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Abstract
We consider a regression model when a block of observations is missing, i.e. there are a group of
observations with all the explanatory variables or covariates observed and another set of observations
with only a block of the variables observed. We propose an estimator of the regression coefficients that is
a combination of two estimators, one based on the observations with no missing variables, and the other
the set all observations after deleting of the block of variables with missing values. The proposed
combined estimator will be compared with the uncombined estimators. If the experimenter suspects that
the variables with missing values may be deleted, a preliminary test will be performed to resolve the
uncertainty. If the preliminary test of the null hypothesis that regression coefficients of the variables with
missing value equal to zero is accepted, then only the data with no missing values are used for estimating
the regression coefficients. Otherwise the combined estimator is used. This gives a preliminary test
estimator. The properties of the preliminary test estimator and comparisons of the estimators are studied
by a Monte Carlo study.
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1. Introduction
We consider a regression model with a block of observations missing. The model can
be written as follows,

i=1, 2, … , (1)
and

i=1, 2, … , (2)

where y is the response variable, x’s are explanatory variables, ε is the random error,
+ =n, and 1 .

It is seen that the first observations in equation (1) have no missing value. The last
observations in equation (2) have the observations in the last p k variables missing.
This situation can happen in practice. For example most graduate schools in United
States universities receive admission applications from both US residents and foreign
students. The scores of TOEFL (Test of English as a Foreign Language) are required
for foreign students, but not for US students. A regression equation of grade point
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average (GPA) in graduate study on undergraduate GPA, Graduate Record
Examination (GRE) scores and TOEFL score can be considered. In this case the
TOEFL scores on all US students are missing. We will consider this example later.

When there are missing values in a regression, the usual estimators of the regression
coefficients are not obtainable. We propose an estimator that is a combination of two
regression coefficient estimators, one based on the observations with no missing
variables, and the other on all n observations after deleting the block of variables with
missing values. This estimating procedure is different from the usual procedure of
imputation. There are numerous research on missing values, for example, papers by
Ibrahim, J. G. (1990), Ibrahim, J. G., Chen, M.-H., and Lipsitz, S. R. (1999), Meng, X.-L.
(2000), Raghunathan, T. E. (2004), Rubin, D. B. (1976, 1996) and others; and books by
Allison, P. D. (2002), Little, R. J. A., and Rubin, D. B. (2002), Rubin, D. B. (1987). The
most popular technique dealing with missing data is imputation. But imputation may not
be appropriate in some practical situations. The above mentioned admission data is one
of such situation. The US students never take TOEFL, so TOEFL scores do not exist for
US students. Hence imputation does not make sense. Our proposed procedure avoids
using imputation and has good properties.

If the experimenter suspects that the variables with missing values may be deleted, a
preliminary test will be performed to resolve the uncertainty. If the preliminary test of the
null hypothesis that regression coefficients of the variables with missing value equal to
zero is accepted, then only the data with no missing values are used for estimating the
regression coefficients. Otherwise the combined estimator is used. This gives a
preliminary test estimator. Preliminary test procedures have been studied extensively
since the first paper by Bancroft (1944), see e.g. Han and Bancroft (1968, 1978),
Johnson, Bancroft, and Han (1977), Giles and Giles (1993) Kennedy and Bancroft
(1971), among others. Two bibliographies, Bancroft and Han (1977) and Han, Rao and
Ravichandran (1988) are published. The two books by Judge and Bock (1978) and
Saleh (2006), give excellent treatment of preliminary test and shrinkage estimation.

This paper is organized as following. Section 2 discusses the proposed combined
estimator. The variable selection using preliminary test and the preliminary test
estimator are given in Section 3. Section 4 compares the various estimators in terms of
bias and mean square error by a Monte Carlo study. The admission data is given as an
example in Section 5. Section 6 gives the conclusion.

2. Combined Estimator of Regression Coefficients
We consider two regression equations separately, one based on the first
observations in equation (1) with no missing value and the other on all n observation
with only the first k explanatory variables. The following vectors and matrices are
partitioned.

Let

= = (3)
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where

The model in equation (1) can be written as

β + (4)

where β is the p × 1 vector of regression coefficients,

(5)

,

We assume that E(ε) = I. The least squares estimator of β is

b = (6)

assuming the inverse exists. This estimator uses the first observations and includes
all the p explanatory variables. It is unbiased and the covariance matrix of b is

V(b)= (7)

Now let us consider the model based on all n observations but using only the first k
explanatory variables,

+ (8)

Where

= (9)

and

The least squares estimator of is

= (10)
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The estimator is biased. The bias will be obtained by simulation in Section 4. The
covariance matrix of is

V( ) = (11)
We have two estimators of , one from the model in equation (4) and the other from
the model in equation (8). If we partition

b =

as β, then the two estimators of are . We now construct the combined
estimator of as the weighted average of these two estimators. We use the weight
that is proportional to the inverse of the determinant of the covariance matrix. Let

C = =

where is a k × k matrix, i.e. the C matrix is partitioned according to the block of
missing values. So the covariance matrix of is

V( ) =

The combined estimator of is defined as

= w + (1 – w)

where

and

det

Note that there is only one estimator of i.e. . Hence a combined estimator of β is

= (12)

The bias and mean square error of will be studied in Section 4.

3. Variable Selection after Testing the Regression Coefficients

The variables with the block of missing values may be viewed as candidates for
deleting. In particular when the experimenter suspect that may be zero, he/she can
test : against : to resolve the uncertainty. An F test can be used in
the model given in equation (4) when the error has a normal distribution. The F statistic
is
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where R(∙) denotes the reduction in sum of squares due to fitting the model involving the
explanatory variable  in the parenthesis, and . The F statistic has an F(

) distribution under . If is accepted, we delete the last explanatory
variable; otherwise all variables are kept in the model. Hence an estimator of β is

(13)

This is a preliminary test estimator. The exact bias and MSE of are difficult to
obtain. Hence we will use simulation to study them that is given in Section 4.

Here we select or delete the block of explanatory variables when those variables with
missing values are doubtful. One may also consider the sequential deletion procedure
and forward selection procedure such as given in Kennedy and Bancroft (1971). We will
consider these procedures in a future paper.

4. Comparison of Estimators
In this section we compare the estimators of β given in Section 3 by a Monte Carlo
study.

We considered the following linear regression model with three covariates, and
, and sample size n = 50:

where . We first generate the three covariates from a multivariate normal
distribution with mean and covariance matrix :

~ tri-normal

so that the correlations between any pair of covariates ρ( for l ≠ l’ = 1, 2, 3.
We fix = 0.5, , .  For given ( and ), we generate the
response variable y from model (14) with selected values of given in Tables 1 and 2.
The simulated data are then used to estimate regression
coefficients . The variable will have a block of missing values. For comparison
purpose, five estimators are considered:
1) The estimator b defined in (6), estimated by the simulated data

and where
missing rate of is specified in Tables 1-2;

2) The estimator defined in (10), estimated by the simulated data
;

3) The combined estimator defined in (12);
4) The PTE defined in (13) with significance level 0.05 for testing H0: ; and
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5) The PTE defined in (13) with significance level 0.25 for testing H0: .

For each simulation condition in Tables 1-2, we conduct R (=10,000) simulation runs
and evaluate the performance of the five estimators in terms of bias and the mean
squared error (MSE), defined as, respectively,

where is the estimate of in the rth simulation run and r = 1, 2,…, R.

It is expected that b is unbiased, but produces larger variance than . The estimator
considers all the observations in the analysis, therefore more efficient. However, is
biased because variable is not included in the analysis model. The advantage of
efficiency of is becoming more dramatic as missing block gets larger. As a result, the
combined estimator is constructed by weighting heavily toward the biased estimator .
Tables 1-2 show the bias and MSE, respectively, of the five estimators with varying
missing rates on x3 and varying effects of x3 on y ( ). Consistent with our expectation,

and produce similar bias, especially when missing rate is high (80%). When
missing rate is small (20%), the combined estimator are less biased due to the
strength borrowed from the unbiased estimator b. Estimators of and produce
similar MSE, both smaller than the unbiased estimator b and PTE estimators when
missing block is large or the effect of missing variable x3 on y ( ) is small; otherwise,
unbiased estimator b and PTE (0.25) are superior, producing smaller bias and smaller
MSE. We have also considered other values of the total number of covariates (p), the
number of covariates without missing values (k), and the sample size (n). The results
have similar patterns to those given above, hence not given here to save space.

5. Numerical Example

We illustrate our proposed methods using data given by admissions office at the
University of Texas at Arlington. The data sets contain two populations. One population
is the Success Group in which the students receive their master’s degree with the
master GPA (y) greater than or equal to 3.0. The other population is the Failure group
(y<3.0) where the students don’t complete their master degree. For each population,
there are 10 foreign students and 10 United States students. Each foreign student has 5
variables which are x1 = undergraduate GPA, x2 = GRE verbal, x3 = GRE quantitative,
x4 = GRE analytic, and x5 = TOEFL score. For each United States student, one variable,
x5 = TOEFL score is missing. We standardized the variables of x1 ~ x5 by subtracting
their mean and divided by their standard error. Table 3 presents the regression
coefficient estimates using the five methods. The results are consistent with what we
found in simulation studies. The pair of ( and or (b and PTE (0.25)) produces
similar results. Considering the moderate missing rate (50%) and the small estimated
effect of x5 on y ( =0.22), we recommend or should be reported for this example.
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Table 1: Bias of regression coefficient estimators

missing rate = 80% missing rate = 50% missing rate = 20%

0.002 0.005 0.000 -0.007 -0.002 -0.003 -0.002 0.004 -0.002 -0.002 0.003 0.002

0.002 -0.002 0.001 0.000 0.000 0.000 0.001 0.000 -0.003 0.000 0.004 0.000

0.002 -0.002 0.001 -0.007 -0.001 0.000 0.000 0.004 -0.003 0.000 0.003 0.002

PTE(.05) 0.001 -0.001 0.001 0.000 -0.002 -0.002 0.000 0.005 -0.004 0.000 0.004 0.001

PTE(.25) 0.002 -0.002 0.004 -0.001 -0.002 -0.004 0.001 0.005 -0.003 -0.001 0.003 0.001

-0.014 0.013 0.003 -0.004 0.007 -0.001 -0.002 -0.002 -0.001 0.001 -0.002 0.005

0.058 0.022 0.020 -0.100 0.061 0.022 0.019 -0.100 0.061 0.022 0.018 -0.100

0.058 0.022 0.020 -0.004 0.060 0.021 0.019 -0.002 0.051 0.018 0.015 0.005

PTE(.05) 0.044 0.012 0.024 -0.079 0.047 0.011 0.016 -0.072 0.046 0.015 0.011 -0.069

PTE(.25) 0.020 -0.006 0.030 -0.037 0.027 -0.001 0.007 -0.030 0.021 0.004 0.002 -0.023

0.002 -0.001 0.002 -0.002 0.004 -0.001 0.002 -0.004 0.001 -0.003 0.001 0.001

0.181 0.063 0.057 -0.300 0.182 0.059 0.060 -0.300 0.180 0.058 0.061 -0.300

0.180 0.063 0.057 -0.002 0.176 0.057 0.058 -0.004 0.150 0.048 0.051 0.001

PTE(.05) 0.141 0.028 0.068 -0.225 0.129 0.026 0.044 -0.199 0.110 0.027 0.032 -0.166

PTE(.25) 0.058 -0.022 0.077 -0.087 0.055 -0.010 0.023 -0.068 0.042 0.002 0.008 -0.047

-0.005 -0.001 0.003 0.005 0.002 -0.002 -0.003 0.003 -0.003 0.003 0.000 0.000

0.297 0.102 0.100 -0.500 0.302 0.099 0.099 -0.500 0.298 0.103 0.099 -0.500

0.296 0.102 0.100 0.005 0.293 0.096 0.095 0.003 0.248 0.086 0.083 0.000

PTE(.05) 0.210 0.046 0.111 -0.348 0.164 0.028 0.056 -0.248 0.105 0.029 0.028 -0.156

PTE(.25) 0.078 -0.029 0.106 -0.117 0.055 -0.012 0.022 -0.066 0.025 0.006 0.005 -0.031
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Table 2: MSE of regression coefficient estimators

missing rate = 80% missing rate = 50% missing rate = 20%

0.473 0.354 0.304 0.268 0.194 0.099 0.084 0.117 0.114 0.050 0.051 0.061

0.084 0.043 0.043 0.000 0.086 0.043 0.044 0.000 0.086 0.044 0.044 0.000

0.084 0.043 0.043 0.268 0.087 0.043 0.044 0.117 0.087 0.044 0.044 0.061
PTE(.05) 0.118 0.072 0.062 0.059 0.096 0.048 0.047 0.028 0.090 0.045 0.045 0.017
PTE(.25) 0.213 0.147 0.117 0.178 0.125 0.063 0.055 0.082 0.098 0.047 0.047 0.043

0.475 0.361 0.301 0.263 0.195 0.100 0.082 0.121 0.113 0.050 0.052 0.062

0.088 0.045 0.044 0.010 0.089 0.044 0.044 0.010 0.089 0.044 0.045 0.010

0.088 0.045 0.044 0.263 0.090 0.044 0.044 0.121 0.089 0.044 0.045 0.062
PTE(.05) 0.125 0.070 0.061 0.063 0.103 0.051 0.047 0.043 0.094 0.045 0.046 0.029
PTE(.25) 0.223 0.157 0.119 0.179 0.131 0.066 0.056 0.093 0.102 0.047 0.049 0.051

0.477 0.359 0.297 0.269 0.192 0.100 0.082 0.120 0.114 0.050 0.052 0.061

0.118 0.048 0.047 0.090 0.117 0.047 0.046 0.090 0.117 0.047 0.048 0.090

0.118 0.048 0.047 0.269 0.117 0.047 0.046 0.120 0.118 0.047 0.048 0.061
PTE(.05) 0.160 0.085 0.071 0.154 0.137 0.058 0.055 0.133 0.127 0.048 0.053 0.121
PTE(.25) 0.256 0.168 0.135 0.231 0.155 0.073 0.067 0.130 0.118 0.049 0.056 0.082

0.467 0.355 0.293 0.275 0.193 0.098 0.083 0.119 0.114 0.050 0.050 0.062

0.174 0.054 0.054 0.250 0.171 0.053 0.053 0.250 0.172 0.054 0.053 0.250

0.174 0.054 0.054 0.275 0.171 0.053 0.053 0.119 0.173 0.054 0.053 0.062
PTE(.05) 0.226 0.103 0.088 0.302 0.203 0.070 0.070 0.295 0.177 0.053 0.062 0.253
PTE(.25) 0.315 0.197 0.162 0.307 0.189 0.080 0.082 0.172 0.128 0.051 0.061 0.098

Table 3: Regression coefficient estimates from real data analysis

2.772 -0.133 -0.534 0.115 0.203 0.220
3.128 0.123 -0.100 0.092 0.159
3.126 0.122 -0.102 0.092 0.159 0.220

PTE(.05) 3.128 0.123 -0.100 0.092 0.159
PTE(.25) 2.772 -0.133 -0.534 0.115 0.203 0.220
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6. Conclusion
Missing value occurs in real data analysis frequently. We consider the case that
observations of a block of variables are missing for part of the data. The unbiased
estimator b uses only out of n observations, so some information is lost and it has
larger variance. The estimator uses all n observations and ignores the last p – k
variables; so is biased. It does not give an estimate of . The combined estimator

is a weight average of b and so it is a compromise of the two estimators. It has
good properties, i.e. controls the bias and MSE well. If the experimenter has prior
information the may be zero but is not certain, he can use a preliminary test to
resolve the uncertainty. The preliminary test estimator can be used in such a case. In
general the preliminary test estimator is good when the value of the parameter is close
to the null hypothesis.
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