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Abstract 
 

In this article, we introduce a new class of distributions called the New Exponentiated T-X family of 

distributions. A special sub-model of the proposed family, called a new exponentiated exponential-Weibull 

is considered in detail. Some structural properties associated with this new class of distributions are 

obtained. Certain characterizations of the proposed family are presented. Maximum likelihood estimators 

of the model parameters are obtained and Monte Carlo simulation study is conducted to evaluate the 

performances of these estimators. Finally, the importance of the new family is illustrated empirically via a 

real-life application. 
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1. Introduction 

Speaking broadly, statistical distributions are widely used in modeling real phenomena of 

nature. Among these distributions, the Exponential, Rayleigh and Weibull are some of 

the important statistical models widely used in many applied areas. However, these 

distributions have a limited range of capability and thus cannot be applied in all 

situations. For example, although the exponential distribution is often described as 

flexible, its hazard function is constant, whereas, the Rayleigh has increasing hazard 

function only. The limitations of the classical distributions motivated the researchers to 
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introduce new distributions via generalizing the existing ones. Several methods of 

extending the existing distributions have been introduced which bring more flexibility to 

these distributions.  These methods were pioneered by Marshall and Olkin (1997) and 

Gupta et al. (1998), who proposed the Marshall-Olkin and exponentiated-G class of 

distributions, respectively.         

 In the last couple of years, however, the researchers have shown a deep interest in 

constructing new family of distributions that brings greater flexibility to the existing 

models. In this regard, serious attempts have been made that is quite rich and still 

growing rapidly. Some of the well-known families are Beta-G of Eugene et al. (2002),  

Kumaraswamy (Kw-G) family by Cordeiro and de Castro (2011),  Mc-G of Alexander et 

al. (2012), Gamma-G Type-1 of Zografos and Balakrishnan (2009), Gamma-G Type-2 of 

Ristic and Balakrishnan (2012), Gamma-G Type-3 of Torabi and Montazeri (2012), 

exponentiated generalized family by Cordeiro et al. (2013), Logistic-G of Torabi and 

Montazeri (2014), The Logistic-X of family of Tahir et al. (2016), new Weibull-X family 

of Ahmad et al. (2018), a-Zubair-G family of Kyurkchiev et al. (2018), the extended 

alpha power transformed family of Ahmad et al. (2018) and a new alpha power 

transformed family of Elbatal et al.(2018), among others.     

 Let ( )v t  be the probability density function (pdf) of a random variable, say T, 

where  ,  T m n  for       m n−     and let ( );W F x    be a function of the cumulative 

distribution function (cdf) of a random variable, say X, depending on the parameter 

vector  satisfying the conditions given below: 

i. ( )  ; ,mF x nW     , 

ii. ( );W F x    is differentiable and monotonically increasing, and 

iii. ( );F mxW  →   as  x →− and ( );F nxW  →   as x → . 

Recently, Alzaatreh et al. (2013), defined the cdf of the T-X family of distributions as 

( )
( );

( ) ,                 ,
W F x

m
G r t dtx x

  
=                 

(1)
 

certain ( );W F x    satisfies the conditions stated above. The pdf corresponding to (1) is 

( ) ( ) ( ) ; ; ,                  g W F x r W F x
x

x x 
 

=         
. 

Using the T-X idea, several new classes of distributions have been introduced in the 

literature. Table 1 provides some ( );W F x    functions for some members of the T-X 

family. 
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Table 1. Some members of the T-X family 

( );W F x                     
Support of T                                         Members of T-X family 

( );F x 
                                  0,1                 Beta-G (Eugene et al., 2002),  Mc-G 

(Alexander et al., 2012) 

( )log ;F x −                      ( )0,               Gamma-G Type-2 (Risti´c and Balakrishnan, 

2012) 

( )log 1 ;F x − −                ( )0,               Gamma-G Type-1 (Zografos and Balakrishnan, 

2009) 

( )

( )

;

1 ;

F x

F x



−
                       

( )0,                Gamma-G Type-3 (Torabi and Montazeri, 2012) 

( )log 1 ;F x  − −              ( )0,               Exponentiated T-X (Alzaghal et al., 2013) 

( )

( )

;
log

1 ;

F x

F x





  
 
−                 

( ),−               Logistic-G (Torabi and Montazeri, 2014) 

( ) log log 1 ;F x  − −      ( ),−               The Logistic-X Family (Tahir et al., 2016) 

( ) 
( )

log 1 ;

1 ;

F x

F x





 − − 

−
          

( )0,               New Weibull-X Family (Ahmad et al., 2018) 

( ) 
( )

log 1 ;

1 ;

F x

F x









 − −
 

−
        

( )0,                              (Proposed) 

 

If T is the exponential random variable with parameter 0  , then its cdf is given by 

( ); 1 ,              0,  0.tR t e t −= −                  

(2) 

The density function corresponding to (2) is 

( ); ,                 0, 0.tr t e t  −=  
 
               

(3) 

If ( );r t  follows (3) and setting ( )
( ) 

( )

log 1 ;
;

1 ;

F x
W F x

F x










 − −
 

=  
−

in (1), we define the cdf of 

the NE-Exponential X family by 

( )
( )( )

( )

log 1 ;
1 exp ,             , 0,  ,

1 ;

F x
G x x

F x






   



  − −  = − −     −    

            

(4) 

where, ( );F x  is the cdf of the baseline distribution which depends on the parameter 

vector . The pdf corresponding to (4) is given by 
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( )
( ) ( ) ( )( )

( )( )

( )( )
( )

1

2

; ; 1 log 1 ; log 1 ;
exp ,    , , 0,   .

1 ;1 ;

f x F x F x F x
g x x

F xF x

  




    
   



−     − − − −    = −    − −    

 (5) 

The main goal of this research is to introduce a new family of distributions, called the 

new exponentiated T-X(“NE T-X for short) family of which the NE-Exponential X family 

discussed above is a special case. The generic form of the NE T-X family is introduced at 

the beginning of Section 3. We discuss a special sub-model of this family, capable of 

modeling with monotonic and non-monotonic hazard rates. For the special sub-model of 

the NE T-X family, a real life application is presented. The rest of this paper is structured 

as follows: In Section 2, a special sub-model of the proposed family is presented. 

Statistical properties of the proposed family are investigated in Section 3. Section 4 

contains some useful characterizations of the proposed class. Section 5, provides 

estimation of the model parameters using maximum likelihood method. Section 6, 

provides analysis to a real data set. Simulation results are reported in Section 7. Finally, 

Section 8 concludes the article. 

 

2. Special Sub-Model 

Considering the cdf of the two-parameter Weibull model with shape parameter 0  and 

scale parameter 0,  given by ( ); 1 ,   0,  , 0xF x e x
  −= −   , and pdf ( ) 1; ,xf x x e

   − −=

where ( ),  = . Then, the cdf of the new exponentiated exponential Weibull (NEEW) 

distribution is 

( )
( )

( )

log 1 1

1 exp ,             0,  , , 0.

1 1

x

x

e

G x x

e











   

−

−

   
− − −     

 = − −   
  − −
    

            

(6) 

Upon differentiating (6), we have 

( )
( ) ( )

( )

( )

( )

1
1

2

1 1 log 1 1 log 1

exp ,      0.

1 11 1

x x x x

x
x

x e e e e

g x x

eF e

   




  
    


 







−
− − − − −

−
−

       − − − − − −            
 = −  
    − −− −       

 

 

For 1 = , different Plots of the NEEW density and hrf for selected parameter values are 

presented in Figure 1. 
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Figure 1: Different plots for the pdf and hrf of NEEW distribution. 

 

3. Mathematical Properties 

In this section, we provide some mathematical properties of the proposed class. The 

generic form of the cdf and pdf of the proposed class are given, respectively, by 

( )
( )( )

( )
2

log 1
,                           x ,

1

X

T

X

F x
G x R

F x





 − −
 = 
 −
 

          (7) 

and 

( )

( )( )
( )

( ) ( )( )( )

( )( )
2 2

log 1
log 1

1
,            ,

1

X

T X X

X

X

F x
r f x F x

F x
g x x

F x



 





 − −
  − −
 −
 

= 
−

          (8) 

for some  where the random variable X has cdf ( )XF x , pdf ( )Xf x and the random 

variable T has support [0, ∞) and cdf ( )TR t . 

 

Theorem 3.1. (Transformation of Random Variables) Let U be uniform on (0,1), the 

random variable T have quantile TQ , the random variable X have quantile XQ , and let 

   , then the random variable 

( ) ( )

( )

1

ProductLog
,

T T

X

T

Q U Q U
Q

Q U


 
 −    
   
  
 

 

Belongs to the NE T-X class of distributions, where ProductLog[z] gives the principal 

solution for win wz we= . 
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Proof. Since 
1

X XQ F −= , 
1

T TQ R−= ,by the transformation technique one can show that the cdf 

of the random variable in the theorem is given by 

( )( )
( )

log 1
,

1

X

T

X

F x
R

F x





 − − 
 

−  

               (9) 

for some     

Theorem 3.2. (Quantile Function) The quantile function of the NE T-X class of 

distributions, for 0<p<1, is given by 

( )
( ) ( )

( )

1

ProductLog
,

T T

X

T

Q p Q p
Q p Q

Q p


 
 −    

=    
  
 

 

where the random variable T has quantile TQ , the random variable X has quantile XQ , 

   , and ProductLog[·] is defined as before. 

Proof. Since 
1

X XQ F −= , 
1

T TQ R−= , it is enough to solve the following equation for Q(p) 

( )( )( )
( )( )

log 1
.

1

X

T

X

F Q x
p R

F Q x





 − − 
=  

−  

            (10) 

Corollary 3.1. The quantile function of the new exponentiated Exponential-Weibull 

family of distributions is given by 

( )

   

 

1

1

1 1
Pr

, , , og 1 ,
1

c

Log p Log p
a oductLog

a a
Q p a c d d L

Log p





  
   − −  

− − −           
 = − − −   

−   
   

   
  

 

0 1,  and , , 0.p a c d     

Proof. Letting the random variable T follow the exponential distribution with quantile 

function 

( )
 1

, ,T

Log p
Q p a

a

−
= −  

0 1,  and 0p a   , and the random variable X follow the Weibull distribution with 

quantile function 

( )  ( )
1

, , 1 ,c
XQ p a d d Log x= − −             (11) 

0 1,  and , 0p a d   , the result follows from Theorem 3.2. 
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Figure 2: Q(p,0.1722,4.766,0.943,1) for 0<p<1. 

 

The measure of skewness S defined in (1883) and the measure of kurtosis K defined in 

(1988) are based on quantile functions and they are defined as 

6 4 2
2

8 8 8

6 2

8 8

Q Q Q

S

Q Q

     
− +     

     
=

   
−   

   

,  

and 

7 5 3 1

8 8 8 8
.

6 2

8 8

Q Q Q Q

K

Q Q

       
− + −       

       
=

   
−   

   

 

Skewness measures the degree of the long tail (towards left or right side). Kurtosis is a 

measure of the degree of tail heaviness. When the distribution is symmetric, S=0 and 

when the distribution is right (or left) skewed, S> 0 (or < 0). As K increases, the tail of 

the distribution becomes heavier. 

Theorem 3.4. The measure of skewness associated with the new exponentiated 

Exponential Weibull family of distributions is given by 

2
,

AA BB CC
S

AA CC

− +
= −

−
 

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5
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where, 
( )

1

1

/ProductLog
log 1 1 ,

c

a A
AA

A


  

   
 = − − −  
    

  

( )

1

1

/ProductLog
log 1 1 ,

c

a B
BB

B


  

   
 = − − −  
    

  

( )

1

1

/ProductLog
log 1 1 ,

c

a C
CC

C


  

   
 = − − −  
    

  

4

3
A Log

 
=  

 
, /

4

3
Log

A
a

 
 
 

= ,  2B Log=
 /
2Log

B
a

=

 4C Log=
 /
4Log

C
a

= . 

Proof. Combine Corollary 3.1 with the definition of skewness given by 

6 4 2
2

8 8 8

6 2

8 8

Q Q Q

S

Q Q

     
− +     

     
=

   
−   

   

. 

 

 

 

Figure 3: ( ), ,0.943,1aS   for 0 <a< 1 and 0 < α< 5. 

Theorem 3.5. The measure of kurtosis associated with the new exponentiated 

Exponential Weibull family of distributions is given by 

,
DD EE FF GG

K
AA CC

− + −
=

−
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where, 
( )

1

1

/ProductLog
log 1 1 ,

c

a D
DD

D


  

   
 = − − −  
    

  

( )

1

1

/ProductLog
log 1 1 ,

c

a E
EE

E


  

   
 = − − −  
    

  

( )

1

1

/ProductLog
log 1 1 ,

c

a F
FF

F


  

   
 = − − −  
    

  

( )

1

1

/ProductLog
log 1 1 ,

c

a G
GG

G


  

   
 = − − −  
    

  

8

7
D Log

 
=  

 
, /

8

7
Log

D
a

 
 
 

= ,
8

5
E Log

 
=  

 
, /

8

5
Log

E
a

 
 
 

= , 
8

3
F Log

 
=  

 
, /

8

3
Log

F
a

 
 
 

= ,  8F Log= ,

 /
8Log

F
a

= . 

Proof. Combine Corollary 3.1 with the definition of kurtosis given by 
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       
− + −       

       
=
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−   

   

. 

 

 

 

Figure 4: , ,0.94( ,1)3K a   for 0 <a < 1 and 0 <α< 5. 

Theorem 3.6. (Shannon Entropy): Given equation (8),  if a random X follows the new 

exponentiated T-X class of distributions, then the Shannon entropy of X  is given by 

     
1

ProductLog ProductLog ProductLog
log log 1 2 og ,V T X X

T T T T
S E f Q Log L

T T T


  

  
      −  

= − − − +          
         

  

where α>0, the random variable T has Shannon entropy, ηT, the random variable X has 

pdffX and quantile function QX, and given the random variable Q (say), µQ is the mean of 

Q, and ProductLog[·] is defined as before. 
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Proof. From Theorem 3.1 and the fact that 
( )( )

( )

log 1
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X
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− −
=

−
 has density r(t), the result 

follows by noting that 
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      (12) 

Theorem 3.7. (rth Non-Central Moments) The rth non-central moments of the NE T-X 

class of distributions are given by 

( ) ( )

( )
( )( )

1 1

,/
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where ( ) ( )
1

, 0 ,

1

1
i

r i s r i s

s

ih s r i h 
−

−

=

= + −   with ,0 0  for 1,2,...r

r h i = =  (Gradshteyn and Ryzhik, 

2012),    , U is uniform on (0, 1), and QT is the quantile function of the random 

variable T and E(·) is an expectation. 

Proof. From Theorem 3.1, the following random variable follows NE T-X class of 

distributions 
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where ( ) ( )1. .XX FQ −= is a quantile function. According to Nasiru et al. (2017), we can write 

( )
0

,i

i

i

X u uQ h


=

=  

where the coefficients are suitably chosen real numbers that depend on the parameters of 

the F(x) distribution. For a power series raised to a positive integer r ≥ 1, we have 
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r
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i r iX

i i
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where δr,I are obtained from the recurrence equation as stated in the theorem. Thus we 

have the following 

( ) ( )
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  

where E(·) is an expectation. 

From the Wikipedia contributors about Binomial theorem (2018) and Lambert W 

function (2018), we deduce the following 
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We get the desired result by using the expression immediately above in 
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Given a random variable X with pdf f(x), the ordinary moments, for r∈ N, are given by 

( ) ( ) .r rE X x f x dx



−

=   

However, if the random variable X in question has cdf F(x) and quantile function QX, then 

after the substitution u = F(x), the ordinary moments can be expressed as 

( ) ( )( )
1

0

.
rr

XE X Q u du=   

Thus the following is immediate 

Theorem 3.8.The moment generating function of the new exponentiated T-X class of 

distributions are given by 
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where ( ) ( )
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r h i = =  [Gradshteyn and Ryzhik 

[20]), α > 0, U is uniform on (0, 1), and QT is the quantile function of the random variable 

T. 

Lemma 3.1. Assume U is uniform on (0, 1), then ( )( )log 1
l k

U
−

− − admit the following 

expansion 
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where ,p q are determined from the recurrence given by equation (3.19) in Almheidat et 

al. (2015). 
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Proof. From equation (3.18) in Almheidat et al. (2015), we get 
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Lemma 3.2. Let l k pY U − += , where U is uniform on (0, 1), then 
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Proof. First observe that the pdf of Y is given by 
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Yf y y
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for 0 <y< 1. Thus the result follows by evaluating the following integral 

( )
1

0

 .Yy f y dy          (15) 

Corollary 3.2. The moment generating function of the new exponentiated standard 

exponential-X class of distributions is given by 

( )
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where ( ) ( )
1

, 0 ,

1

1
i

r i s r i s

s

ih s r i h 
−

−

=

= + −   with ,0 0  for 1,2,...,r

r h i = =  see Gradshteyn and Ryzhik 

(2014), α>0, and ρ, q and p are determined from the recurrence given by equation (3.19) 

in Almheidat et al. (2015). 

Proof. Use Lemma 3.1 and Lemma 3.2 in Theorem 3.10. 

 

4. Characterizations 

This section deals with various characterizations of NE T-X distribution. These 

characterizations are based on a simple relationship between two truncated moments. It 

should be mentioned that for these characterizations the cdf may not have a closed form. 

Due to the nature of the proposed cdf, our characterizations may be the only possible 

ones. The first characterization result employs a theorem due to Glänzel (1987); see 

Theorem 4.1 in Appendix A. Note that the result holds also when the interval H is not 

closed. As shown in Glänzel (1990), this characterization is stable in the sense of weak 

convergence. 

Proposition 4.1. Let :  X → be a continuous random variable and let  
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= for x

. The random variable X has pdf (5) if and only if the function defined in Theorem 4.1 

has the form 
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Proof. If X has pdf (5), then 
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Conversely, if  is given as above, then 
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and hence 
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

= − −   

Now, in view of Theorem 4.1, X has density (5). 

Corollary 4.1. Let :X → be a continuous random variable and let ( )1q x be as in 

Proposition 4.1. Then, X has pdf (5) if and only if there exist functions 2q  and   defined 

in Theorem 4.1 satisfying the differential equation 
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Corollary 4.2. The general solution of the differential equation in Corollary 4.1 is 

( ) ( )( ) ( ) ( ) ( )( ) ( )
1 1

1 21 ; ; ; ,x F x f x F x q x q x D
 

    
− −− = − +
   

where D is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 4.1 with D = 1/2. However, it should be also noted that 

there are other triplets ( )1 2, ,q q  satisfying the conditions of Theorem 4.4. 

Theorem 4.2. (Generalized Transmuted New Exponentiated T-X Family of Distributions) 

Let :X → be a continuous random variable and let 
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for some α > 0, where the random variable X has cdf ( )F x and pdf ( )f x , the random 

variable T with support [0, ∞) has pdf ( )Tr t , and cdf ( )TR t ⇐⇒ the function η defined in 

Theorem 4 [Merovci et al. (2016)] has the form 
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where   and 2G  are defined as above. 

Proof. Let X have pdf 
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Conversely, if   is given as above, then 
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and hence 
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( ) ( )( )2log ; ,           .s x G x x

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Now in view of Theorem 4 in Ampadu (2018), X has pdf 
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5. Estimation 

In this subsection, we determine the maximum likelihood estimates of the parameters of 

the NE T-X family. Let 1 2,  ,  · · · ,  kx x x  be the observed values from the NE T-X distribution 

with parameters and . The total log- likelihood function corresponding to (5) is given 

by 
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The partial derivates corresponding to (16), are given by 
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 

−

=
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+

 − − −
 



(19) 

Setting ( )log ; , ,iL x   





, ( )log ; , ,iL x   






and log ( ; )iL x  







 equal to zero and solving 

numerically these expressions simultaneously yield the maximum likelihood estimators 

(MLEs) of ( )    . 

6. Application 
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In this section, we illustrate the proposed method via analyzing a real data set taken from 

Saboor and Pogany (2016) representing the breaking strength of carbon fibers (in Gba). 

For the application section, we keep one parameter constant ( ) = and reduce the number 

of parameters to three. The comparison of the proposed distribution is being made with 

four other well-known extensions of the Weibull distribution. The cumulative functions 

of the competing models are: 

• Beta Weibull (BW) of Famoye et al. (2005) 

( ) ( )
1

  ,                                0,  , , , 0
xe

G I a b x a bx 
 

−−
=     

• Kumaraswamy Weibull of Cordeiro et al. (2010) 

( ) ( )1  1 1 ,                  0,  , , , 0.

b
a

xG ex x a b
  − 

= − − −   
 

 

• Generalized power Weibull (GPW) of Haghighi and Nikulin (2006) 

( ) ( ) 
1

1 exp 1 1 ,         , 0.0,  G x x x    = − − +    

• Flexible Weibull extended (FWE) proposed of Ahmad and Hussain (2017) 

( )
2  

1  exp ,                  0,  , , 0.
x

xG e xx





  
−  

= − −   
  

 

The accuracy measures including Anderson–Darling (AD) test statistic, Cramer-von-

Misses (CM) test statistic, Kolmogorov–Smirnov (KS) test statistic, Akaike Information 

Criterion (AIC), corrected Akaike information criterion (CAIC), Bayesian Information 

Criterion (BIC) and Hannan-Quinn information criterion (HQIC) are being calculated. 

Based on these measures, it is showed that the proposed model provides greater 

distributional flexibility. Corresponding to analyzed data set, the maximum likelihood 

estimates are provided in Table 2, whereas, the analytical measures are provided in Table 

3. 

Table 2:  Estimates of the parameters with standard errors in parentheses for the fitted 

models. 

 

Dist. ̂  ̂  ̂  ̂  â  b̂  

NEEW  4.766 

(3.0596) 

0.943 

(0.0762) 

0.1722 

(0.3131) 

  

FEW 3.063 

(0.4502) 

0.826 

(0.1753) 

0.115 

(0.0134) 

   

GPW 24.77 

(11.2077) 

6.595 

(2.8017) 

0.957 

(0.1017) 

   

BW 1.641 

(1.3512) 

 3.430 

(0.3785) 

 0.711 

(0.5176) 

0.012 

(0.0927) 

Ku-W 0.0127 

(0.0073) 

 2.917 

(0.4676) 

 1.235 

(0.2678) 

4.1479 

(2.7288) 
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Figure 4: Fitted pdf and cdf of the proposed distribution. 
 

  

Figure 5: PP-plot and Kaplan Meier survival plot of the proposed model. 
 

 

 

 

 
 

Figure 6: Box plot and Normal Q-Q plot of the proposed model. 
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7. Simulation Study 

In this section, we assess the performance of the maximum likelihood estimators in terms 

of the sample size n.  A numerical evaluation is carried out to examine the performance 

of maximum likelihood estimators for NEEW model (as particular case from the family). 

The evaluation of estimates is performed based on the following quantities for each 

sample size; the biases and the empirical mean square errors (MSEs) using the R 

software. The numerical steps are listed as follows: 

i. A random sampleX1, X2, . . . , Xn of sizes; n=30 and 50 are considered, these 

random samples are generated from the NEEW distribution by using  inversion 

method. 

ii. Six sets of the parameters are considered. The MLEs of (Proposed) model are 

evaluated for each parameter value and for each sample size. 

iii. 1000 repetitions are made to calculate the biases and mean square error (MSE) of 

these estimators. 

iv. Formulas used for calculating bias and MSE are given by

( ) ( )
1000

1

1
ˆ ˆ

1000 i

Bias   
=

= − and ( ) ( )
1000

2

1

1
ˆ ˆ

1000 i

MSE   
=

= − , respectively. 

v. Step (iv) is also repeated for the other parameters ( ), ,   . 

Empirical results are reported in Table (4). We can detect from these tables that the 

estimates are quite stable and are close to the true value of the parameters as the sample 

sizes increase. 

Table (4): Simulation Results: MLEs, Biases and MSEs 

 

N 

 

Parameter

s 

Set 1

(  =0.5,  =0.5,  =0.9, 0.7)    =  

Set 2 

(  =0.6, =1,  =0.5, =1)     

MLEs Bias MSE MLEs Bias MSE 

30 

  0.4473 0.8270 0.4900 0.5208 0.4592 0.3905 

  0.6139 0.9890 1.0334 1.5607 1.3607 2.0295 

  1.3805 0.0978 0.8950 0.7140 0.1468 0.6472 

  0.9401 0.9903 1.0394 1.3607 1.3089 2.1035 

50 

  0.4794 0.7786 0.1078 0.5690 0.3908 0.2701 

  0.5401 0.8940 0.9014 1.2906 1.0191 1.4095 

  1.0753 0.0690 0.6717 0.5522 0.1109 0.5091 

  0.6508 0.8719 0.8107 1.1022 0.9622 1.1901 

 

Continued of Table (4) 

 

N 

 

Parameter 

Set 3

(  =0.5, =0.2,  =0.5, =0.4)     

Set 4 

(  =0.3, =0.5,  =1, =0.5)     

MLEs Bias MSE MLEs Bias MSE 

30   0.5810 0.9861 0.8096 0.2498 0.6912 0.3149 

  0.3150 0.9505 0.9371 0.7128 1.2008 1.4631 
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  0.5996 0.5120 0.3206 0.8059 0.3161 0.2113 

  0.4796 0.7120 0.5206 0.5839 0.2161 0.4013 

50 

  0.5309 0.7453 0.6790 0.2791 0.5403 0.1024 

  0.2786 0.8091 0.7012 0.5604 0.9024 0.6292 

  0.5606 0.4394 0.2493 0.9233 0.1145 0.0164 

  0.4590 0.6504 0.4013 0.5507 0.1067 0.1964 

 

Continued of Table (4) 

 

N 

 

Parameter 

Set 5

(  =0.7, =0.5,  =1.5, =1.2)     

Set 6 

(  =0.5, =0.5,  =2, =0.6)     

MLEs Bias MSE MLEs Bias MSE 

30 

  0.5823 0.3177 0.6140 0.3835 0.1165 0.4138 

  0.6606 0.9132 1.3134 0.7660 1.2260 1.5915 

  1.4491 0.8539 0.7216 2.3060 0.1013 0.0609 

  1.4361 0.6539 0.9216 0.5201 0.2013 0.0713 

50 

  0.6610 0.1049 0.3018 0.4529 0.0474 0.1924 

  0.5527 0.6921 0.9249 0.5607 0.5917 0.7860 

  1.4690 0.7090 0.6104 1.9173 0.0527 0.0179 

  1.4290 0.51700 0.7094 0.5427 0.0594 0.0207 

 

8. Concluding Remarks 

We have introduced a new function to extend the existing class of distributions. This 

effort leads to a new family of lifetime distributions, called the new exponentiated T-X 

family of distributions. General expressions for some of the mathematical properties of 

the new family are investigated. Maximum likelihood estimates are also obtained. There 

are certain advantages of using the proposed method like its cdf has a closed form and 

facilitating data modeling with monotonic and non-monotonic failure rates. A special 

sub-model of the new family, called the new exponentiated exponential Weibull 

distribution is considered and a real application is analyzed. In simulation study, the 

consistency and proficiency of the maximum likelihood estimators of the proposed model 

are also illustrated. The practical application of the proposed model reveal better fit to 

real-life data than the other well-known competitors. It is hoped, that the proposed 

method will attract wider applications in the area. 
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Appendix A.  

Theorem 4.1. Let ( , Ƒ, P) be a given probability space and let H = [d; e] be an interval for some d<e

( ;  d e= − = might as well be allowed). Let X: H→ be a continuous random variable with the 

distribution function F and let ( )1q x  and ( )2q x  be two real functions defined on H such that 

( )( ) ( )( ) ( )2 1| | ,                    ,E q X X x E q X X x x x H =    

is defined with some real function ( )x . Assume that ( ) ( )1 2

1 2, ,  q q C H C x  and F is twice 

continuously differentiable and strictly monotone function on the set H. Finally, assume that the equation 

1 2q q = has no real solution in the interior of H. Then F is uniquely determined by the functions
1 2,  q q

and  particularly 

( )
( )

( ) ( ) ( )
( )( )

/

1 2

 exp ,

x

a

u
F x C s u du

u q u q u




= −

−  

where the function ( )s u  is a solution of the differential equation ( )
( ) ( )

( ) ( ) ( )

/

1/

1 2

u q u
s u

u q u q u




=

−
and C is the 

normalization constant, such that 1.
H

dF =  

We like to mention that this kind of characterization based on the ratio of truncated moments is 

stable in the sense of weak convergence (see, Glänzel (1990)), in particular, let us assume that there is a 

sequence  nX of random variables with distribution functions  nF  such that the functions
1nq , 

2nq and 

n ( )n  satisfy the conditions of Theorem 4.1 and let
1 1nq q→ , 

2 2nq q→ for some continuously 

differentiable real functions
1q and 

2q . Let, finally, X be a random variable with distribution F . Under the 

condition that 
1nq and 

2nq are uniformly integrable and the family nF  is relatively compact, the sequence 

Xn converges to X in distribution if and only if 
n converges to , where 

( )
( )( )
( )( )

2

1

|
.

|

E q X X x
x

E q X X x



=


 

This stability theorem makes sure that the convergence of distribution functions is reflected by 

corresponding convergence of the functions 
1 2,  q q and respectively. It guarantees, for instance, the 

'convergence' of characterization of the Wald distribution to that of the Levy-Smirnov distribution if

 → .           

 A further consequence of the stability property of Theorem 6.1 is the application of this theorem to 

special tasks in statistical practice such as the estimation of the parameters of discrete distributions. For 

such purpose, the functions 1 2,  q q and, specially,  should be as simple as possible. Since the function 

triplet is not uniquely determined it is often possible to choose  as a linear function. Therefore, it is worth 

analyzing some special cases which helps to find new characterizations reflecting the relationship between 

individual continuous univariate distributions and appropriate in other areas of statistics. In some cases, one 

can take ( )1 1q x  , which reduces the condition of Theorem 4.1 to ( )( ) ( )2 | ,  E q X X x x x H =  . 

We, however, believe that employing three functions 
1 2,  q q and  will enhance the domain of applicability 

of Theorem 4.1. 


