

(1 ) (1 )

2 (1 )
( ) , 0.                (26)

(1 )( 1)( 1)

x

x x

x x e

e e

x e e e
x x

e e e e

  

  

   

   




 

−

− −

− − − −

− −

−
= 
   + − − − −
      

 

Figure 4 displays the hazard rate function of the MOZW distribution for some given parameter values. It is obvious 

from Figure 4 that the hazard rate function of the MOZW distribution can exhibit decreasing and upside-down 

bathtub failure rates. 
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Figure 4: Plot of hazard rate function of MOZW distribution 

 

The quantile function of the MOZW distribution is 
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5.  Simulation Studies 

This section presents the Monte Carlo simulation results used to assess the performance of the estimators of the 
parameters. For illustration purpose the MOZNH distribution was used for the simulation. The experiment was 

repeated 10,000 times with sample sizes 25,50,75,100n =  and 125 . The root mean square error (RMSE) for 

the parameters as shown in Table 1 decays to zero as the sample size increases. The coverage probabilities (CP) for 

the 95%  confidence interval for the parameters in some cases were quite close to the nominal level of0.95 .  
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Table 1: Monte Carlo simulation results 

Parameter n   RMSE  CP 

( , , , ) (0.4,0.5,0.2,4.8)    =

  

                     

25 0.233 0.120 0.116 0.870  0.960 0.973 0.963 0.930 

50 0.221 0.092 0.104 0.778 0.956 0.969 0.951 0.964 

75 0.217 0.075 0.093 0.666 0.953 0.901 0.923 0.954 

100 0.209 0.072 0.087 0.703 0.962 0.998 0.978 0.960 

125 0.122 0.058 0.077 0.629 0.964 0.999 0.945 0.916 

( , , , ) (0.5,0.5,0.5,0.5)    =  25 2.211 0.218 3.463 3.183  0.919 0.970 0.865 0.950 

50 1.659 0.167 2.145 1.584 0.941 0.956 0.956 0.935 

75 1.041 0.133 1.351 1.260 0.945 0.941 0.979 0.830 

100 1.011 0.128 0.214 0.817 0.963 0.954 0.997 0.959 

125 0.834 0.109 0.269 0.672 0.915 0.931 0.986 0.850 

( , , , ) (0.4,0.5,0.1,0.2)    =  25 1.473 0.294 3.770 5.272  0.574 0.968 0.913 0.909 

50 1.399 0.178 0.942 1.109 0.643 0.943 0.904 0.975 

75 1.142 0.146 0.793 0.794 0.671 0.940 0.908 0.965 

100 0.059 0.123 0.192 0.442 0.665 0.906 0.923 0.958 

125 0.038 0.110 0.085 0.384 0.624 0.900 0.925 0.981 

 

6.  Empirical illustration 

Here, we demonstrated the application of the MOZNH distribution using dataset. The dataset comprises the 

remission time of 128 bladder cancer patients presented in Lee and Wang (2003) and are:  

0.08 9.22 2.62 15.96 5.49 5.85 12.07 3.52 25.82 7.39 1.19 17.36 2.02 

2.09 13.8 3.82 36.66 7.66 8.26 21.73 4.98 0.51 10.34 2.75 1.4 3.31 

3.48 25.74 5.32 1.05 11.25 11.98 2.07 6.97 2.54 14.83 4.26 3.02 4.51 

4.87 0.5 7.32 2.69 17.14 19.13 3.36 9.02 3.7 34.26 5.41 4.34 6.54 

6.94 2.46 10.06 4.23 79.05 1.76 6.93 13.29 5.17 0.9 7.63 5.71 8.53 

8.66 3.64 14.77 5.41 1.35 3.25 8.65 0.4 7.28 2.69 17.12 7.93 12.03 

13.11 5.09 32.15 7.62 2.87 4.5 12.63 2.26 9.74 4.18 46.12 11.79 20.28 

23.63 7.26 2.64 10.75 5.62 6.25 22.69 3.57 14.76 5.34 1.26 18.1 2.02 

0.2 9.47 3.88 16.62 7.87 8.37 3.36 5.06 26.31 7.59 2.83 1.46   

2.23 14.24 5.32 43.01 11.64 12.02 6.76 7.09 0.81 10.66 4.33 4.4   

 

We compared the performance of the MOZNH distribution with that of the Zubair NH (ZNH), exponentiated NH 

(ENH) (Abdul-Moniem, 2015) and Kumaraswamy NH (KNH) (Lima, 2015) distributions using the Akaike 
information criterion (AIC), consistent Akaike information criterion (CAIC) and Bayesian information criterion 

(BIC). The Kolmogorov-Smirnov (K-S), Cramér-von Mises (CM) and Anderson-Darling (AD) statistics were used 

to investigate the goodness-of –fit of the models. The density functions of the ENH and KNH distributions are 

respectively given by: 

( )
1

1 1 (1 ) 1 (1 )( ) (1 ) 1 , 0,             (28)x xf x x e e x
  

   
−

− − + − += + −   
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1

1
1 1 (1 ) 1 (1 ) 1 (1 )( ) (1 ) 1 1 1 , 0.     (29)
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x x xf x ab x e e e x
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Table 2 presents the maximum likelihood estimates of parameters of the fitted distributions with their corresponding 

standard errors and 95%  confidence intervals (CI). The maximum likelihood estimates of the parameters were 

obtained by maximizing the log-likelihood functions of the fitted distributions via the subroutine mle2 using the 

bbmle package in R (Bolker, 2014). The optimizations were carried out using the BFGS technique and the initial 

values for the optimization were obtained using the GenSA package in R. The estimates of the parameters were all 

significant at the 5%  level. 

Table 2: Estimates, standard errors and CI 

Distribution Estimates Standard error CI 

MOZNH 
5.2352 =  1.6678  [1.9663,8.5041]   

0.2524 =  
35.8951 10−  [0.2409,0.2640]   

299.5666 =  
21.5910 10−  [299.5354,299.5978]   

28.8791 =  
12.2813 10−  [28.4320,29.3262]   

ZNH 
11.6732 =  1.6874  [8.3659,14.9805]   

0.2372 =  0.0060  [0.2254,0.2490]   

99.5888 =  0.0593  [99.4726,99.7050]   

ENH 
0.2021 =  0.0054  [0.1905,0.2137]   

387.1700 =  0.1185  [386.9377,387.4023   

27.5698 =  4.6654  [18.4256,36.7140]   

KNH 
10.5978a =  1.0370  [8.5653,12.6303]   

48.4529b =  
22.1583 10−  [48.4106,48.4952]   

0.0997 =  
34.6959 10−  [0.0905,0.1089]   

285.8821 =  
37.5794 10−  [285.8672,285.8970]   

   

 

Table 3 displays the model selection criteria and the goodness-of-fit statistics for investigating how well the 

distributions fit the given dataset. The results indicate that the MOZNH distribution provides a better fit to the 

datasets than the other candidate distributions because it has the least values for thse model selection criteria and the 

goodness-of-fit statistics. 

Table 3: Information criteria and goodness-of-fit statistics 

Distribution AIC BIC CAIC AD CM K-S 

MOZNH 827.1233 838.5314 827.4485 0.1406 0.0234 0.0370 

ZNH 839.7497 851.1578 840.0749 0.9492 0.1415 0.0672 

ENH 851.6863 860.2424 851.8798 1.8426 0.2855 0.0953 

KNH 831.3724 842.7805 831.6976 0.3929 0.0573 0.0496 

 
 The LR test was conducted to compare the performance of the MOZNH distribution with the ZNH distribution. The 

test yielded a test statistic of 12.6260 with corresponding p-value of 0.0004. This is an indication that the MOZNH 

distribution gives a better fit to the dataset than the ZNH distribution. Figure 5 displays the density plots and the 

distribution function plots of the fitted distributions. The plots revealed that the MOZNH distribution fits the dataset 

well. 
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Figure 5: Density and distribution functions plots of the fitted distributions 

 

The probability-probability plots of the MOZNH, ZNH, ENH and KNH distributions for the dataset are presented in 

Figure 6. Figure 6 revealed that the MOZNH distribution fitted the dataset well. 

 

Figure 6: Probability-Probability plots of fitted distributions 
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7.  Conclusion 

The MOZ-G family of distributions was developed in this study. The proposed generator was used to develop the 

MOZNH and MOZW distributions. The density and hazard rate functions of the MOZNH and MOZW distributions 

exhibit different type of shapes making them suitable for analyzing datasets with either monotonic or non-monotonic 

failure rates. The application of the MOZNH distribution was illustrated using datasets and the findings indicated 

that the distribution fitted the dataset well.  
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0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 

4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 

0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 

7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 

2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 

10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 

2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 

17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 

7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 

6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 

6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69) 


