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Abstract 

  

This article deals with goodness-of-fit test for Rayleigh distribution. Three new tests based on Jeffreys, Lin-Wong 

and Rényi divergence measures are proposed, and shown to be consistent. Monte Carlo simulations are 

performed for various alternatives and sample sizes in order to compare the proposed tests with other goodness-

of-fit tests for Rayleigh distribution in the literature. Simulation results showed that in comparison with the 

existing tests, our proposed tests have shown better performances in terms of power and among them Jeffreys test 

is better than other. Finally, illustrative example for use of some considered more powerful tests are presented 

and analyzed. 
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Introduction 

Identifying true distribution of real data is an important part of reliability, life testing and survival analysis. In this 

paper, the Rayleigh distribution which is a special case of Weibull distribution has a momentous role. 

The Rayleigh distribution was originally offered by a physicist, Lord Rayleigh (1880), in connection with an acoustics 

problem. But more recently, it has been used to model data that are skewed to the right; such as life data which arises 

in many areas of applications. 

As mentioned, Rayleigh distribution has wide applications. Polovko (1968) and Dyer and Whisenand (1973) showed 

the importance of this distribution in electro-vacuum devices and communication engineering. Siddiqui (1962) 

discussed the origin and properties of the Rayleigh distribution. One major application of this model is used in 

analyzing wind speed data. The origin and other aspects of this distribution can be found in Siddiqui (1962), Miller 

and Sackrowttz (1967). For more details on the Rayleigh distribution the reader is referred to Johnson et al. (1994). 

 

In statistics, goodness-of-fit (GOF) is the nearness of agreement between a set of observations and a hypothetical 

model that is suggested. Usually, there are three types of GOF families widely used in statistical applications: 

i) The GOF measures derived from empirical distribution functions. Kolmogorov-Smirnov statistic, 

Cramér-Von-Mises statistic and Anderson-Darling statistic belong to this family. 

ii) The GOF measures based on the differences between observed and expected frequencies. Likelihood 

ratio and chi-square GOF statistics belong to this category. 

iii) Measures derived from entropy and relative entropy notions. Among them, Kullback-Leibler divergence 

(KL-divergence), Jeffreys' divergence are the most popular representatives. In fact, these divergences 

can be studied with their close relations with Shannon entropy, Rényi entropy. 
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As a matter of fact, divergence measures are generally used to find appropriate distance or difference between two 

probability distributions. These measures have been applied in several fields like probability distributions, signal 

processing, pattern recognition, finance, economics, etc. 

 

While GOF tests for exponentiality have a large literature, GOF tests for the Rayleigh distribution (testing Rayleighity) 

have only recently been considered. The GOF tests for the Rayleigh distribution were proposed in Meintanis and 

Iliopoulos (2003), Morris and Szynal (2008), Best et al. (2010), Alizadeh et al. (2012), Baratpour and Khodadadi 

(2012), Safavinejad et al. (2015) and Jahanshahi et al. (2016), Al-Omari and Zamanzade (2016), Zamanzade and 

Mahdizadeh (2017), Badr (2019) and Ahrari et al. (2019).  

The Rayleigh distribution has the following probability density function  

𝑓(𝑥) =
𝑥

𝜃2
𝑒𝑥𝑝 ( −

𝑥2

2𝜃2
) , 𝑥 > 0, 𝜃 > 0, 

and cumulative distribution function  

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 ( −
𝑥2

2𝜃2
) , 𝑥 > 0. 

Maximum likelihood (ML) estimator of  𝜃  is  

�̂� = (∑
𝑥𝑖
2

2𝑛

𝑛

𝑖=1

)

0.5

. 

Meanwhile, an unbiased ML estimate of  𝜃2  is 

�̂�2 =∑
𝑥𝑖
2

2𝑛

𝑛

𝑖=1

, 

although  �̂�  is a biased estimator. 

 

The article is organized as follows. In section 2, some new tests based on the Jeffreys, Lin-Wong and Rényi divergence 

measures are developed and some theorems about their properties are presented. In Section 3, using p-value method 

for checking Rayleighity is described. In Section 4, the GOF tests of Rayleighity in literature are reviewed. In Section 

5, the power and type I error rate estimation techniques and alternative distributions have been described. Then, the 

power of the proposed tests against competitors’ tests are compared. In section 6, the performance of considered tests 

for a real data is evaluated. Finally, in section 7 we appraise the ability of considered tests and choose better tests for 

each category of alternative distributions. 

Proposed Tests for the Rayleigh distribution 

One of the important problems in many applications is finding a suitable measure of distance (or divergence or 

difference or discrimination) between two probability distributions. 

 

A measure of divergence is used as a way to appraise the distance (divergence) between any two populations or 

functions. Let 𝑓1 and 𝑓2 be two probability density functions which may or may not depend on an unknown parameter 

of fixed finite dimension. As mentioned, the most well-known measure of divergence is the KL-divergence. 

Actually, a divergence is a measure of difference or closeness between two distributions  𝑓1 and 𝑓2. Here, the focus is 

on continuous distributions with densities 𝑓1(𝑥) and 𝑓2(𝑥), for which the real-valued functional 𝐷(𝑓1, 𝑓2) is defined 

to be a divergence if 

i)  𝐷(𝑓1, 𝑓2) ≥ 0  

ii)  𝐷(𝑓1, 𝑓2) = 0 iff 𝑓1(𝑥) = 𝑓2(𝑥) almost everywhere. 

iii)  𝐷(𝑓1, 𝑓2) is a convex function of both 𝑓1 and 𝑓2 . 
Note that 𝐷(𝑓1, 𝑓2) is not a metric distance in general (symmetry and the triangle inequality are not required). 

 

In fact, some measures proposed for determining GOF do not possess all properties of a metric function. Therefore, 

they are rather called as divergence measures. For example, KL-divergence is nonnegative but is not symmetric. Also, 

it is easy to see that it does not satisfy the triangular inequality (Garrido, 2009) thus it is not a metric function. Hence, 

it must be interpreted as a pseudo-metric measure only. So we propose some new GOF tests for the Rayleigh 

distribution which are based on some divergence measures. 
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Accordingly, in this section we propose using some popular divergence measures such as Jeffreys, Lin-Wong and 

Rényi divergence for checking the Rayleigh distribution and we guess using these divergence measures leads to a 

better performance in terms of power against other proposed tests in the statistical literature. 

 

Jeffreys Test 

As mentioned earlier, KL-divergence is not symmetric, so in order to obtain a symmetric measure Jeffreys (1946) 

proposed a symmetric variant of the KL-divergence which is called the Jeffreys' divergence (or sometimes J-

divergence) in the literature. This divergence has several practical uses in statistics such as detecting influential data 

in regression analysis and model comparisons (see Arellano-Valle et al., 2000). The Jeffreys' divergence is defined as  

𝐷𝐽(𝑓1, 𝑓2) = 𝐷𝐾𝐿(𝑓1, 𝑓2) + 𝐷𝐾𝐿(𝑓2, 𝑓1), 

where 

𝐷𝐾𝐿(𝑓1, 𝑓2) = ∫𝑓1(𝑥) 𝑙𝑜𝑔{𝑓1(𝑥)/𝑓2(𝑥)} 𝑑𝑥. 

Clearly, 𝐷𝐾𝐿(𝑓1, 𝑓2) and 𝐷𝐽(𝑓1, 𝑓2) divergences share most of their properties. As pointed out in Ullah (1996), Jeffreys 

measure does not satisfy the triangular inequality of metric and hence it is also a pseudo-metric measure. 

Let 𝑋1, . . . , 𝑋𝑛be nonnegative; independent and identically distributed (iid) random variables from a continuous 

distribution function 𝐹 with order statistics 𝑋(1) ≤. . . ≤ 𝑋(𝑛). Let 𝑓0(𝑥) denote a Rayleigh distribution, where 𝜃 is the 

unknown parameter. The 𝐻0  and 𝐻1 hypotheses are as follows  

𝐻0:  𝑓(𝑥) = 𝑓0(𝑥, 𝜃),      𝐻1:  𝑓(𝑥) ≠ 𝑓0(𝑥, 𝜃). 
To discriminate between two hypotheses 𝐻0 and 𝐻1, we propose using the Jeffreys' divergence measure of two density 

functions 𝑓(𝑥) and 𝑓0(𝑥) as  

𝐷𝐽(𝑓, 𝑓0) = 𝐷𝐾𝐿(𝑓, 𝑓0) + 𝐷𝐾𝐿(𝑓0, 𝑓) = ∫{𝑓(𝑥) − 𝑓0(𝑥)} 𝑙𝑜𝑔
𝑓(𝑥)

𝑓0(𝑥)
𝑑𝑥.                     (1) 

Remark 1 The Jeffreys' statistic for testing Rayleighity can be defined as below 

 

𝐽𝑚𝑛 =
1

𝑛
∑{1 −

𝑋(𝑖)𝑒
−𝑋(𝑖)

2 /2�̂�2/�̂�2

(
𝑛
2𝑚

(𝑋(𝑖+𝑚) − 𝑋(𝑖−𝑚)))
−1
} 𝑙𝑜𝑔 {

[
𝑛
2𝑚

(𝑋(𝑖+𝑚) − 𝑋(𝑖−𝑚))]
−1

𝑋(𝑖)𝑒
−𝑋(𝑖)

2 /2�̂�2/�̂�2
}

𝑛

𝑖=1

. 

where 𝑋(𝑖) = 𝑋(1) for 𝑖 < 1 and 𝑋(𝑖) = 𝑋(𝑛) for 𝑖 > 𝑛 and �̂� is the ML estimator of 𝜃. 

Proof: we can write (1) easily as  

𝐷𝐽(𝑓, 𝑓0) = ∫ {1 −
𝑓0(𝑥)

𝑓(𝑥)
} 𝑙𝑜𝑔 {

𝑓(𝑥)

𝑓0(𝑥)
} 𝑓(𝑥)𝑑𝑥. 

Now, by replacing  𝑓0  the Jeffreys' divergence will be  

𝐷𝐽(𝑓, 𝑓0) = ∫ {1 −
𝑥(𝑖)𝑒

−𝑥(𝑖)
2 /2𝜃2/𝜃2

𝑓(𝑥)
} 𝑙𝑜𝑔 {

𝑓(𝑥)

𝑥(𝑖)𝑒
−𝑥(𝑖)

2 /2𝜃2/𝜃2
} 𝑓(𝑥)𝑑𝑥

∞

0

. 

Under the null hypothesis 𝐷𝐽(𝑓, 𝑓0) = 0 and we expect large values of 𝐷𝐽(𝑓, 𝑓0) under  𝐻1. Based on Vasicek's method 

(1976) and supposing 𝐹(𝑥) = 𝑝 we have  

𝐷𝐽(𝑓, 𝑓0) = ∫

{
 

 
1 −

𝐹−1(𝑝)𝑒−(𝐹
−1(𝑝))2/2𝜃2/𝜃2

(
𝑑
𝑑𝑝
𝐹−1(𝑝))

−1

}
 

 
𝑙𝑜𝑔

{
 

 (
𝑑
𝑑𝑝
𝐹−1(𝑝))

−1

𝐹−1(𝑝)𝑒−(𝐹
−1(𝑝))2/2𝜃2/𝜃2

}
 

 
𝑑𝑝

1

0

. 

Now, the proposed statistic in Remark 1 will be easily derived by using the relation below  

𝑓(𝑥) = (
𝑑

𝑑𝑝
𝐹−1(𝑝))

−1

,    

                                 ≃ (
𝑛

2𝑚
(𝑋(𝑖+𝑚) − 𝑋(𝑖−𝑚)))

−1

.                         (2) 

Generally, the Null Hypothesis for large values of 𝐽𝑚𝑛 will be rejected, that is, 𝐻0 is rejected if 𝐽𝑚𝑛 ≥ 𝐽𝑚𝑛
∗  for some 

critical values 𝐽𝑚𝑛
∗  . Although, we will reject the null hypothesis when the p-value is less than the level of significance. 

 

Theorem 1 The statistic of 𝐽𝑚𝑛 is scale-free and invariant with respect to scale transformation. 

Proof: As 𝜃 is a scale parameter of the Rayleigh distribution we consider a scale transformation group as 𝐺 =
{𝑔𝑐: 𝑔𝑐(𝑋) = 𝑐𝑋, 𝑐 > 0} . Since  

𝐽𝑚𝑛(𝑔(𝑋)) = 𝐽𝑚𝑛(𝑋)  ∀𝑋, ∀𝑔 ∈ 𝐺, 

therefore, 𝐽𝑚𝑛 is a scale-free statistic and invariant under 𝐺.   
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Theorem 2 The distribution of 𝐽𝑚𝑛 does not depend on 𝜃. 

Proof: Since the test statistic 𝐽𝑚𝑛 is invariant under the scale transformations and the parameter space is transitive, 

the distribution of the proposed test statistic 𝐽𝑚𝑛 is free of  𝜃.   

 

 

Based on Theorem 2, the critical values do not depend on 𝜃. Therefore, the critical values of the test statistic can be 

obtained by simulation for any values of 𝜃 such as 𝜃 = 1. 

 

Theorem 3 Let 𝐹 be an unknown continuous distribution with a positive support and 𝐹0  be the Rayleigh distribution 

with unspecified parameter 𝜃. Then under 𝐻1 the test based on 𝐽𝑚𝑛 is consistent. 

Proof: We use Alizadeh and Arghami (2011) technique to prove the consistency of 𝐽𝑚𝑛. For 𝑛,𝑚 → ∞ and 𝑚/𝑛 →
0, we have  

2𝑚

𝑛
= 𝐹𝑛(𝑋(𝑖+𝑚)) − 𝐹𝑛(𝑋(𝑖−𝑚)) ≃ 𝐹(𝑋(𝑖+𝑚)) − 𝐹(𝑋(𝑖−𝑚)) 

≃
𝑓(𝑋(𝑖+𝑚)) + 𝑓(𝑋(𝑖−𝑚))

2
(𝑋(𝑖+𝑚) − 𝑋(𝑖−𝑚)) 

≃ 𝑓(𝑋(𝑖))(𝑋(𝑖+𝑚) − 𝑋(𝑖−𝑚)), 

where 𝐹𝑛 is the empirical distribution function. Since �̂� is a consistent estimator of 𝜃 as  𝑛 → ∞ and based upon strong 

law of large numbers we have  

𝐽𝑚𝑛 =
1

𝑛
∑{1 −

𝑋(𝑖)𝑒
−𝑋(𝑖)

2 /2�̂�2/�̂�2

(
𝑛
2𝑚

(𝑋(𝑖+𝑚) − 𝑋(𝑖−𝑚)))
−1
} 𝑙𝑜𝑔 {

(
𝑛
2𝑚

(𝑋(𝑖+𝑚) − 𝑋(𝑖−𝑚)))
−1

𝑋(𝑖)𝑒
−𝑋(𝑖)

2 /2�̂�2/�̂�2
}

𝑛

𝑖=1

 

≃
1

𝑛
∑{1 −

𝑋(𝑖)𝑒
−𝑋(𝑖)

2 /2𝜃2/𝜃2

𝑓(𝑋(𝑖))
} 𝑙𝑜𝑔 {

𝑓(𝑋(𝑖))

𝑋(𝑖)𝑒
−𝑋(𝑖)

2 /2𝜃2/𝜃2
}

𝑛

𝑖=1

 

=
1

𝑛
∑{1 −

𝑓0(𝑋𝑖)

𝑓(𝑋𝑖)
} 𝑙𝑜𝑔 {

𝑓(𝑋𝑖)

𝑓0(𝑋𝑖)
}
𝑎.𝑠.
→ 𝐸 ({1 −

𝑓0(𝑋)

𝑓(𝑋)
} 𝑙𝑜𝑔 {

𝑓(𝑋)

𝑓0(𝑋)
})

𝑛

𝑖=1

 

= ∫ {1 −
𝑓0(𝑥)

𝑓(𝑥)
} 𝑙𝑜𝑔 {

𝑓(𝑥)

𝑓0(𝑥)
} 𝑑𝑥

∞

0

 

= 𝐷𝐽(𝑓, 𝑓0). 

Thus, 𝐽𝑚𝑛 is a consistent test.  

 

Meanwhile, Safavinejad et al. (2015) showed that the ML estimator of 𝜃 in the Rayleigh distribution is equivariant. 

Therefore, the 𝐽𝑚𝑛 test is a reasonable test for the Rayleigh distribution which has some good properties such as to be 

scale-free, invariancy and consistency. 

 

Lin-Wong Test 

In this subsection, for constructing the test statistic we estimate the Lin-Wong distance similar to Vasicek's (1976) 

method for estimating the Shannon entropy. 

To discriminate between the two hypotheses 𝐻0 and 𝐻1, we propose using the Lin and Wong (1990) divergence 

measure of two density functions 𝑓(𝑥) and 𝑓0(𝑥) as  

𝐷𝐿𝑊(𝑓, 𝑓0) = ∫ 𝑓(𝑥) 𝑙𝑜𝑔
2𝑓(𝑥)

𝑓(𝑥)+𝑓0(𝑥)
𝑑𝑥

∞

0
.                    (3) 

Since Lin-Wong divergence belongs to Csiszer family, we have 𝐷𝐿𝑊(𝑓, 𝑓0) ≥ 0 and the equality holds if and only if 

𝑓(𝑥) = 𝑓0(𝑥) (See Kapur and Kesavan, 1992). So, it motivates us to use Lin-Wong divergence as a test statistic for 

Rayleighity. 

Remark 2 The Lin-Wong statistic for testing Rayleighity can be defined as below 

𝐿𝑊𝑚𝑛 = −
1

𝑛
∑𝑙𝑜𝑔 {

1

2
+
𝑋(𝑖)

2�̂�2
𝑒
−
𝑋(𝑖)
2

2�̂�2
𝑛

2𝑚
(𝑋(𝑖+𝑚) − 𝑋(𝑖−𝑚))}

𝑛

𝑖=1

. 

where 𝑋(𝑖) = 𝑋(1) for 𝑖 < 1 and 𝑋(𝑖) = 𝑋(𝑛) for 𝑖 > 𝑛 and �̂� is the ML estimator of 𝜃. 

Proof: Similar to proof of Remark 1 by replacing 𝑓0 in (3) we have  
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𝐷𝐿𝑊(𝑓, 𝑓0) = ∫ 𝑓(𝑥) 𝑙𝑜𝑔
2𝑓(𝑥)

𝑓(𝑥) +
𝑥
𝜃2
𝑒−𝑥

2/2𝜃2
𝑑𝑥

∞

−∞

. 

Based on Vasicek's method (1976) and supposing 𝐹(𝑥) = 𝑝 we have  

𝐷𝐿𝑊(𝑓, 𝑓0) = ∫ 𝑙𝑜𝑔
2(

𝑑

𝑑𝑝
𝐹−1(𝑝))

−1

(
𝑑

𝑑𝑝
𝐹−1(𝑝))

−1
+
𝐹−1(𝑝)

𝜃2
𝑒−(𝐹

−1(𝑝))
2
/2𝜃2

𝑑𝑝
1

0
.              (4) 

Finally, the proposed statistic in Remark 2 will be derived by using (2) in (4). 

By using similar method of Theorems 1, 2 and 3 easily we can prove that 

• 𝐷𝐿𝑊 is invariant under parameter transformations. 

• 𝐿𝑊𝑚𝑛 is a scale-free and invariant test with respect to scale transformation. 

• Distribution of 𝐿𝑊𝑚𝑛 does not depend on 𝜃 . 

• 𝐿𝑊𝑚𝑛 is a consistent test. 

Based upon the mentioned properties, 𝐿𝑊𝑚𝑛is a reasonable test for the Rayleigh distribution which has some good 

properties such as to be scale-free, invariancy and consistency. 

 

Rényi Test 

In this subsection, for constructing the test statistic we estimated the Rényi divergence similar to Vasicek's (1976) 

method for estimating the Shannon entropy. 

 

Remark 3 The Rényi statistic for testing Rayleighity can be defined as below 

𝑅𝑚𝑛 = 2 𝑙𝑜𝑔 �̂� +
1

𝑠 − 1
𝑙𝑜𝑔 {

1

𝑛
∑{[

𝑛

2𝑚
𝑋(𝑖)(𝑋(𝑖+𝑚) − 𝑋(𝑖−𝑚))]

1−𝑠

𝑒(𝑠−1)𝑋(𝑖)
2 /2�̂�2}

𝑛

𝑖=1

}. 

where 𝑋(𝑖) = 𝑋(1) for 𝑖 < 1 and 𝑋(𝑖) = 𝑋(𝑛) for 𝑖 > 𝑛 and �̂� is the ML estimator of  𝜃. 

To discriminate between the two hypotheses 𝐻0 and 𝐻1, we propose using the Rényi (1961) divergence of two density 

functions 𝑓(𝑥) and 𝑓0(𝑥) as  

𝐷𝑠(𝑓, 𝑓0) =
1

𝑠−1
𝑙𝑜𝑔 ∫ {

𝑓(𝑥)

𝑓0(𝑥)
}
𝑠−1

𝑓(𝑥)𝑑𝑥
∞

0
.                                                                (5) 

where 𝑠 > 0 and 𝑠 ≠ 1 . 

Proof: Similar proof of Remark 1 by replacing 𝑓0 in (5) the Rényi information will be  

𝐷𝑠(𝑓, 𝑓0) =
1

𝑠 − 1
𝑙𝑜𝑔∫ {

𝑓(𝑥)
𝑥
𝜃2
𝑒−𝑥

2/2𝜃2
}

𝑠−1

𝑓(𝑥)𝑑𝑥
∞

0

 

= 2 𝑙𝑜𝑔 𝜃 +
1

𝑠 − 1
𝑙𝑜𝑔∫ {𝑓(𝑥)}𝑠−1𝑥1−𝑠𝑒(𝑠−1)𝑥

2/2𝜃2𝑓(𝑥)𝑑𝑥
∞

0

. 

Based on Vasicek's method (1976) and supposing 𝐹(𝑥) = 𝑝 we have  

𝐷𝑠(𝑓, 𝑓0) = 2 𝑙𝑜𝑔 𝜃 +
1

𝑠−1
𝑙𝑜𝑔 ∫ {

𝑑

𝑑𝑝
𝐹−1(𝑝)}

𝑠−1
{𝐹−1(𝑝)}1−𝑠𝑒

(𝑠−1){𝐹−1(𝑝)}
2

2𝜃2 𝑑𝑝
1

0
.                         (6) 

Finally, the proposed statistic in Remark 3 will be derived by using (2) in (6). 

Given that, determining optimum value of 𝑠 is very important, based upon a simulation study and by comparing power 

values of the Rényi test for various values of 𝑠, we conclude that the Rényi test has its maximum power when 𝑠 = 0.9 

. Thus, we use 𝑠 = 0.9  in testing Rayleighity. It should be noted that for 𝑠 → 1 Rényi measure becomes the KL-

divergence. 

By using similar method of Theorems 1, 2, and 3 we can easily prove that 

• 𝐷𝑠 is invariant under parameter transformations. 

• 𝑅𝑚𝑛 is a scale-free and invariant test with respect to scale transformation. 

• Distribution of 𝑅𝑚𝑛 does not depend on 𝜃 . 

• 𝑅𝑚𝑛 is a consistent test. 

Based upon mentioned properties, 𝑅𝑚𝑛 is a reasonable test for the Rayleigh distribution which has some good 

properties such as to be scale-free, invariancy and consistency. 

The GOF tests of Rayleighity in the literature 

Kullback-Leibler Test 
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Alizadeh et al. (2012) proposed a GOF test based on KL-divergence for checking Rayleighity. Their proposed statistic 

is  

𝐾𝐿𝑚𝑛 = −𝐻𝑚𝑛 + 2 𝑙𝑜𝑔( �̂�) −
1

𝑛
∑𝑙𝑜𝑔( 𝑋𝑖)

𝑛

𝑖=1

+ 1, 

where �̂� is the ML estimate of 𝜃 and 𝐻𝑚𝑛  is the Vasicek's sample entropy estimator which is  

𝐻𝑚𝑛 =
1

𝑛
∑𝑙𝑜𝑔 {

𝑛

2𝑚
(𝑋(𝑖+𝑚) − 𝑋(𝑖−𝑚))}

𝑛

𝑖=1

, 

where the window size 𝑚 is a positive integer smaller than 𝑛/2, 𝑋(𝑖) = 𝑋(1) if 𝑖 < 1,  𝑋(𝑖) = 𝑋(𝑛) if 𝑖 > 𝑛 and 𝑋(1) ≤

𝑋(2) ≤. . . ≤ 𝑋(𝑛) are the order statistics based on a random sample of size 𝑛 . 

The statistic 𝐾𝐿𝑚𝑛 estimates the KL-divergence between the underlying data distribution and the Rayleigh 

distribution. 

The null hypothesis, 𝐻0, is rejected at the significance level 𝛼 if 𝐾𝐿𝑚𝑛 ≥ 𝐾𝐿𝑚𝑛,1−𝛼 , and 𝐾𝐿𝑚𝑛,1−𝛼 is 100(1 − 𝛼) 

percentile of 𝐾𝐿𝑚𝑛  under 𝐻0. Alizadeh et al. (2012) proved 𝐾𝐿𝑚𝑛 is a non-negative and consistent test. 

 

Cumulative Residual Entropy-Based Test 

Baratpour and Khodadadi (2012) based on cumulative Kullback-Leibler defined another GOF test for Rayleighity 

which is  

𝐶𝐾𝑛 =

∑ (1 −
𝑖
𝑛
) 𝑙𝑛 (1 −

𝑖
𝑛
) (𝑋(𝑖+1) − 𝑋(𝑖)) + √

𝜋
2
√
∑ 𝑋𝑖

3𝑛
𝑖=1

3∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
𝑖=1

�̄�
, 

where 𝐻0 is rejected at the significance level 𝛼 in favor of 𝐻1 if 𝐶𝐾𝑛 ≥ 𝐶𝐾𝑛,1−𝛼  , where 𝐶𝐾𝑛,1−𝛼 is 100(1 − 𝛼) 

percentile of 𝐶𝐾𝑛 under 𝐻0. Baratpour and Habibi (2012) proved that 𝐶𝐾𝑛 is a non-negative and consistent test. 

 

Empirical Laplace Transform Test 

Meintanis and Iliopoulos (2003) proposed a GOF test of Rayleighity based on the empirical Laplace transform which 

was defined as 

 

𝐿 =
𝑛

𝑎
+
√2

𝑛
∑∑

1

�̂�𝑗 + �̂�𝑘 + 𝑎
+

�̂�𝑗 + �̂�𝑘

(�̂�𝑗 + �̂�𝑘 + 𝑎)
2 +

2(�̂�𝑗�̂�𝑘 + 2)

(�̂�𝑗 + �̂�𝑘 + 𝑎)
3 +

6(�̂�𝑗 + �̂�𝑘)

(�̂�𝑗 + �̂�𝑘 + 𝑎)
4

𝑛

𝑘=1

𝑛

𝑗=1

+
24

(�̂�𝑗 + �̂�𝑘 + 𝑎)
5 − 2√2∑{

1

(�̂�𝑗 + 𝑎)
+

�̂�𝑗

(�̂�𝑗 + 𝑎)
2 +

2

(�̂�𝑗 + 𝑎)
3}

𝑛

𝑗=1

,

 

where 𝑎 = 2√2 , �̂�𝑗 = 𝑋𝑗/�̂� and �̂� denotes the consistent estimator of 𝜃. The null hypothesis, 𝐻0, is rejected for large 

values of 𝐿.  

 

Empirical Likelihood Ratio Test 

Safavinejad et al. (2015), based on the empirical likelihood ratio methodology, proposed the following statistic  

𝑅𝑛 =
min

1≤𝑚<𝑛𝛿
∏ {

2𝑚
𝑛
(𝑋(𝑗+𝑚) − 𝑋(𝑗−𝑚))}

𝑛
𝑖=1

(∏
𝑋𝑖
�̂�2𝑛

𝑛
𝑖=1 ) 𝑒𝑥𝑝 {−∑

𝑋𝑖
2

2�̂�2
𝑛
𝑖=1 }

, 

where �̂� is the ML estimator of 𝜃 and 0 < 𝛿 < 1 . The null hypothesis is rejected if  𝑙𝑜𝑔(𝑅𝑛) > 𝑐𝛼, where 𝑐𝛼 is a 

critical value. Meanwhile, Alizadeh et al. (2014) proved the invariancy and asymptotic consistency of their proposed 

test. The null hypothesis reject for large values of 𝑅𝑛. 

 

Empirical Distribution Function Tests 

Empirical distribution is a very important estimator in statistics. Many statistical procedures depend on its 

performance. Consider a random variable 𝑋 with the distribution function 𝐹(𝑥). A random sample of size 𝑛, 𝑋1, ⋯ , 𝑋𝑛, 

is given from 𝐹(𝑥) and let 𝑋(1) < 𝑋(2) < ⋯ < 𝑋(𝑛) be the order statistics. We assume this distribution to be 

continuous. The empirical distribution function, 𝐹𝑛(𝑥), is defined as  
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𝐹𝑛(𝑥) =∑𝐼(𝑋𝑖 ≤ 𝑥)/𝑛

𝑛

𝑖=1

 

where 𝐼 is the indicator function. 

The Kolmogorov-Smirnov 𝐷 and Kuiper 𝑉 statistics are defined as  

𝐷 = 𝑚𝑎𝑥(𝐷𝑛
+, 𝐷𝑛

−), 
 

𝑉 = 𝐷𝑛
+ + 𝐷𝑛

−, 
where  

𝐷𝑛
+ = max

𝑖
{𝑖/𝑛 − 𝑍(𝑖)} , 

𝐷𝑛
− = max

𝑖
{𝑍(𝑖) − (𝑖 − 1)/𝑛} 

and 𝑍 = 𝐹(𝑥); when 𝐹(𝑥) is the true distribution of 𝑋, the new random variable 𝑍 is uniformly distributed between 0 

and 1. If a sample contains 𝑋1,⋯ , 𝑋𝑛, it gives values  𝑍𝑖 = 𝐹(𝑥𝑖 ; 𝜃), 𝑖 = 1,⋯ , 𝑛. The formulas involve the 𝑍-values 

arranged in ascending order, 𝑍(1) < 𝑍(2) < ⋯ < 𝑍(𝑛), with �̄� = ∑ 𝑍𝑖/𝑛𝑖  . 

The Cramer-von Mises, Watson, Anderson-Darling, and Finkelstein-Schafers (1971) statistics are respectively as 

follows  

𝑊2 =∑{𝑍(𝑖) −
2𝑖 − 1

2𝑛
}
2

+
1

12𝑛

𝑛

𝑖=1

, 

 

𝑈2 = 𝑊2 − 𝑛(�̄� − 0.5)2, 
 

𝐴2 = −𝑛 −∑
2𝑖 − 1

𝑛
{𝑙𝑜𝑔( 𝑍(𝑖)) + 𝑙𝑜𝑔( 1 − 𝑍(𝑛−𝑖+1))}

𝑛

𝑖=1

, 

 

𝑆∗ =∑𝑚𝑎𝑥 {|𝑍(𝑖) −
𝑖

𝑛
| , |𝑍(𝑖) −

𝑖 − 1

𝑛
|}

𝑛

𝑖=1

. 

where 𝜃 has been substituted by �̂� which is the ML estimator of 𝜃. The null hypothesis,  𝐻0, is rejected for large values 

of 𝑊2, 𝑈2, 𝐴2 and 𝑆∗. 
 

Power Study 

In this section, the power of considered tests are estimated against several alternatives. The method is that of Monte 

Carlo simulation of the distribution of considered tests under alternative distributions. For each alternative, 10000 

samples of size  𝑛  were generated. Then, the power was calculated by proportion of rejecting null hypothesis for 

simulated data from alternative distribution in some iterations. In other words, the power can be estimated by  

power ≃
1 + ∑ 𝐼{p-value(𝑇𝑜𝑏𝑠

(𝑗)
) < 𝛼|𝐻1}

𝐵
𝑗=1

1 + 𝐵
, 

where p-value (𝑇𝑜𝑏𝑠
(𝑗)
) is the probability value of 𝑇𝑜𝑏𝑠 at j-th iteration and 𝐻1 is the alternative distribution. This form 

of definition of power ensures that the approximate power is a number strictly between 0 and 1. 

The p-value can be easily calculated using Monte Carlo simulation proposed by North et al. (2003) through simulating 

𝐵 samples from the distribution specified in the null hypothesis and computing the test statistic, 𝑇𝑜𝑏𝑠, for each of these 

samples. Then the p-value will be  

p-value ≃
1 + ∑ 𝐼{𝑇𝑘(𝑥1, … , 𝑥𝑛) > 𝑇𝑜𝑏𝑠}

𝑛
𝑘=1

1 + 𝐵
, 

where 𝑇𝑘(𝑥1, … , 𝑥𝑛) is the statistic from the simulated Rayleigh data (𝑥1, … , 𝑥𝑛) at k-th iteration and 𝑇𝑜𝑏𝑠 is the 

observed statistic. 

It is important to mention here that as we checked the power values which were calculated by the method mentioned 

in this paper and the classical method which is based on using critical values to estimate powers, the calculated powers 

based on these methods are very close together and the difference between them are usually in thousandths decimal 

which are negligible. 

The continuous alternative distributions are classified in the three classes below: 
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• Monotonic decreasing hazard (Dec. Hazard) rate: Chisquare(1), Weibull(0.5,1), 

• Monotonic increasing hazard (Inc. Hazard) rate: Chisquare(3), Beta(3,1), 

• Non-Monotonic hazard (Non-Mon. Hazard) rate: Beta(1,0.5), Exponential(2). 

The powers of the considered tests are compared to that of some other tests for Rayleighity against the same 

alternatives which are tabulated in Tables 2 and 3. 

 

Determining Optimum values of window size (𝒎) 

The GOF test based on entropy involves choosing the best integer parameter 𝑚. Unfortunately, there is no choice 

criterion of 𝑚, and in general it depends on 𝑛. Ebrahimi et al. (1992) tabulated the values of 𝑚 which maximize the 

power of the test. Meanwhile, similar tables are given by Abbasnejad (2011), Alizadeh Noughabi and Balakrishnan 

(2014). 

 

Meanwhile, the optimum value of 𝑚 is a value of 𝑛 which leads to the smallest value of bias and mean square error 

(MSE). Therefore, we determined the optimum values of 𝑚  based on 10000 iterations which their results are presented 

in Table 1. 

To determine optimum values of 𝑚 for any value of 𝑛, we compute bias and MSE of  𝐻𝑚𝑛  for different values of 𝑚, 

1 to 𝑛/2, by  

𝐵𝑖𝑎𝑠 =
1

𝑘
∑𝐻𝑚𝑛

(𝑖)
− 𝐻(𝑋)

𝑘

𝑖=1

,     𝑀𝑆𝐸 =
1

𝑘
∑{𝐻𝑚𝑛

(𝑖)
−𝐻(𝑋)}

2
𝑘

𝑖=1

, 

where 𝐻(𝑋) = 1 + 𝑙𝑛( 𝜃/√2) + 𝛾/2 is the entropy of the Rayleigh distribution, 𝛾 is the Euler-Mascheroni constant 

which is already 0.57721 and 𝑘 is the number of iterations. From Table 1 it is evident that with increasing 𝑛, the 

optimal choice of 𝑚 also increases. 

 

Table 1: Optimal values of m for various values of n 

n 5-12 13-27 28-50 51-57 58-71 72-100 101-120 121-150 >150 

m 2 3 4 5 6 7 8 9 10 

 

Table 2: Comparing powers of considered tests for n=10 and α=0.05 

 Dec. Hazard Inc. Hazard Non-Mon. Hazard 

Tests Chisq(1) Wei(0.5,1) Chisq(3) Beta(3,1) Beta(1,0.5) Exp(2) 

𝐿 0.998 0.996 0.420 0.252 0.140 0.412 

𝐷 0.890 0.971 0.330 0.281 0.224 0.221 

𝑉 0.820 0.956 0.220 0.351 0.348 0.402 

𝑊2 0.903 0.973 0.345 0.362 0.290 0.231 

𝑈2 0.833 0.956 0.259 0.340 0.345 0.426 

𝐴2 0.977 0.995 0.464 0.417 0.354 0.381 

𝑆∗ 0.894 0.970 0.350 0.357 0.341 0.236 

𝐾𝐿𝑚𝑛 0.915 0.979 0.176 0.451 0.566 0.205 

𝐶𝐾𝑛 0.918 0.979 0.405 0.395 0.441 0.449 

𝑅𝑛 0.718 0.911 0.468 0.477 0.557 0.540 

𝐿𝑊𝑚𝑛 0.164 0.384 0.005 0.325 0.308 0.221 

𝑅𝑚𝑛 0.897 0.960 0.161 0.382 0.434 0.216 

𝐽𝑚𝑛 0.972 0.992 0.458 0.396 0.571 0.727 
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Table 3: Comparing powers of considered tests for n=10 and α=0.05 

 Dec. Hazard Inc. Hazard Non-Mon. Hazard 

Tests Chisq(1) Wei(0.5,1) Chisq(3) Beta(3,1) Beta(1,0.5) Exp(2) 

𝐿 0.999 0.999 0.623 0.469 0.160 0.413 

𝐷 0.998 0.999 0.587 0.514 0.417 0.237 

𝑉 0.979 0.999 0.490 0.658 0.668 0.701 

𝑊2 0.997 0.999 0.646 0.668 0.563 0.240 

𝑈2 0.999 0.999 0.632 0.609 0.649 0.716 

𝐴2 0.997 0.999 0.707 0.612 0.615 0.631 

𝑆∗ 0.993 0.999 0.631 0.708 0.615 0.250 

𝐾𝐿𝑚𝑛 0.999 0.999 0.450 0.850 0.901 0.205 

𝐶𝐾𝑛 0.999 0.999 0.653 0.341 0.867 0.873 

𝑅𝑛 0.880 0.987 0.709 0.831 0.902 0.877 

𝐿𝑊𝑚𝑛 0.416 0.766 0.013 0.807 0.769 0.624 

𝑅𝑚𝑛 0.995 0.999 0.340 0.831 0.853 0.772 

𝐽𝑚𝑛 0.999 0.999 0.856 0.862 0.928 0.931 

 

According to Tables 2 and 3 we conclude: 

In decreasing hazard rate distributions between entropy type tests, the most powerful tests in priority of order are 

respectively 𝐽𝑚𝑛 , 𝐶𝐾𝑛, 𝐾𝐿𝑚𝑛. In addition, it is evident that the three most powerful tests in overall are respectively 𝐿,
𝐴2, 𝐽𝑚𝑛. 

Among increasing hazard rate distributions choosing the best test is difficult. But it should be noticed that among 

entropy type tests the most powerful tests in priority of order are  𝑅𝑛, 𝐽𝑚𝑛, 𝐶𝐾𝑛. Also, we can offer three most powerful 

tests in overall as 𝑅𝑛, 𝐴
2, 𝐽𝑚𝑛. 

Although among non-monotone hazard rate distributions choosing the best test is difficult, three most powerful tests 

in overall and in entropy type tests are respectively  𝐽𝑚𝑛 , 𝑅𝑛, 𝐶𝐾𝑛 . 

Another important property of a test is type I error rate which is calculated as proportion of rejected null hypothesis 

for the Rayleigh distribution. As we checked, we conclude that type I error rates of all considered tests are about the 

supposed significance level. So, they have acceptable performance in this field. 

Application to average wind speed data 

In this section, we consider one average wind speed data analysis reported in Best et al. (2010). The following data 

represent 30 average daily wind speeds (in km/h) for the month of November 2007 recorded at Elanora Heights, a 

northeastern suburb of Sydney, Australia: 

2.7, 3.2, 2.1, 4.8, 7.6, 4.7, 4.2, 4.0, 2.9, 2.9, 4.6, 4.8, 4.3, 4.6, 3.7, 2.4, 4.9, 4.0, 7.7, 10.0, 5.2, 2.6, 4.2, 3.6, 2.5,  3.3, 

3.1, 3.7, 2.8, 4.0. 

The data were analyzed initially by Best et al. and Alizadeh et al. (2012), who fitted the Rayleigh distribution 

successfully. The probability values of testing Rayleighity for some of more powerful tests in this paper are presented 

in Table 4. The probability values of all tests are greater than 0.05, so they are not significant at 5 percent significance 

level. Thus, we cannot reject the null hypothesis which means the wind speed data follows the Rayleigh distribution. 

 

Table 4: P-value of considered tests in evaluating Rayleighity 

Tests 𝐿 𝑅𝑛 𝐽𝑚𝑛 𝐾𝐿𝑚𝑛 𝐶𝐾𝑛 𝐴2 
p-value 0.834 0.745 0.753 0.737 0.831 0.810 

Conclusion 

The aim of this paper is to evaluate the performance of the proposed test. So, we considered and compared thirteen 

different GOF tests for evaluating Rayleighity. In order to evaluate the ability of mentioned tests in identifying the 

Rayleigh distribution, by a simulation study the powers and type I error of the proposed tests were computed under 

several alternatives and different sample sizes in three different class of hazard rates. The results were tabulated in 

Tables 2 and 3 which are the power estimates of considered tests at significance level of 0.05. 

Finally, we concluded that 𝐽𝑚𝑛 test which is a symmetric version of KL test and belongs to entropy based tests 

performed better than the other tests. Since for real data we do not know type of hazard rate distribution, the results 

obtained from this study encourage us using 𝐽𝑚𝑛 test in all three classes. 



Pak.j.stat.oper.res.  Vol.16  No. 2 2020 pp305-315  DOI: http://dx.doi.org/10.18187/pjsor.v16i2.3087 

 
Some New Goodness-of-fit Tests for Rayleigh Distribution 314 

 

The future of this research is to work on proposing GOF tests for censored data such as Type II censored data which 

is very well-known and very applicable to applied researches. 
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