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Abstract
The Quasi-Least Squares (QLS) is useful for various correlation structures when using
Generalized Estimating Equations (GEE). The purpose of this work is to compare the regression
parameters in the presence of different correlation structures when using GEE and QLS method.
The comparison of estimated regression parameters has been performed in clinical trial data set;
studying the effect of drug treatment (metformin with pioglitazone) vs (gliclazide with pioglitazone)
in type 2 diabetes patients. In the case of QLS, the correlation coefficient for post-parandinal
blood glucose (PPBG) under a tridiagonal correlation structure is 0.008 using GEE. It has been
found that the combination of metformin with pioglitazone is more effective when compared to the
combination of gliclazide with pioglitazone.
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Introduction
The appropriate and early diagnosis of type 2 diabetes can be helpful to start
early treatment and improve the likelihood of achieving adequate glucose control.
Thus, appropriate diagnosis with different biochemical parameters helps to
reduce the various complications from diabetes. Though fasting blood glucose
(FBG) has been considered for many years to determine the level of diabetes,
PPBG (postprandinal blood glucose) also needs to be considered for better
management of type 2 diabetes. There is a chance that 30% of patients being
tested for diabetes may be miss-diagnosed if screened by FBG alone (Ronald,
2005). However, these two biochemical parameters (PPBG and FBG) do not
reflect the previous status of blood glucose levels, whereas glycosylated
haemoglobin (HBA1C) does. The Collaborative Analysis of Diagnostic Criteria in
Europe (DECODE, 2001) trial shows that as many as one-third of diabetic
patients can be missed by simply measuring the FBG level. Therefore, in this
analysis the level of PPBG, HBA1C and the drug effect as the covariates over
the response FBG have been considered.
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In marginal modeling, Liang and Zeger (1986) have considered GEE to obtain
consistent estimates of the regression parameters. Stuart et al. (2009) have
applied the joint estimates in the marginal models by a single modified GEE
approach in a children heart function comparison. Recently, Jianfeng et al.
(2009), have developed a bivariate analytical method for genome-wide
association study based on the modified extended GEE. Clarke et al. (2010)
have applied the negative binomial regression in GEE to estimate and compare
event rates, hospital utilization, and costs associated with major diabetes-related
complications in under-developed, developing and developed countries.

The specification of existing correlation is important when working with GEE.
QLS is also useful for this purpose.

Objective

The goal of this paper is to compare the drug treatment effect on biochemical
parameters among the patients at three time points , i.e. baseline and two follow
up visits. This paper looks at the existing covariance structure to explain its effect
on the model.

Statistical Method
In this paper, the outcomes yij of ith subject and the covariates
xij=(x11 ,….,xmn) ‘have been composed for different observation times j=1;…….,ni;
for each subjects i = 1,….,m (e.g. Liang et al. (1986)).

The mean and variance of the outcome variable has been obtained

as ijijij xgyE  )()( (1)

and )()var( jiji hy  (2)

where  and  are the dispersion parameter and mean response respectively.
The g (.) and h(.) are the link functions (e.g. Liang et al. (1986)). In contrast to
GLM, both the QLS and GEE assume the covariance matrix of

2/12/1 )()( iiiij ARAyCov  (3)

where )(),....(( 1 iniii hhdiagA  (4)

and Ri( ) is the working correlation matrix(e.g. Liang et al. (1986)). The Ri( ) is
explains the pattern of association between the repeated observations. The
forms of estimating equations in GEE and QLS have been described by
McCullagh and Nelder (1989).
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Generalized Estimating Equation
The covariance among the responses can be specified by

iiii ARAV 22
1 1

)( (5)
)( iji diagVA  diagonal matrix with diagonal elements v(ij)

)(iR is an ii nn  correlation matrix,

Liang and Zeger (1986) have described the ).(iR as a correlation matrix.
Where,  is the vector of parameter associated to the specified model
of tsYYCorr itisistist  ),);,()(  , and s, t are the times of observation. In
GEE, the working covariance Vi can be denoted by )( iYCov . The matrix )(iR is
referred to as the "working correlation matrix"(e.g. Crowder (1995)). However,
Wang (2003) has used the term "working covariance" for )(iR . )(iR =I, is
useful to reduce the GEE in QLS with the assumption of independent repeated
measurements. Prentice (1988) has proposed using the parameterization of
within-subject association by the linear function of  (or, stist  )( ). However,
 or ist( ) could in principle  be dependent on other covariates.

Normally, when Vi and  are not known, it is necessary to
estimate ),()( itisist YYCorr .

Some types of correlation are (1) “exchangeable correlation" where  ist for
all s< t;
(2) “first-order autoregressive correlation” (AR (1)) for, || st

ist
  for 0< <1,

where the correlation decreases as the time between measurements (|t –s|)
increases; and (3) “unstructured correlation” when stist   has no specified
form.

Quasi Least Square
The specification of particular correlation is an important task in marginal
modeling. Crowder (1995) has pointed out that the estimates of  could be
wrong due to miss-specification of working correlation in GEE. In that case, the
iterative method fails to converge for feasible estimate of  . The QLS can be
useful in obtaining a feasible estimate of  . It is a two stage procedure with the
computation of the correlation parameter in the composition of GEE. It is solvable
for (Liang and Zeger, (1986))  in estimating equations through the current value

of  by two stages viz, (i) 0))(()( 2
11

1

2
1
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(ii) updating the correlation parameter  by minimizing generalized error sum of

squares by )()()())(,( 1

1
 ii

Tm

i
i ZRzRQ 


 (7)

where ,sR and   )()( 2/1
iiii YAZ  (Zi1,Zi2,….Zin)n*1 are known as the

Pearson residuals (e.g. Jicgum et al (2009)) from the current value of  .

Chaganty (1997) has shown that the estimated value of
^
 is inconsistent. To

obtain a consistent estimate of , the parameter  should be chosen from the

two stage procedure by, QLS

^
 .

In this work the first stage has been considered as,
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In this analysis, the estimated value of  and the next step value of  have

been obtained by solving the GEE’s  value, evaluated at GEE

^
 (e.g Chaganty

and Shults (1999)).

The advantage of QLS is due to the application of two stage procedures to point
the coefficient parameters for the feasible and consistent results. The asymptotic
distribution for  is the same regardless of the method (QLS or GEE)

Methodology
The secondary data in type 2 diabetes drug comparisons has been obtained from
a clinical trial in Minakshi Mission Hospital, Tamil Nadu for two combination drug
treatments viz
(1) A combination of metformin with pioglitazone i.e. treatment 1 and
(2) A combination of pioglitazone with gliclazide i.e. treatment 2.

A total of 100 patients were randomized to each treatment group and followed
over a period of 12 months. The measurements of clinical parameters have been
taken at baseline, three month and at the end of the twelve months. Participants
in this study have been allocated to either of two diabetes drug (denoted
treatment 1 and treatment 2). The effects of different covariates (PPBG and
HBA1C) have been obtained under the specification of various correlation
structures available in QLS and GEE. Prior to receiving the treatment, baseline
data of the FBG are recorded for each patient. The FBG level have been
categorized to (1) more than a normal and (2) less than the normal range in the
binary form(e.g. Stokes et al. (2000)). In this work, a total of four covariates have
been considered for analysis i.e. PPBG, Drug, HIBA1C, and ID, where PPBG
and HBA1C are the value of postprandinal and hemoglobin A1-C, at each visit,
the type of treatment (labeled Drug) is coded as 1 for the (metformin with
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pioglitazone) and 0 for the (gliclazide with  pioglitazone). The ID is the identity
number assigned to each patient. The programmes to perform QLS have been
written by Ratcliffe et al. (2006) with the help of the Cholesky decomposition..

Statistical Analysis
During the treatment, blood sugar level as a representative of the treatment
effect has been obtained for each of three visits. The variable Drug is in the
binary format with two levels.

The explanatory variables Drug, PPBG and HBA1C have been specified as a
vector of explanatory variables x‘=[xij1;xij 2,…….,xij3]‘.

The drug effect has been classified

as: 
ne)pioglitazo withide2)(gliclaz(drug0
ne)pioglitazoin with1)(metform(drug1

jiX (9)

Here, Yij is the FBG value for the ith patient on the jth visit, j=1,…3.and ij=E(yij) is
the mean of FBG. The variance function of the binomial distribution is
v(ij)= ij(1-ij), in the logit link function of g(ij)=log(ij)/(1-ij)). The model for the
mean response is g(ij)=xij‘. The coefficient  is the vector of regression
parameters.

In the software R 2.9.1, the library geepack and function geeglm have been used
to specify the “working covariance” and variance functions.

Results
The poisson assumption has been applied for the variance, Var(Yij)=ij, where it
is assumed that  >1. The area of interest is which treatment of diabetes
reduces the FBG level of the body in the follow-up period to the overall level of
FBG. It has been expressed to the following marginal model for the expected
value of FBG.

chbadrugppbsYE ijiij 1log)(log 4321   (10)

where Yij is the value of FBG for the ith patient in the jth period of observation
(j=1,2,3).In the variable of Drug, drug1 and drug2 are indicator for treatment
1(metformin with pioglitazone) and treatment 2(gliclazide with pioglitazone)
respectively. Because, patients have been allocated to one of the two treatments,
the model does not include main effects of treatment. To complete the
specification of the model, the variances of the counts and the within-subject
association in the repeated counts has been obtained. To understand the degree
of overdispersion in data, we assume that the variance of Yij is given by
Var(Yij) = ij where  is the over dispersion parameter. Finally, the with-in
subject association is accounted by assuming a common correlation,
Corr(Yi1,Yi2)= .In this marginal model, the covariates are binary and the log-
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linear regression parameter has been used to interpret the term of (log)rate ratio.
We summaries the interpretation of  in term of the log expected count in the
three observations i.e. at baseline and two treatment follow-ups.

The mean pattern changes for the response variables are shown in the Table 3.
The mean PPBG and HBA1C are reduced in the both treatment groups. The
expected count of FBG at baseline in the group of drug is 1e .The rate ratio of
FBG, in the follow-up periods is }{ 21  e .Thus, }{ 2e is the rate ratio of FBG,
comparing the follow-up period to baseline, in the both drug groups; (metformin
with pioglitazone) and (gliclazide with pioglitazone). The changes in the expected
FBG are expressed by  coefficients between the groups. The estimated values
of the regression coefficients are shown in Table 1 and Table 2. The induced
model has been fit by,

PPBSCHBADRUGCHBADRUGDRUGPPBS

PPBSCHBACHBAPPBSDRUGYE jiij

*1*1**

*11log)(log 4321



 
(11)

Here the variable drug is an indicator variable for type of treatment. The
estimated regression coefficients through binomial link function are given in
Table 4. In case of GEE and QLS, the estimated values of PPBG coefficient are
0.01 under the unstructured correlation structure. The common estimate of the
log ratio, comparing post-treatment rates of PPBG in the diabetes group (drug 1),
to group (drug 2), is 0.01. Thus, the rate ratio is 1.01 (or e{0.01}), with 95%
confidence interval(1.00 to 1.02) indicates that treatment 1 (metformin with
pioglitazone) significantly reduce the averages' number of FBG compared to
treatment 2 (gliclazide with pioglitazone). The estimate of the pair wise

correlation (
^
 ) is low (approximately 0), indicating that there may be

considerable homogeneity between the patients iwith a specific disease severity.

The estimated scale parameter (
^
 ) has been approximated as 0.505 showing

the over dispersion in the features of the data.

The estimated value of parameters in presence of different correlation structure
by the both GEE and QLS cases are obtained and given in Table 1 and Table 2
respectively. In this study, the FBG observations have not been taken in equal
spaced time. In case of unequal space time repeated observations with Markov
correlation structure becomes useful for data analysis. However, in this analysis
the estimates of the different regression parameters in the presence of AR(1),
equi-correlated and tri-diagonal correlation structures have been explored and
compared. In QLS, the estimated correlation for PPBG in Markov structure is
0.007. The p value with respect to the treatment effect is 0.06. In both the cases
QLS and GEE, with a presence of exchangeable correlation structure the
estimated coefficient for PPBG is 0.005 with non-significant p-value 0.12 that
concludes the non-significant relation of PPBG on the response observation. In
the presence of AR(1) structure the estimated coefficient of PPBG for QLS and
GEE are 0.007 and 0.005 respectively. In case of QLS the p-value for the PPBG
is 0.06, i.e. significant but for the GEE it is 0.12 with non-significant effect with
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FBG. In fam and tri-diagonal correlation structure under the QLS, the PPBG
regression parameter comes with 0.009 and 0.008 is in highly significant p-value.
It again shows that PPBG is closely related to the FBG value. It can be
concludes that the PPBG observation is needed to screen at the time of diabetes
diagnosis. In tri-diagonal correlation structure the regression parameter of PPBG
in the presence of QLS is 0.008 that has failed to obtain through GEE. The p-
value of PPBG is 0.03, represents the significant relation between PPBG and
FBG.

The fitted regression line for FBG under nine different correlation structure
models can be specified by,

(I)In QLS

AR1:-
FBG = INTERCEPT (0.51)+ 0.00*PPBG-0.01 *HBAIC+ 0.22 *DRUG

EXCHANGEABLE:
FBG = INTERCEPT (0.49 )+ 0.00*PPBG -0.01*HBAIC+0.21 *DRUG

FAM:-
FBG = INTERCEPT(0.49 )+ 0.00*PPBG-0.02*HBAIC+0.22 *DRUG

MARKOV:-
FBG = INTERCEPT (0.51) + 0.00 *PPBG -0.01*HBAIC+ 0.22*DRUG.

TRIDIAGONAL:-
FBG = INTERCEPT (0.51) + 0.00*PPBG -0.02*HBAIC+ 0.23*DRUG.

(II)In GEE

AR1:-
FBG=INTERCEPT(0.51)+0.00*PPBG-0.01*HBAIC+0.22*DRUG

EXCHANGEABLE:-
FBG= INTERCEPT (0.49)+0.00 *PPBG- 0.01*HBAIC+ 0.21*DRUG

INDEPENDENT:-
FBG=INTERCEPT(0.49)+0.00*PPBG-0.02*HBAIC+0.22 *DRUG.

UNSTRUCTURED:-
FBG = INTERCEPT (0.49)+0.00*PPBG-0.01*HBAIC+ 0.22*DRUG.
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Discussion

This study examined the long-term impact of drug effect on type 2 diabetes
patients under supervision over a one year study period. The drug effect
comparison has been performed with FBG responses. It is not possible to
consider all kinds of correlation structure by the both GEE and QLS. So the
challenge has been faced by recognizing that some correlation structures do not
work with GEE and some of them do not work with QLS. In the case of GEE, the
unstructured correlation has produced the PPBG correlation coefficient that could
not be produced by QLS. In the AR(1) correlation structure the estimated
regression parameter for both GEE and QLS are same for HBA1C. We conclude
that treatment of metformin with pioglitazone does a better job of reducing FBG
compared to gliclazide with pioglitazone. The results indicate that PPBG level is
significantly associated with the FBG level in the type 2 diabetes bloods.
Although HBA1C is associated with FBG level among the patients over follow-up
periods, the association is significant. The results of the current study lead to a
series of proposal including the requirement to take measurement of HBA1C and
PPBG with the FBG in the type 2 diabetes patients.  It is, therefore, possible that
the narrowed differences between the two groups with regard to treatments and
in the resultant HbA1c levels may be partly obscure differences in long-term
outcomes over time. Meng et al (2005) have concluded that the patients with
pioglitazone completed study with higher HBA1c level in comparison to gliclazide
group. Bailey et al (1996) have concluded that metformin lowers the fasting blood
glucose levels. Turner et al (1999)) have described that when monotherapy fails,
treatment is need to change in combined drug, or insulin therapy. Recently,
Charbonnel et al (2005) have shown that the combination of pioglitazone with
metformin is effective alternative in comparison to monotheray. In the present
study, patients have been followed for a year to complete the clinical trial. The
goal of the trial is to compare the drug combination of metformin with pioglitazone
over a combination of pioglitazone with gliclazide to reduce the diabetes
parameter like FBG for assess the treatment effect. In any kind of longitudinal
data set there can be the infinite number of models in presence of infinite number
of correlation structure to analyse it. The principle of model comparison is not to
determine a ‘accurate’ model but to infer from the model, given a set of
reasonable choices, is most ‘useful’ i.e. stand for an optimal equilibrium between
accuracy and complexity. In other words, statistical inference has nothing to say
about ‘accurate’ models. All that it grants an inference about which is more to be
expected in a given data set. This computation has been performed in R. In this
context , it can be concluded that the attachment of QLS gives more scope to
point out different correlation structures in addition to the GEE approach.These,
finding indicate that patients in high FBG seem to be no effect on PPBG level. On
the other hand at the end of the study the high FBG level has been found in the
drug therapy group pioglitazone with gliclazide in comparison to metformin with
pioglitazone.
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Table 1: QLS estimation of a parameter through different correlation
structure

Correlation
Structure

VARIABLE
(Parameter)

ESTIMATION S.E. WALS p-VALUE

FAM INTERCEPT(0)

PPBG(1)

HBAIC(2)

DRUG(3)

0.497449*

0.00921*

-0.023046

0.224971*

0.208903

0.000408

0.026991

0.076581

5.67

5.09

0.73

8.63

0.0173

0.0240

0.3932

0.0033

AR1 INTERCEPT(0)

PPBG(1)

HBAIC(2)

DRUG(3)

0.5110138**

0.007076*

-0.0194338

0.2263851**

0.1789051

0.0003873

0.02457

0.07642

8.159

3.338

72 0.625

64 8.774

0.00429

0.06769

0.42910

0.00306

EXCHANGEABLE INTERCEPT(0)

PPBG(1)

HBAIC(2)

DRUG(3)

0.491916**

0.00596

-0.013917

0.218781**

0.179951

0.000390

0.024952

0.077327

7.47

2.33

0.31

8.00

0.0063

0.1266

0.5770

0.0047

MARKOV INTERCEPT(0)

PPBG(1)

HBAIC(2)

DRUG(3)

0.511014**

0.00708*

-0.019434

0.226385**

0.178905

0.000387

0.024577

0.076426

8.16

3.34

0.63

8.77

0.0043

0.0677

0.4291

0.0031

TRIDIAGONAL INTERCEPT(0)

PPBG(1)

HBAIC(2)

DRUG(3)

0.517281**

0.00835*

-0.023865

0.233804**

0.189560

0.000400

0.025274

0.076890

7.45

4.37

0.89

9.25

0.0064

0.0367

0.3450

0.0024

*p-value <0.1, **p-value <0.01, ***p-value <0.001,
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Table 2: GEE estimation of parameter through different correlation
structure

Correlation
Structure

VARIABLE
(Parameter)

ESTIMATION S.E. WALS p-VALUE

AR1 INTERCEPT(0)

PPBG(1)

HBAIC(2)

DRUG(3)

0.511236**

0.00698 *

-0.019233

0.226470**

0.178691

0.000390

0.024651

0.076454

1 8.19

3.20

0.61

8.77

0.0042

0.0735

0.4353

0.0031

EXCHANGEABLE INTERCEPT(0)

PPBG(1)

HBAIC(2)

DRUG(3)

0.491729**

0.00594

-0.013848

0.218751**

0.179984

0.000390

0.024967

0.07733

7.46

0 2.32

0.31

2 8.00

0.0063

0.1281

0.5791

0.0047

INDEPENDENT INTERCEPT(0)

PPBG(1)

HBAIC(2)

DRUG(3)

0.497449*

0.00921*

-0.023046

0.224971**

0.208903

0.000408

0.026991

0.076581

5.67

5.09

1 0.73

1 8.63

0.0173

0.0240

0.3932

0.0033

UNSTRUCTURED INTERCEPT(0)

PPBG(1)

HBAIC(2)

DRUG(3)

0.495471**

0.00684*

-0.017269

0.228661**

0.179553

0.000376

0.024696

0.076399

7.61

3.32

0.49

8.96

0.0058

0.0684

0.4844

0.0028

*p-value <0.1, **p-value <0.01, ***p-value <0.001,
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Table 3: Description of Diabetes Data set

Variable
(Parameter)

Observation Mean(sd) for
Drug-1

Mean(sd) for
Drug-2

PPBG Obs=1st

Obs=2nd

Obs=3rd

267.3(52.88)

200.55(26.75)

151.91(0.15)

285.94(74.46)

238.94(55.98)

202.56(48.08)

HBAIC Obs=1st

Obs=2nd

Obs=3rd

9.62(1.09)

8.41(0.8941)

7.62(32.43)

9.61(1.66)

8.72(1.49)

8.13(1.34)

Table 4: Analysis of GEE parameter of binomial link for FBG under
unstructured correlation structure

Variable Parameter Estimates S.E. P value

Intercept

DRUG

PPBG

HBA1C

DRUG*HIBA1C

PPBG*HBA1C

DRUG*PPBG

DRUG*PPBG*HBA1C

Scale Parameter

1

2

3

4

5

6

7

8



-2.613903

3.248042**

0.011731*

0.180221

-0.148303*

-0.000794*

-0.009301*

0.000522*

0.505

1.1756

0.3689

0.0139

0.030

0.31

0.63

0.45

0.69

0.1184

0.000

0.013

0.111

0.02

.036

0.04

0.06

*p-value <0.1, **p-value <0.01, ***p-value <0.001,
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