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Abstract 

 

In this paper, log-Balakrishnan-alpha-skew-normal distribution is proposed by the methodology of Venegas et al. 

(2016). Some of its basic distributional properties including the moments also discussed. Also, the appropriateness 

of this distribution is checked by performing data fitting experiments and comparing with some other known 

distributions by using Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The 

Likelihood Ratio test is used for discriminating between log-normal and the proposed distributions. 
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1. Introduction 

Log normal distribution is preferred over the normal distribution to model random variable with positive support. 

Typical uses of log-normal distribution are found in descriptions of fatigue failure, failure rates, and other phenomena 

involving a large range of data. Another common applications where log-normal distributions are used in finance is 

in the analysis of stock prices. A random variable 𝑍, follows the log-normal distribution 𝐿𝑁(𝜇, 𝜎2) with two 

parameters(𝜇, 𝜎2)   if its probability density function (pdf) is defined as𝑓(𝑧) =
1

𝑧𝜎
𝜙 (

𝑦−𝜇

𝜎
), where 𝑦 = 𝑙𝑜𝑔( 𝑧), 𝑧 >

0, 𝜇 ∈ 𝑅, 𝜎 > 0 and 𝜙(. )is the standard normal pdf. The log-normal distributions are positively skewed with long 

right tails due to low mean values and high variances in the random variables.  

 

Vistelius (1960) showed that the chemical element concentrations in soil samples follow asymmetric distribution. 

Ahrens (1953, 1954a, 1954b) studied the chemical element concentration using many data sets with positive 

asymmetry. Log-skew-normal distribution with positive support was derived from skew normal was used by Mateu-

Figueras et al. (2004) to deal with geochemical data as the support of the skew-normal distribution in the real line. 

This distribution is also used by Azzalini et al. (2003), for family income data. 

Azzalini (1985) introduced the skew normal distribution with asymmetry parameter 𝜆 and the pdf given by 

𝑓𝑍(𝑧; 𝜆) = 2𝜙(𝑧)𝛷(𝜆𝑧); 𝑧, 𝜆 ∈ 𝑅                                             (1) 

where 𝜙(. )is define above and 𝛷(. )is cumulative distribution function (cdf) of 𝑁(0,1). 
A useful generalization of the skew normal distribution was proposed as a discussant in Arnold and Beaver (2002) by 

Balakrishnan (2002) and studied some of its properties. The pdf of the same distribution is  

𝑓𝑍(𝑧; 𝜆, 𝑛) = 𝜙(𝑧)[𝛷(𝜆𝑧)]𝑛 𝐶𝑛(𝜆)⁄ ; 𝑧, 𝜆 ∈ 𝑅  (2) 

where 𝑛 is a positive integer and 𝐶𝑛(𝜆) = 𝐸(𝛷
𝑛(𝜆𝑈)), 𝑈~𝑁(0,1). In case, if 𝜆 = 1, this Balakrishnan skew normal 

distribution reduces to the skew normal distribution of Azzalini (1985). 
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Using the idea of Huang and Chen (2007), Elal-Olivero (2010) developed a new form of skew distribution known as 

alpha skew normal distribution which has both unimodal as well as bimodal behavior and has the following pdf given 

by 

𝑓(𝑧; 𝛼) = {(1 − 𝛼𝑧)2 + 1}𝜙(𝑧) (2 + 𝛼2⁄ ); 𝑧, 𝛼 ∈ 𝑅              (3) 

Venegas et al. (2016) studied alpha skew normal distribution and proposed its logarithm form and named it as log-

alpha skew normal distribution with the pdf  

𝑓(𝑧; 𝛼) = {(1 − 𝛼𝑦)2 + 1}𝜙(𝑦) 𝑧(2 + 𝛼2⁄ ); 𝑧 > 0, 𝛼 ∈ 𝑅, 𝑦 = 𝑙𝑜𝑔( 𝑧)             (4) 

Applying the idea of eqn.(2) and eqn.(3), Hazarika et al. (2019) proposed a new form of alpha skew normal distribution 

known as Balakrishnan alpha skew normal distribution with more flexibility than the distribution in eqn.(3) and 

exhibits both unimodality and bimodality behaviours. The pdf is given by 

𝑓(𝑧; 𝛼) =
[(1−𝛼𝑧)2+1]2

𝐶2(𝛼)
𝜙(𝑧); 𝑧, 𝛼 ∈ 𝑅                                               (5) 

where 𝐶2(𝛼) = 4 + 8𝛼2 + 3𝛼4. 
 

 

The main aim of this paper includes, first, introducing the log-Balakrishnan alpha skew normal distribution using the 

idea of Venegas et al. (2016) and discuss its basic properties, second, applying this new proposed distribution which 

is flexible enough for both unimodality and bimodality behaviors, to real life datasets and third, establish suitability 

of this proposed distribution over a few other known distributions. 

 

The rest of this paper is organized as follows. In Section 2, we introduce a new form of log-alpha-skew normal 

distribution and study its mathematical properties. The estimation of parameters and two real life data modeling 

applications to illustrate the usefulness of the new distribution is presented in Section 3. Finally, concluding remark 

is noted in Section 4. 

 

2. The log-Balakrishnan-alpha-skew-normal distribution 

In this section we define a new form of log alpha skew normal distribution and studied some of its distributional 

properties. 

 

Definition 1: If a random variable 𝑍has a pdf 

𝑓(𝑧; 𝛼) =
[(1−𝛼𝑦)2+1]2

𝑧𝐶2(𝛼)
𝜙(𝑦); 𝑧 > 0, 𝛼 ∈ 𝑅                                            (6) 

where 𝑦 = 𝑙𝑜𝑔( 𝑧)and 𝐶2(𝛼) = 4 + 8𝛼
2 + 3𝛼4, then, it is said to be log-Balakrishnan-alpha-skew-normal 

distribution with skewness parameter 𝛼. In the rest of this article we shall refer the distribution in eqn.(6) as 

𝐿𝐵𝐴𝑆𝑁2(𝛼). 
 

2.1. Properties of 𝐿𝐵𝐴𝑆𝑁2(𝛼): 
• If 𝛼 = 0, then we get the standard log-normal distribution 𝑓(𝑧) = 𝜙(𝑦)/𝑧. 

• If 𝛼 → ±∞, then we get the log-bimodal-normal (𝐿𝐵𝑁(4)) distribution (see Hazarika et al. 2019) given by 

𝑓(𝑧) =
𝑦4

3𝑧
𝜙(𝑦). 

• If 𝑍~𝐿𝐵𝐴𝑆𝑁2(𝛼), then −𝑍~𝐿𝐵𝐴𝑆𝑁2(−𝛼). 
 

2.2. Plots of the pdf 

The pdf of 𝐿𝐵𝐴𝑆𝑁2(𝛼) distribution for different choices of the parameter 𝛼are plotted in Figure 1. It can be seen from 

Figure 1, that the distribution is positively skewed and higher skewness and kurtosis occur for  0 < 𝛼 < 2. Note that 

the curves in both plots of Figure 1 look different because of the difference in scaling in vertical axis. 
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Figure 1: Plots of the pdf of 𝐿𝐵𝐴𝑆𝑁2(𝛼) 

 

2.3. Mode of 𝐿𝐵𝐴𝑆𝑁2(𝛼): 
Here, we numerically verify that 𝐿𝐵𝐴𝑆𝑁2(𝛼)distribution has at most two modes. First by differentiating the pdf 

𝑓(𝑧; 𝛼)of 𝐿𝐵𝐴𝑆𝑁2(𝛼)distribution with respect to 𝑧 we get 

 

𝐷𝑓(𝑧; 𝛼) = −
𝜙(𝑦)[2+𝛼𝑦(−2+𝛼𝑦)][2+4𝛼+𝑦(−2(𝛼+1)(2𝛼−1)+𝛼𝑦(𝛼+𝛼𝑦−2))]

𝑧2𝐶2(𝛼)
.             (7) 

 

Now, the contour of the equation 𝐷𝑓(𝑧; 𝛼) = 0is drawn and shown in Figure 2 to check that 𝐿𝐵𝐴𝑆𝑁2(𝛼) distribution 

has at most two modes or not.  

  
Figure 2: Contour plots of the equation 𝐷𝑓(𝑧; 𝛼) = 0 

 

It can be observed that there is at most three zeros of 𝐷𝑓(𝑧; 𝛼)which shows that 𝐿𝐵𝐴𝑆𝑁2(𝛼)distribution has at most 

two modes. Also, for −0.70 < 𝛼 < 1.25, 𝐿𝐵𝐴𝑆𝑁2(𝛼)remains unimodal. 

 

2.4. Cumulative distribution function  

Theorem 1: The cdf of 𝐿𝐵𝐴𝑆𝑁2(𝛼)distribution is given by 

𝐹𝑍(𝑧) =
𝜙(𝑦)[𝑒𝑦

2/22𝐶2(𝛼)√2𝜋𝛷(𝑦)−2𝛼{−8(𝛼
2+1)+𝛼𝑦(8+3𝛼2+𝛼𝑦(−4+𝛼𝑦))}]

2𝑧𝐶2(𝛼)
,𝑧 > 0                 (8) 

Proof:𝐹𝑍(𝑧) = 𝑃(𝑍 ≤ 𝑧) 

=
1

𝐶2(𝛼)
∫ {𝛼4 𝑙𝑜𝑔( 𝑧)4 − 4𝛼3 𝑙𝑜𝑔( 𝑧)3 + 8𝛼2 𝑙𝑜𝑔( 𝑧)2 − 8𝛼 𝑙𝑜𝑔( 𝑧) + 4}𝜙(𝑙𝑜𝑔( 𝑧))
𝑧

0

𝑑𝑧

 
=

1

𝐶2(𝛼)
[𝛼4[{3/2(1 + 𝑒𝑟𝑓(𝑙𝑜𝑔( 𝑧)/√2))} − {𝑒−

𝑙𝑜𝑔(𝑧)2

2 𝑙𝑜𝑔( 𝑧)(3 + 𝑙𝑜𝑔( 𝑧)2)/√2𝜋}] − 4𝛼3[−{𝑒−
𝑙𝑜𝑔(𝑧)2

2 (2

+ 𝑙𝑜𝑔( 𝑧)2)}/√2𝜋] + 8𝛼2{1/2 + 1/2𝑒𝑟𝑓(𝑙𝑜𝑔( 𝑧)/√2) − (𝑒−
𝑙𝑜𝑔(𝑧)2

2 𝑙𝑜𝑔( 𝑧)/√2𝜋)}

− 8𝛼{−(𝑒−
𝑙𝑜𝑔(𝑧)2

2 /√2𝜋)} + 4{1/2(1 + 𝑒𝑟𝑓(𝑙𝑜𝑔( 𝑧)/√2))}], 

where erf(.) is error function. 
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On simplifying we get the desired results in eqn.(8). 

Corollary 1: If we take the limit 𝛼 → ±∞of 𝐹𝑍(𝑧) in eqn.(8), then we get the cdf of 𝐿𝐵𝑁(4)distribution as 𝐹(𝑧) =

𝛷(𝑦) −
𝑦𝜙(𝑦)

𝑧
(1 +

1

3
𝑦2). 

 

The cdf is plotted in Figure 3 for studying variation in its shape with respect to the parameter 𝛼. 

 

 
Figure 3: Plots of cdf of 𝐿𝐵𝐴𝑆𝑁2(𝛼) 

 

2.5. Moments 

Theorem 2: The 𝑟𝑡ℎorder moment of 𝐿𝐵𝐴𝑆𝑁2(𝛼)distribution is given by 

𝐸(𝑍𝑟) =
𝑒
𝑟2

2 (4−8𝑟𝛼+8(1+𝑟2)𝛼2−4𝑟(3+𝑟2)𝛼3+(3+6𝑟2+𝑟4)𝛼4)

𝐶2(𝛼)
.                                     (9) 

Proof:𝐸(𝑍𝑟) =
1

𝐶2(𝛼)
∫ 𝑧𝑟((1 − 𝛼 𝑙𝑜𝑔( 𝑧))2 + 1)2𝜙(𝑙𝑜𝑔( 𝑧))
∞

0
𝑑𝑧 

=
1

𝐶2(𝛼)
∫ 𝑧𝑟{𝛼4 𝑙𝑜𝑔( 𝑧)4 − 4𝛼3 𝑙𝑜𝑔( 𝑧)3 + 8𝛼2 𝑙𝑜𝑔( 𝑧)2 − 8𝛼 𝑙𝑜𝑔( 𝑧) + 4}𝜙(𝑙𝑜𝑔( 𝑧))

∞

0

𝑑𝑧 

=
1

𝐶2(𝛼)
[𝛼4{𝑒𝑟

2/2(3 + 6𝑟2 + 𝑟4)} − 4𝛼3{𝑒𝑟
2/2𝑟(3 + 𝑟2)} + 8𝛼2{𝑒𝑟

2/2(1 + 𝑟2)} − 8𝛼{𝑒𝑟
2/2𝑟} + 4{𝑒𝑟

2/2}]. 

On simplifying we get the desired results as in eqn.(9). 

 

From eqn.(9) putting 𝑟 = 1, 2, 3,  and 4, we respectively get  

𝐸(𝑍) =
2√𝑒[2 + 𝛼(−4 + 𝛼(8 + 𝛼(−8 + 5𝛼)))]

𝐶2(𝛼)
 

𝐸(𝑍2) =
𝑒2[4 + 𝛼(−16 + 𝛼(40 + 𝛼(−56 + 43𝛼)))]

𝐶2(𝛼)
 

𝐸(𝑍3) =
2𝑒9/2[2 + 𝛼(−12 + 𝛼(40 − 72𝛼 + 69𝛼2))]

𝐶2(𝛼)
 

and 

𝐸(𝑍4) =
𝑒8[4 + 𝛼(−32 + 𝛼(136 + 𝛼(−304 + 355𝛼)))]

𝐶2(𝛼)
 

Hence,  

𝑉(𝑍) =
𝑒[−4[2 + 𝛼(−4 + 𝛼(−8 + 5𝛼)))]2 + 𝑒𝐶2(𝛼){4 + 𝛼(−16 + 𝛼(40 + 𝛼(−56 + 43𝛼))}]

𝐶2(𝛼)
. 



Pak.j.stat.oper.res.  Vol.16  No. 1 2020 pp109-117  DOI: http://dx.doi.org/10.18187/pjsor.v16i1.3080 

 
The Log-Balakrishnan-Alpha-Skew-Normal Distribution and Its Applications 113 

 

Remark 1: The 𝑟𝑡ℎorder moment of 𝐿𝐵𝐴𝑆𝑁2(𝛼)distribution can also be derived from the moment generating function 

(mgf) of Balakrishnan alpha skew normal 𝐵𝐴𝑆𝑁2(𝛼) distribution of Hazarika et al. (2019) as discussed below.  

The pdf and the mgf of the random variable 𝑋~𝐵𝐴𝑆𝑁2(𝛼) are respectively given by 

𝑓𝑋(𝑥; 𝛼) =
[(1−𝛼𝑥)2+1]2

𝐶2(𝛼)
𝜙(𝑥); 𝑥, 𝛼 ∈ 𝑅 

and  

𝑀𝑋(𝑡) =
𝑒
𝑡2

2 [4 − 8𝑡𝛼 + 8𝛼2(1 + 𝑡2) − 4𝑡𝛼3(3 + 𝑡2) + 𝛼4(3 + 6𝑡2 + 𝑡4)]

𝐶2(𝛼)
. 

If 𝑍~𝐿𝐵𝐴𝑆𝑁2(𝛼) and 𝑋~𝐵𝐴𝑆𝑁2(𝛼) then it can be verified that  

𝐸(𝑍𝑟) = 𝐸[𝑒𝑥𝑝( 𝑟𝑋] = 𝑀𝑋(𝑟) 

=
𝑒
𝑟2

2 [4 − 8𝑟𝛼 + 8𝛼2(1 + 𝑟2) − 4𝑟𝛼3(3 + 𝑟2) + 𝛼4(3 + 6𝑟2 + 𝑟4)]

𝐶2(𝛼)
. 

which is same as in eqn.(9). 

 

Remark 2: The bounds for mean and variance can be derived numerically by optimizing 𝐸(𝑍) and 𝑉𝑎𝑟(𝑍)with 

respect to 𝛼as 0.595216 ≤ 𝐸(𝑍) ≤ 7.36516 and 1.44567 ≤ 𝑉𝑎𝑟(𝑍) ≤ 77.9201. Also, to study their behavior we 

have plotted the mean and the variance respectively in Figure (4) and Figure (5). These plots also reveal these bounds. 

 

  
Figure 4: Plots of mean Figure 5: Plots of variance 

 

Remark 3: The moments of 𝐿𝐵𝑁(4)distribution can be derived easily by taking limit 𝛼 → ±∞ in the moments of 

𝐿𝐵𝐴𝑆𝑁2(𝛼) distribution so that 𝐸(𝑍) → 5.4957and 𝑉𝑎𝑟(𝑍) → 75.7007. 

 

2.6. Skewness and Kurtosis 

The skewness and kurtosis of 𝐿𝐵𝐴𝑆𝑁2(𝛼)distribution are given by 

𝛽1 =
1

𝐶3
[4(𝑒3(𝐶2(𝛼))

2[2 + 𝛼(−12 + 𝛼(40 − 72𝛼 + 69𝛼2))] + 8[2 + 𝛼(−4 + 𝛼(8 + 𝛼(−8 + 5𝛼)))]3 − 

3𝑒𝐶2(𝛼)[2 + 𝛼(−4 + 𝛼(8 + 𝛼(−8 + 5𝛼)))][4 + 𝛼(−16 + 𝛼(40 + 𝛼(−56 + 43𝛼)))]
2] 

and 

𝛽2 =
1

𝐶2
[−16𝑒3(𝐶2(𝛼))

2[2 + 𝛼(−12 + 𝛼(40 − 72𝛼 + 69𝛼2))][2 + 𝛼(−4 + 𝛼(8 + 𝛼(−8 + 5𝛼)))] − 

48[2 + 𝛼(−4 + 𝛼(8 + 𝛼(−8 + 5𝛼)))]4 + 24𝑒𝐶2(𝛼)[2 + 𝛼(−4 + 𝛼(8 + 𝛼(−8 + 5𝛼)))]
2[4 + 

𝛼(−16 + 𝛼(40 + 𝛼(−56 + 43𝛼)))] + 𝑒6(𝐶2(𝛼))
3[4 + 𝛼(−32 + 𝛼(136 + 𝛼(−304 + 355𝛼)))]] 

where 𝐶 = [−4(2 + 𝛼(−4 + 𝛼(−8 + 5𝛼)))]2 + 𝑒𝐶2(𝛼)[4 + 𝛼(−16 + 𝛼(40 + 𝛼(−56 + 43𝛼)))]. 
 

The bounds for skewness and kurtosis can be derived by numerically optimizing 𝛽1and 𝛽2with respect to 𝛼as 

15.9462 ≤ 𝛽1 ≤ 555.709 and 46.8883 ≤ 𝛽2 ≤ 1543.16. Also, to study their behavior we have plotted the skewness 

and kurtosis respectively in Figure (6) and Figure (7). These plots also verify these bounds. 

 

Remark 4: If we take the limit 𝛼 → ±∞in the results of 𝐿𝐵𝐴𝑆𝑁2(𝛼)distribution, then we can derive the skewness and 

kurtosis of 𝐿𝐵𝑁(4)distribution as 𝛽1 → 17.1334 and 𝛽2 → 48.5346. 
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Figure 6: Plots of skewness Figure 7: Plots of kurtosis 

 

3. Estimations and Illustrations with real datasets 

Here, we present the location (𝜇) and scale (𝜎)extension of 𝐿𝐵𝐴𝑆𝑁2(𝛼)distribution which is given by 

𝑓(𝑧; 𝛼, 𝜇, 𝜎) =
[(1−

𝛼(𝑦−𝜇)

𝜎
)
2
+1]

2

𝑧𝐶2(𝛼)
𝜙 (

𝑦−𝜇

𝜎
) ; 𝑧 > 0, 𝛼and𝜇 ∈ 𝑅,and𝜎 > 0.                           (10) 

 

We denote it by 𝑌~𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎). In particular, for 𝛼 → ±∞, 𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎) → 𝐿𝐵𝑁 

 

3.1. Method of moments 

The expressions for the moment estimators are relatively simple because the method needs to solve the following 

equations for 𝑟 = 1,2,3 to obtain moment estimates of 𝜇, 𝜎, and 𝛼. 

𝑚𝑟 =
𝑒
𝑟2

2 [4 − 8𝑟𝛼 + 8𝛼2(1 + 𝑟2) − 4𝑟𝛼3(3 + 𝑟2) + 𝛼4(3 + 6𝑟2 + 𝑟4)]

4 + 8𝛼2 + 3𝛼4
, 

where 𝑚𝑟 =
1

𝑛
∑ 𝑧𝑖

𝑟𝑛
𝑖=1 , 𝑟 = 1, 2, 3. These equations can be simultaneously solved using numerical procedures 

available in the R software. This allows us to obtain the moment estimators    
(𝜇̂𝑚, 𝜎̂𝑚, 𝛼̂𝑚) of (𝜇, 𝜎, 𝛼). 
 

3.2. Maximum likelihood estimation 

Let a random sample 𝑦1, 𝑦2, . . . , 𝑦𝑛 of size 𝑛 be taken from 𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎) distribution of eqn.(6), then the log-

likelihood function for 𝜃 = (𝛼, 𝜇, 𝜎)is given by  

𝑙(𝜃) = 2∑ 𝑙𝑜𝑔 [{1 − 𝛼 (
𝑦𝑖−𝜇

𝜎
)}
2

+ 1]𝑛
𝑖=1 − 𝑛 𝑙𝑜𝑔( 4 + 8𝛼2 + 3𝛼4) − 𝑛 𝑙𝑜𝑔 𝜎 −

𝑛

2
𝑙𝑜𝑔( 2𝜋) − ∑ 𝑦𝑖

𝑛
𝑖=1 −

1

2
∑ (

𝑦𝑖−𝜇

𝜎
)
2

𝑛
𝑖=1 .       (11) 

On differentiating the eqn.(11) above partially with respect to the parameters 𝛼, 𝜇, and𝜎the following likelihood 

equations can be obtained as: 
𝜕𝑙(𝜃)

𝜕𝜇
= −∑ −

(𝑦𝑖−𝜇)

𝜎2
𝑛
𝑖=1 + 2∑

2𝛼𝑏𝑖

𝜎(1+𝑏𝑖
2)

𝑛
𝑖=1

𝜕𝑙(𝜃)

𝜕𝜎
= −

𝑛

𝜎
− ∑ −

(𝑦𝑖−𝜇)
2

𝜎3
𝑛
𝑖=1 + 2∑

2𝛼(𝑦𝑖−𝜇)𝑏𝑖

𝜎2(1+𝑏𝑖
2)

𝑛
𝑖=1

𝜕𝑙(𝜃)

𝜕𝛼
= −

𝑛(16𝛼+12𝛼3)

4+8𝛼2+3𝛼4
+ 2∑ −

2(𝑦𝑖−𝜇)𝑏𝑖

𝜎(1+𝑏𝑖
2)

𝑛
𝑖=1 }

 
 

 
 

          (12) 

where, 𝑏𝑖 = (1 −
𝛼(𝑦𝑖−𝜇)

𝜎
). 

 

Solving the above system of equations in eqn.(12) provides the maximum likelihood estimates for the parameters 𝜃 =
(𝛼, 𝜇, 𝜎) . The same can also be obtained by numerically maximizing eqn.(11) with respect to the parameters 𝜃 =
(𝛼, 𝜇, 𝜎).  
 

3.2. Illustrations with real datasets 
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Here we have considered two datasets. The first dataset is related to N latitude degrees in 69 samples from world 

lakes which appear in Column 5 of the Diversity data set in website: 

http://users.stat.umn.edu/sandy/courses/8061/datasets/lakes.lsp. The second dataset consists of the velocities of 82 

distant galaxies diverging from our own galaxy. The data set is available at 

http://www.stats.bris.ac.uk/~peter/mixdata. We then compared the proposed distribution 𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎) with the 

log-normal 𝐿𝑁(𝜇, 𝜎2) distribution, the log-skew-normal 𝐿𝑆𝑁(𝜆, 𝜇, 𝜎) distribution, and the log-alpha-skew-normal 

𝐿𝐴𝑆𝑁(𝛼, 𝜇, 𝜎) distribution of Venegas et al. (2016).The MLE of the parameters are obtained by using numerical 

optimization routine. AIC and BIC are used for model comparison. 

. 

 

Table 1: MLE’s, log-likelihood, AIC and BIC for N latitude degrees in 69 samples 

from world lakes. 

Parameters 

 

Distributions 

𝜇 𝜎 𝜆 𝛼 𝑙𝑜𝑔 𝐿 AIC BIC 

𝑁(𝜇, 𝜎2) 45.165 9.549 -- -- -253.599 511.198 515.666 

𝐿𝑁(𝜇, 𝜎2) 3.791 0.189 -- -- -244.612 493.223 497.692 

𝐿𝑆𝑁(𝜆, 𝜇, 𝜎) 3.599 0.269 2.343 -- -240.268 486.536 493.238 

𝐿𝐴𝑆𝑁(𝛼, 𝜇, 𝜎)
 

3.926 0.156 -- 1.780 -232.298 470.596 477.298 

𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎) 3.972 0.134 -- 1.743 -229.053 464.106 470.809 

 

 

 

 
Figure 8: Plots of observed and expected densities for N latitude degrees in 69 samples 

from world lakes. 

 

Table 2: MLE’s, log-likelihood, AIC and BIC for the velocities of 82 distant galaxies  

diverging from our own galaxy. 

Parameters 

 

Distributions 

𝜇 𝜎 𝜆 𝛼 𝑙𝑜𝑔 𝐿 AIC BIC 

𝐿𝑁(𝜇, 𝜎2) 3.007 0.258 -- -- -251.937 507.874 512.687 

𝐿𝑆𝑁(𝜆, 𝜇, 𝜎) 3.262 0.363 -2.735 -- -242.505 491.011 498.231 

𝑁(𝜇, 𝜎2) 20.832 4.540 -- -- -240.420 484.833 489.646 

𝐿𝐴𝑆𝑁(𝛼, 𝜇, 𝜎)
 

2.806 0.214 -- -1.992 -230.730 467.460 474.681 

𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎) 
2.739 0.185 -- -1.973 -217.716 441.432 448.652 

 

http://users.stat.umn.edu/sandy/courses/8061/datasets/lakes.lsp
http://www.stats.bris.ac.uk/~peter/mixdata
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Figure 9: Plots of observed and expected densities for the velocities of 82 distant 

galaxies diverging from our own galaxy. 

 

From Tables 1 and 2, it is observed that the proposed log-Balakrishnan-alpha-skew-normal 

𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎)distribution provides much better fit to the data sets under consideration in terms of the log-

likelihood, AIC and BIC. Again, the plots of observed (in histogram) and expected densities (lines) presented in Figure 

8 and Figure 9, also confirms our findings. 

 

3.3. Likelihood Ratio Test 

Further, since 𝐿𝑁(𝜇, 𝜎2)and 𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎)are nested models, the likelihood ratio (LR) test is used to discriminate 

between them. The LR test is carried out to test the following hypothesis, 𝐻0: 𝛼 = 0, that is the sample is drawn from 

𝐿𝑁(𝜇, 𝜎2): against the alternative 𝐻1: 𝛼 ≠ 0, that is the sample is drawn from 𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎). 
 

Table 3: The values of LR test statistic. 

 Dataset 1 Dataset 2 
Degrees of 

Freedom 

Critical 

values 

LR test statistic values 31.117 68.442 1 6.635 

 

The values of LR test statistic for two datasets are respectively, 31.117 and 68.442 which exceed the critical value at 

5% level of significance. Thus there is evidence in favor of the alternative hypothesis. Therefore, we may conclude 

that the sampled data come from 𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎) and not from 𝐿𝑁(𝜇, 𝜎2) in both cases. 

 

4. Concluding remark 

In this article the log-Balakrishnan-alpha-skew-normal distribution which has at most two modes is introduced and 

some of its basic properties are investigated. The numerical results of the modelling of two real life data sets considered 

here has shown that the proposed distribution 𝐿𝐵𝐴𝑆𝑁2(𝛼, 𝜇, 𝜎) provides much better fit in comparison to the log-

normal 𝐿𝑁(𝜇, 𝜎2) distribution, the log-skew-normal 𝐿𝑆𝑁(𝜆, 𝜇, 𝜎) distribution and the log-alpha-skew-normal 

𝐿𝐴𝑆𝑁(𝛼, 𝜇, 𝜎) distribution. It is therefore expected that the proposed distribution will be useful for modelling different 

types of data. 
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