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Abstract
Linear regression is arguably one of the most widely used statistical methods. However,
important problems, especially variable selection, remain a challenge for classical modes of
inference. This paper develops a recently proposed framework of inferential models (IMs) in the
linear regression context. In general, the IM framework is able to produce meaningful probabilistic
summaries of the statistical evidence for and against assertions about the unknown parameter of
interest, and these summaries are shown to be properly calibrated in a frequentist sense. Here
we demonstrate by example that the IM framework is promising for linear regression analysis---
including model checking, variable selection, and prediction---and for uncertain inference in
general.

Keywords and phrases: Auxiliary variable; Credibility; Prediction; Predictive
random set; Variable selection.

1. Introduction
Consider the linear regression model

,= UXβY  (1)
where nRY is the vector of response variables, X is a fixed pn matrix of
predictor variables, pRβ is an unknown vector of regression coefficients, 0>
is an unknown scale parameter, and nRU is an unobservable vector of noise,
assumed to follow a standard n -dimensional Gaussian distribution, i.e.,
~ (0, )n nNU I . Throughout we shall use upper-case bold font (X ) for deterministic

matrices, upper-case bold italics font (Y ) for random vectors, and lower-case
bold font ( y ) for deterministic vectors. In addition to Gaussianity, we shall
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assume that X is of full rank, with np < . In this paper we focus on probabilistic
inference in several problems that frequently arise in linear regression analysis,
such as model checking, variable selection, and prediction. More precisely, we
develop a framework that produces probabilistic summaries of the statistical
evidence for and against assertions, or hypotheses, of interest which frequently
arise in these aspects of linear regression analysis.

By now, inference in the basic regression problem is well-understood from both
frequentist and Bayesian perspectives. However, for the variable selection
problem, a fully satisfactory theory/method has yet to emerge. It is not our goal to
review the extensive literature on variable selection, but it can be insightful to see
where the fundamental difficulty arises. The most popular strategies are stepwise
selection procedures and the lasso (Tibshirani 1996) and its many variants; see
Hastie et al. (2009)  for a thorough review of these strategies. These methods
have a common drawback, which is that they cannot assign any meaningful
measures of uncertainty---probabilistic or otherwise---to the set of variables
selected. From a Bayesian perspective, probabilistic summaries of various
models can be obtained by introducing a prior probability over the model space
and a conditional prior on the model parameters, and performing a Markov chain
Monte Carlo scan of the model space. For relatively small p this scheme is
feasible (e.g., Clyde and George 2004), but it typically requires a convenient
choice of prior for parameters given the model, which may overly influence the
posterior calculations. Furthermore, as p increases, estimates of posterior
model probabilities become less reliable heaton.scott.2009, making it
questionable whether the ``mostly likely'' model has been identified. Since there
seems to be no fully satisfactory approach among the existing methods, it makes
sense to consider something new and different.

This paper provides an alternative approach to linear regression analysis based
on the relatively new inferential model (IM) framework; see Martin and Liu (2011)
and also Martin et al. (2010) and Zhang and Liu (2011). The crux of the IM
approach is its direct attack on the underlying source of uncertainty. In the linear
model (1), the source of uncertainty––the unobserved error term U–– is clearly
specified. This unobservable quantity U , called the auxiliary variable, or a-
variable for short, plays a fundamental role in the IM framework. In particular,
prior-free posterior-probabilistic inference about assertions related to variable
selection and model checking can be realized by predicting the unobserved value
*u of U .

The remainder of the paper is organized as follows. In Section 2 we review the
general IM approach with a simple illustrative example. Section 3 presents a
simplification of the basic IM for linear regression, based on a concept of
conditioning. An IM-based approach for model checking is developed in Section
4 and applied to a real-data example taken from Efron et al. (2004). Section 5
presents several new IM-based strategies for variable selection with some
numerical results for real- and simulated-data examples. These results indicate
that the IM approach described in this paper can select the correct model much
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more frequently than popular existing methods based on the LARS algorithm of
Efron et al. (2004). Inference on future observations from an IM perspective is
the subject of Section 6, and some concluding remarks are given in Section 7.

2. Review of inferential models
As mentioned in Section 1, the unobserved auxiliary variable plays a
fundamental role in the IM framework. This section makes this statement more
precise and gives a simple and general three-step construction of IMs and a
review of some important properties. More details can be found in Martin and Liu
(2011).

2.1  Association models
The starting point of an IM analysis is a relationship between data, unknown
parameters, and the unobserved a-variables. In general, we write this as

),,(= UθY a (2.1)
where YY is the observable data, θ is the unknown parameter, and UU
is the unobservable a-variable. In addition to (2.1), a distribution  for U is
required, which we call the a-measure. The idea is that if ~ U , then the induced
distribution on Y via (2) matches the specified sampling distribution. The
quintuple ),,,,( aUY  defines what we call an association model. In the
regression case, the association model is characterized by the relation (1), with

),(= βθ , and the a-measure )(0,= nnN I .

Observe that if we only knew the actual value *u for a given data set, then we
would know all that one could ever know about θ from observing yY = . For this
reason, we shift focus from the unknown parameter to the unobserved value of
the a-variable. There are also some philosophical reasons for focusing on *u
rather than θ . In fact, Martin and Liu (2011) argue that predictive probabilistic
inference about θ is not possible unless there is some unobserved but
predictable quantity associated with y and θ . So, in a certain sense, shifting
focus to the a-variable is the only way to accomplish our goal of prior-free
probabilistic inference.

2.2  A three-step construction of IMs
Once an association model (2.1) is specified, the construction of a corresponding
IM is fairly straightforward. This section outlines a simple three-step procedure.

A-step The association step begins with the association model (2.1) and, for
given yY = , defines a mapping from U to subsets of  as follows:

.)},,(=:{=)( U uuθyθuy a (2.2)



Zuoyi Zhang, Huiping Xu, Ryan Martin, Chuanhai Liu

Pak.j.stat.oper.res. Vol.VII No. 2-Sp 2011 pp413-432416

Intuitively, )(uy corresponds to the set of candidate θ values which
corresponds to the observed y , the particular u , and the association model
(2.1). Note that the true value of θ must be contained in )( åuy .

P-step The prediction step starts with an assessment of what is known about
åu . In particular, it is known that * is a sample from  . But trying to

(accurately) predict * with another draw ~ U is a hopeless endeavor. We
acknowledge this difficulty and choose, instead, to try to predict * with a
random set. Let S be a mapping from U to subsets of U that satisfies uu S for
all u . That is, for the P-step we produce a sample ~ U and construct the
predictive random set (PRS) US to predict the unobserved * . To ensure that
the resulting IM has desirable properties, some conditions on the mapping S
must be imposed; see Section 2.3.

C-step The combination step puts together the results of the A- and P-steps
above. That is, incorporating the additional uncertainty about * in uS into the
set )(y gives the expanded set of candidate  values:

).'(=)(
'

uy

uu
uy 




S

S (2.3)

When ~ U , the set )( Uy S is random and the IM output corresponds to certain
probabilities for this random set. Let A be an assertion about the parameter
θ . This A plays a role similar to a (null) hypothesis in the classical framework.
We compute the probability that )( Uy S is a subset of A (resp. cA ) as a
measure of the statistical evidence for (resp. against) the assertion A . In
particular, for given A we compute

},)(:{=)(Bel , AA  uyy u SS  (2.4)
the belief function, and

),(Bel1=)(Pl ,,
cAA SS yy  (2.5)

the plausibility function. The functions are similar to those that appear in the
Dempster–Shafer theory (Dempster 2008, Shafer 1976), i.e., )(Pl)(Bel ,, AA SS yy 
for all A , but our unique use of the PRS S has some important consequences.
Together, S,)Pl,Bel( y characterize the IM output.

For illustration, consider a simple special case of (1), namely, UY = , where
~ (0,1)U N . For the A-step, we have a simple mapping }{=)( uyuy  , a

singleton. For the P-step, consider the PRS defined by

.|},||:|{= RS  uuuuu (2.6)
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Then the result of the C-step is the set |]||,|[=)( uyuyuy  S . Take, for
example, a single point assertion }{= 0A . Then it is easy to see that the belief
function for A is zero. But the plausibility function is

}}{)(:{1=})({Pl 00,
c

uyy u   SS

}|<|or|>|:{1= 00  uyuyu 
|}|<|:|{1= 0  yuu

|)},(|2{1= 0 y

where  denotes the distribution function of (0,1)N . The plausibility function for
singleton assertions is an important quantity in an IM analysis. As Martin and Liu
(2011) show, this function can be used to construct a so-called plausibility
interval for  , an IM-based counterpart to the frequentist confidence or the
Bayesian credible interval. Figure 1 shows a graph of })({Pl 0, Sy as a function of

0 for 3=y . The message is that only values of  relatively close to y are
plausible. Note that the )100(1  % plausibility interval defined in Martin and Liu
(2011) is just the  -level set of })({Pl 0, Sy .

Figure  1: A plot of })({Pl 0, Sy as a function of 0 when 3=y . The dotted
horizontal line at 0.05= defines the cutoff points for the 95% plausibility interval
for  marked by brackets on the horizontal axis.

2.3  Properties
As mentioned above in the P-step, the PRS influences the properties of the
resulting IM. In fact, properties of the IM are almost completely determined by
properties of the PRS. Towards this, define }:'{=)( ' uuu u SS Q , for Uu . Then
the PRS uS is said to be credible at level (0,1) if   }1)(:{ uu SQ . In
words, credibility implies that the probability that US misses its target u is large
only for a relatively small proportion of possible u values. Theorem 1 of Martin
and Liu (2011) can be used to show that the PRS in (2.6) and the others used in
Section 5.3 are credible.
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The property of interest for IMs is what is called validity and is essentially a long-
run frequency calibration property of the belief and plausibility function values.
This property is what makes the numerical values of these functions meaningful
across different users or experiments. Let θP denote the sampling model for the
data Y . Then the IM is valid for A if, for each (0,1) , the belief function
satisfies

 


}1)(Bel{Psup , A
A

SYθ
θ

(2.7)

and the plausibility function satisfies

.})(Pl{Psup ,  


A
A

SYθ
θ

(2.8)

The IM is valid if it is valid for all A . Theorem 2 of Martin and Liu (2011) shows
that if the PRS is credible, then the resulting IM is valid.

An important application of this validity result is the case where the statistical
analysis must result in an ``accept/reject'' decision. In this case, a natural
strategy is to pick a small (0,1) and conclude that an assertion A is true if

1)(Bel , ASy or false if )(Pl , ASy . The validity property then guarantees that
such a procedure controls the ``Type I error'' probabilities at the  level. This
approach, with 0.05= , will be used in the numerical examples that follow.

As in the classical hypothesis testing problem where Type I error probability
cannot be the only consideration, in the IM context we cannot focus solely on the
validity property. We say that an IM is efficient for A if the inequalities ``  '' in
(2.7) and (2.8) are both equalities. This additional property can be achieved, at
least for some assertions, such as singletons, via stronger conditions on the
PRS. A powerful technique for obtaining efficient IMs is via an initial dimension
reduction step of the a-variable U . Two such procedures are available–
conditioning and marginalization–and these techniques will be used occasionally
in what follows. The interested reader may refer to Martin et al. (2011a,b) for the
details.

Finally, despite the frequency-calibration properties described above, the main
thrust of the IM approach is that the inferential output can be interpreted
probabilistically. That is, for a given data set yY = , the quantities )(Bel , ASy and

)(Pl , ASy are not simply tools to construct frequentist decision procedures. In fact,
)(Bel , ASy , for example, has a meaningful interpretation as the amount of

statistical evidence available in yY = supporting the assertion A about θ–no
notion of ``repeated experiments'' is needed for interpretation. Neyman–Pearson
type of decision rules lack this property, and Fisher's p-value gives only indirect
evidence for/against the assertion A , viewed as a null hypothesis.
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3. IMs for linear regression
The regression model (1.1) clearly demonstrates the association between the
observable Y , the unknown parameter ),(= βθ , and the unobservable but
predictable U . This results in a system of n equations in 1p unknowns, the
association model will have some functions of the a-variable which are actually
observed. To see this, let P and P denote the familiar projection matrices onto
the linear space XC spanned by the columns of X and the linear space 

XC
orthogonal to XC , respectively. If PP  denotes the usual 2 -norm, then the
association model (1) can be re-written as

,= PUXβPY  (3.1)

= , P Y P U (3.2)
and

1 1
= .

    P Y P Y P U P U (3.3)

As the direction of the residual vector obtained from the least-square fitting of the
linear regression model to the observed data, the function

1 P U P U of U in
(3.3) is fully observed. Thus, predicting the n -vector U amounts to predicting
( , )PU P U , as functions of U involved in (3.1) and (3.2), conditioned on (3.3).
This approach effectively reduces the dimension of a-variables to be predicted
and, upon following the three steps in Section 2.2, produces what Martin et al.
(2011) call a conditional IM.

Well-known sampling distribution properties in the linear model context suggest
the following transformations. Define

1= / and = ( )S n p   P Y B X X X Y

to be the usual least-squares estimates of  and β , respectively. Set
1= / and = ( ) / .M n p M   P U T X X X U

It is known that M and TM are independent, with 2( ) ~ ( )n p M ChiSq  and
~ (0, , )pt T W , where ChiSq and pt denote the chi-square and a p -variate

Student-t distributions, respectively, the scale matrix satisfies 1)(= XXW , and
in both cases the degrees of freedom  equals pn  . Moreover, M and T are

independent of
1 P U P U . According to Martin et al. (2011a), (3.1) and (3.2)

can be equivalently written as
TβB S= (3.4)

and
,= MS  (3.5)



Zuoyi Zhang, Huiping Xu, Ryan Martin, Chuanhai Liu

Pak.j.stat.oper.res. Vol.VII No. 2-Sp 2011 pp413-432420

which gives an association model for inference about ),( 2β with observables S
and B and a-variables M and T . We note that the reduction of the a-variable
dimension here, via conditioning, is equivalent to an initial reduction via
sufficiency. But, in this IM context, it is not the reduction of the data to sufficient
statistics that is important: the advantage of this conditional IM is that it is easier
to efficiently predict the new a-variable 1),(  pM RT compared to nRU , when

1> pn .

It is typically the case that  is a nuisance parameter–an  unknown quantity but
not of primary interest. In such cases, it is desirable to further reduce the
dimension of the a-variable ),( TM via marginalization. The details behind the
IM-based marginalization strategy, found in Martin et al. (2011b), are quite deep,
but the result is that we effectively ignore (3.5) and focus exclusively on the
marginal association model (3.4). The corresponding marginal IM is defined
through the three-step process based on trying to predict the unobserved value
*t of T . One can similarly marginalize out certain components of β if only a

subset are of interest. For example, the intercept is often of no real interest so it
can be marginalized away; we do this in Section 5.1.

To summarize, direct reasoning with the underlying source of uncertainty leads to
association models which are effectively the same as those that would be
obtained via the familiar classical arguments, e.g., sufficiency. The advantage of
the IM approach will present itself when we discuss challenging inference
problems such as variable selection. The prior-free probabilistic inference one
can achieve with IMs is something new that cannot be obtained by classical
arguments.

4. Model checking

4.1  An IM-based approach

The conditional IM, with association model given by (3.4) and (3.5) has a
p -dimensional a-variable to predict. For (computational) simplicity we shall

assume pn  is large, so that the standardized residual process

yPr 1= s (4.1)

can be considered as a sample from (0,1)N . In this case, we view r as a
stochastic process along a selected direction in XC . In particular, we are
concerned with potential deviations from the linearity assumption, so we consider
directions of individual explanatory variables and directions determined by any
pair of these variables. The basic idea is to see if the regression of Y on X ,
namely )|(E XY , can be approximated significantly better, compared to the linear
model, by including higher-order (e.g., quadratic) terms. To be more specific, for
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any two predictor variables ix and jx (columns of X ) we consider four
directions: ix , jx , ji xx  , and ji xx  . There is a total of 2p directions to be
considered and, in what follows, we let x be a generic notation for one such
direction.

Let )(xr be the residual process in (4.1) but ordered according to the magnitudes
of the coordinates of x . Write ))((log= iih xr for ni ,1,=  . If r does not
strongly depend on x in the sense that a plot of i)(xr versus the index i shows
no discernible pattern, then nhh ,,1  should look like an independent sample of
unit exponential random variables, a simple exponential process along the x
direction. Then it follows that

1,1,=,=

1=

1=
)( 




ni

h

h
u

j

n

j

j

i

j
i 

should resemble an ordered sample of 1n uniform random variables.
Therefore, evidence for/against the computed 1)((1) ,, nuu  looking like an ordered
sample of uniforms can be used as evidence for/against proper fit of the
postulated model. An efficient approach for predicting a set of ordered uniform
variates has been recently developed in Zhang (2010); see also Zhang and Liu
(2011), Martin et al. (2010) and Martin and Liu (2011, Sec. 6.2). With this efficient
PRS in place, the three-step construction of the IM as well as the belief and
plausibility function computation are fairly straightforward.

4.2  The diabetes data example

Consider the diabetes data example in Efron et al. (2004). This data set consists
of observations for 442=n diabetes patients with response variable (a
quantitative measurement of disease progression one year after baseline) and
ten covariates:  age,  sex, body mass index ( bmi), average blood pressure (map)
and six blood serum measurements ( tc,  ldl,  hdl,  tch,  ltg, and  glu). Our
analysis begins with checking if the fit of the full model with ten covariates is
satisfactory. Figure 2 shows the analysis of the residual process along the

sexage direction. That is, the residual process r in (4.1) is sorted according to
the values of sexage=x . The plausibility function for the assertion that the
corresponding (441)(1) ,, uu  looks like a sample of ordered uniforms is 0.0578, a
small number, suggesting the potential existence of an sexage  interaction. The
analysis in Section 5.3 shows that the model that includes this interaction term is
satisfactory as a full model from which the variable selection problem can begin.
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Figure 2: Plots for model checking: (0.a) the sequence of normalized residuals
from fitting the full model with the given ten covariates  age,  hdl, , and  bmi, as
a stochastic process, along the direction of agesex , and (0.b) the accumulated
exponential process for checking normality and trend along direction of agesex ,
for which the plausibility function evaluates to 0.0578.

5. Variable selection

5.1  Ordering the covariates
According to the discussion in Section 2, probabilistic inference about β in
general, or variable selection in particular, should be carried out by predicting at
least p a-variables, namely, the quantity T in the association model (13). A
change-of-variables will make the notation more convenient. Recall the matrix

1)(=))((= XXW ijw . We define the following modified notation:

.,1,=,,and,,
22

pji
ww
w

w
wSwS

BZ
jjii

ij
ij

ii

i
i

ii

i
i 



Then, in terms of the new notation, the association model is

= , with ~ (0, , ),pt Z
θ U U W

(5.1)
almost exactly as before, except for now all quantities involved have been
properly scaled. Observe that 0=i if and only if 0=i . Having a common scale
for the iU 's will come in handy when we specify PRS in (5.3) below.

In what follows we shall assume that the p equations in (5.1) have been sorted
according to the magnitude of coordinates in Z , i.e.,

.|||||| 21 pZZZ   (5.2)
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We shall also assume that the model always includes an intercept, and that this
`` 0 '' term has been marginalized out as described at the end of Section 3. So,
henceforth, p shall stand for the number of variables in the model, not counting
the intercept. In the diabetes example to follow, we have the original ten
variables plus an interaction term, thus making 11=p . The degrees of freedom
 in (5.1) will also change accordingly.

A key observation is that, after the rescaling, the components of U in (5.1) have
identical marginal distributions. Therefore, the set-valued mapping S used to
build a PRS for *u should satisfy the following property:

.,1,=,),(proj)(proj pjiji UU SS  (5.3)

where )(proj uSi denotes the projection of the set pRS u down to the iu -space.
In this case, the evidence against 0}={ i can be no more than the evidence
against 0}={ j whenever ji < and, hence, |||| ji ZZ  . Therefore, the ordering of
the rescaled least-squares estimates Z and the symmetry property (5.3) of the
PRS suggest a certain nesting of the candidate models, and so we shall consider
the sequence of assertions

.,1,=0},===:{= 1 pkA kk  θ (5.4)
for the variable selection problem in Section 5.3. But first, in Section 5.2, we give
a variable selection application of the model checking strategy in Section 4.

5.2  Variable selection via iterative model building
We consider an iterative model building process based on the ordering of the
covariates in Section 5.1. First, set 1=k ; now proceed as follows:

1. Drop the covariates corresponding to k ,,1  ;
2. Compute the normalized residuals r in (4.1) from the least-squares fit;
3. Apply the method of Section 4 to check the residual processes along all 2p

covariate directions, even those first k that were dropped in Step 1.
4. If one of the 2p goodness-of-fit evidentiary measures falls below 0.05= ,

then stop deleting variables; otherwise, set 1 kk and go back to Step 1.

We apply this procedure to the diabetes example described in Section 4.2. For
each ,111,= k , plausibility is computed for all the 1111 residual processes.
Figure 3 shows the strongest ones for each ,50,1,= k . The 0=k case stands
for the full model, i.e., all the variables are selected. The results in panels (0.a)
and (0.b) shows that there is not very strong evidence against the assumption
that the enlarged full model, with the sexage  interaction, is adequate as the
baseline regression model. For the 4=k case, i.e., after deleting the four
variables hdl, glu, tch, and ldl, panels (4.a) and (4.b) show strong evidence
against the assertion that the model excluding the these variables fits the data.
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This result suggests that except for the first three variables–hdl,  glu, and  tch–all
other variables are significant for explaining the outcome variable of interest.

Figure  3: The first 6 sets of plots for model checking. The goodness of fit is
measured by evidence against the chosen model and is reported in the (*.b)
panels as ``Pl.'' Figure subtitles show which variables are included (  ) and
excluded (  ).

Although apparently new, this approach is informal and not unlike existing step-
wise variable selection procedures from an operational point of view, although
there is a probabilistic interpretation to the evidentiary measure of the importance
of each variable. A formal approach is considered next, where the IM is used to
produce meaningful summaries of evidence for/against assertions relevant to the
variable selection problem.

5.3  IMs for variable selection: a preview
In this section we present a relatively simple IM-based approach for variable
selection. Some more sophisticated approaches will be investigated in future
work. In the subsections that follow, we present IMs for producing evidence
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for/against the null model and certain non-null models, as determined by the
class of assertions kA , pk ,1,=  , in (5.4). Since kA determines a lower-
dimensional subspace of pR , the belief function of kA must be zero. We shall,
therefore, only discuss evaluation of the plausibility function. Numerical results
are given in Sections 5.3.4 and 5.3.5.

Note that the sequence of assertions in (5.4) depends on the observed data
through the ordering (5.2). The general IM theory, however, does not
immediately apply to data-dependent assertions. For simplicity, we shall ignore
this dependence in what follows. See duncan.thesis for an IM analysis involving
data-dependent assertions.

5.3.1  Plausibility for the null model
To start, we consider determination between the null model–the model with only
an intercept–and some non-null model. Towards this, we shall construct an IM
and evaluate the plausibility function at 0}===:{= 1 ppA  θ . If this plausibility
e is small, we proceed by investigating the covariate corresponding to pZ in
Section 5.3.2; otherwise, we stop and select no variables.

Here we give the three simple steps to construct an IM for inference about pA .
The PRS we use is called a ``box PRS'' and is based on the  -norm, defined by

1= | |max i p iu 
u . Note that for the observed zZ = , we have =| |pz

z .

A-step Associate the observed z with the unknown θ and unobservable u in
(5.1) to obtain the singleton set }{=)( uzuz  .

P-step Predict the unobserved *u with a PRS = { : }
 
U u u UЅ , where U

has the re-scaled Student-t distribution in (5.1).

C-step Combine z and S to get ( ) = { : }.
 

  z u θ z θ uЅ Then the
plausibility function at pA is given by

})(:{1=)(Pl ,
c
pp AA  uzz u SS 

=1 { : < }=1 (| |),pF z
 

 u u z

where F denotes the distribution function of


U when ~ := (0, , )pt U W . This
probability can be easily approximated using Monte Carlo methods.

5.3.2  Plausibility for non-null models
Suppose, starting with the null model case pk = , the plausibility for each

1,, kp AA  is small. That is, we have already selected the covariates
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corresponding to 1,, kp zz  . The goal here is to use the plausibility of kA for
deciding whether to select the variable corresponding to kz .

It is tempting to consider the marginal IM that marginalizes out pk  ,,1  . But
care must be taken to account for the selective process imposed by ordering the
rescaled least-squares estimates z . Without accounting for the imposed
constraint, the association model for inference about ),,(= 1:1 kk  θ would be
given by

1: 1: 1: 1: 1: ,1:= , ~ (0, , ),k k k k p k kt Z
θ U U W

(5.5)

where kk :,1:1W is the kk block in the upper left-hand corner of W. While the
actual values of pk  ,,1  are unknown, they do have some impact on k:1θ and,
hence, on the distribution of k:1U . Indeed, it is known that

1: 1: 1| | .k k kZ 
 θ U (5.6)

Therefore, the appropriate association model would be (5.5) but with the a-
measure  taking the constraint (5.6) into account. This discussion leads to the
following three-step IM construction.

A-step Per (5.5), the set of candidate k:1θ 's is }{=)( :1:1:1 kkk uzuz  .

P-step Predict the unobserved *
1:ku with the PRS US determined by the Student-

t distribution for k:1= UU in (5.5) with the constraint (5.6) and the set-valued
mapping 1: 1: 1: 1: 1:= { ' : }k k k k k 

  u u
θ u θ u

Ѕ , k
k R:1= uu . It may seem a bit

unnatural that the PRS itself depends on the unknown k:1θ . But since this PRS
will be combined with the set z anyway, this dependence causes no technical
problems. Indeed, the credibility and validity results described above go through
in this more general case.

C-step Combining the results of the A- and P-steps gives

1: 1: 1: 1: 1:( ) ={ : }, = .kk k k k k 
   z u θ z θ u u uЅ R

Then the plausibility function at kA is given by
})(:{1=)(Pl :1,
c
kkk AA  uzz u SS 

1: 1:= 1 { : <| |} = 1 (| |),k k k kz F z


 u u

where F denotes the distribution function of 1:k 
U when 1: ~k U and  is

defined as the constrained Student-t distribution from above. Again, this
probability can be easily approximated using Monte Carlo methods.
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5.3.3  Summary of the method
The previous two subsections have described how one can evaluate the
plausibility function at assertions characterizing the null and certain non-null
models. Here we describe how these quantities are to be used for variable
selection. Most importantly, we want to emphasize that, unlike the informal
approach in Section 5.2, this approach is not iterative or step-wise. For the given
covariate order, one evaluates the plausibility for each model in the nested
sequence. Then to select a set of variables, one will simply pick the smallest
model whose plausibility is below a specified  threshold. This is certainly
different from the classical forward and backward step-wise variable selection
procedures that ignore the accumulation of error probabilities due to multiple
decisions. In fact, it is more like a Bayes approach where models in the nested
sequence (5.4) are each assigned a score and the smallest model with
sufficiently large score is chosen.

In addition to the problem-specific interpretation of these quantities, we expect
that a validity result will ensure the frequentist Type I error of this selection rule is
bounded by  . However, the fact that the assertions kA in (5.4) are data-
dependent, the fixed-assertion validity theorem of Martin and Liu (2011) does not
apply. Based on the simulation results in Section 5.3.5, we claim that validity
does hold, but more theoretical work is needed to justify this claim.
5.3.4  The diabetes data example, cont.
When applied to the diabetes example with our initial full model, the above
method produces the results tabulated in Table 1. The table shows the ordering
of the covariates according to their rescaled least-squares estimates in (5.2), i.e.,
hdl has the smallest Z -value and  bmi has the largest. The last column shows
the plausibility function S,Plz evaluated at the assertions kA in (5.4), for

,111,= k . We start at the 11=k row and proceed up the table, selecting
variables until the plausibility for kA exceeds the 0.05= threshold. In this case,
the IM-based approach suggests that we select bmi, map, ltg, sex, the interaction

sexage  and, hence, the lower-order term age. R code for this example is
available at www.stat.purdue.edu/ chuanhai.

Order, k Covariate Z -value Plausibility of kA
1 hdl 0.65 0.3579
2 glu 1.16 0.0446
3 tch 1.21 0.2541
4 ldl 1.49 0.2740
5 tc 1.98 0.0971
6 age 2.51 0.0796
7 sexage  3.56 0.0024
8 sex 4.54 0.0005
9 ltg 4.56 0.0000

10 map 5.13 0.0000
11 bmi 7.98 0.0000

www.stat.purdue.edu/
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Table 1: IM variable selection results for the diabetes example in Section 5.3.4.
Note that only the leading digits are meaningful because the numerical results
are obtained via simulations with Monte Carlo sample size 10,000.

The analysis of the data in Efron et al. (2004) was slightly different in that only
the main effects were considered. Using Mallows' pC criterion, LARS selects
seven variables including bmi, ltg, map, hdl, sex, glu, and  tc, in the order of
being entered into the model. When the sexage  interaction is also considered,
both the pC and ten-fold cross validation criteria select all eleven variables.

5.3.5  A simulation study
Simulations are used to demonstrate the performance of the proposed IM
approach. To keep the presentation concise, we limit our comparison to the
popular lasso method implemented via the LARS algorithm of Efron et al (2004).
In our experiments, we generate data from the basic model (1.1), where each
row of X is sampled from a first-order autoregressive process with standard
Gaussian marginal distribution and pairwise correlation || ji between the thi and
thj components. We consider two scenarios of the regression coefficients:

,2,0,0,0)(3,1.5,0,0=β where effects of important variables are large, and
,0,0,0),0.85,0.85(0.85,0.85=β where the important variables have relatively small

effects. For each {0.5,0.8} and each β above, we simulated data with sample
size ,500,100050,100,200=n , each with 1000 data sets. For the LARS approach,
the tuning parameter was chosen according to both the Mallows' pC and the ten-
fold cross validation approaches. The results of the simulation studies (Figures 4-
7) are summarized using the percentages of correct, parsimonious, and
inclusive. The parsimonious models contain only a subset of important variables
and none of the unimportant variables, while the inclusive models contain all the
important variables plus at least one unimportant variables. For the inferential
model approach, we use 0.05= .

The results show that, in all the four scenarios, the LARS approach selects the
true model only about 20% of the time, independent of the sample size. This is
consistent to the findings of Leng et al. (2006) that, when the prediction accuracy
is used as the criterion to choose tuning parameters, LARS and related
procedures select the true set of predictors with a probability that is less than one
and does not depend on the sample size. Instead, the LARS approach tends to
select more predictors than necessary, which is shown by the high percentage of
inclusive models in all scenarios.

Compared to LARS, which almost always gives a larger-than-necessary model,
the IM approach has a much better performance in terms of choosing the correct
set of variables. When the sample size is small, it tends to choose the
parsimonious models with the most important variables. As the sample size
increases, more and more important variables are included and the percentage
of correctly selected models increases. Eventually with a sufficiently large sample



Inferential Models for Linear Regression

Pak.j.stat.oper.res. Vol.VII No. 2-Sp 2011 pp413-432 429

size, the percentage of correctly selected model stabilizes at about 95%, while
the remaining 5% of the time, it selects an inclusive model.

Although direct comparisons of different methods in simulations can be insightful,
it is important to keep in mind that the IM-based procedure is a bit more
ambitious than LARS or any other variable selection procedure in the following
way: to the set of variables selected by the IM procedure, there is an associated
uncertainty assessment in the form of a meaningful prior-free probabilistic
measure of evidence. In contrast, existing methods rely on an indirect frequentist
reasoning to justify their use. But, as our simulations demonstrate, the IM-based
procedure can also beat the classical methods at their own game.

Figure 4: Percentage of selected true model, parsimonious models, and inclusive
models when 0.5= and ,2,0,0,0)(3,1.5,0,0=β

Figure 5: Percentage of selected true model, parsimonious models, and inclusive
models when 0.8= and ,2,0,0,0)(3,1.5,0,0=β
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Figure 6: Percentage of selected true model, parsimonious models, and inclusive
models when 0.5= and ,0,0,0),0.85,0.85(0.85,0.85=β

Figure 7: Percentage of selected true model, parsimonious models, and inclusive
models when 0.8= and ,0,0,0),0.85,0.85(0.85,0.85=β

6. Prediction
Here we briefly discuss an IM-based procedure for prediction of future
observations. Suppose that model (1.1) is to be used for prediction and that it is
of interest to predict mRnewY , the response variables associated with m new
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covariate measurements aligned as columns of the pm matrix newX . Then the
full statistical model becomes

new new new new= , = , ( , ) ~ (0, ).n mN   Y X
β U Y X β U U U I

By using the conditional IM specified in (3.4) and (3.5) and the usual probability
calculus, we find a conditional IM for inference about newY , given by

1
new new new new new new= , with ~ (0, ( ) , ).mS t    Y X B T T I X X X X

That is, inference about newY is based on the conditional IM obtained by
conditioning on the observed direction of the residuals UP in the original
regression setup. This conditional IM has the m -variate Student-t vector newT as
the a-variable to be predicted. Then efficient inference about newY can be
obtained by specifying PRSs for predicting *

newt according to relevant assertions
about newY .

7. Discussion
In this paper we have elaborated on the recently proposed inferential model
framework, which produces prior-free probabilistic summaries of evidence
for/against assertions of interest and, moreover, these summaries have a
desirable frequency-calibration property. We have demonstrated here that IMs
are promising for data analysis with linear regression models by showing how
they can be used for model building and checking, variable selection, and
prediction. In particular, we have shown via real- and simulated-data examples
that one relatively simple IM-based strategy for variable selection can outperform
a popular and powerful existing method like lasso (via the LARS algorithm). We
expect that this new IM framework will be met with some initial skeptisism, and
foundational work to overturn this skepticism is ongoing. But we believe that the
positive numerical results alone make a strong enough case to pursue IMs
further.

Throughout we have assumed that the predictor matrix X is of full rank, but in
applications it may happen that XX is close to singular. This is not a problem
theoretically, but it may lead to some computational instability in the
reparametrization (5.1). However, the proposed model checking method in
Section 4 and the corresponding modeling process in Section 5.2 can be used as
an initial screening process whereby the set of candidate variables can be
pruned prior to using a formal variable selection process.

Although Gaussian linear regression is a fundamental problem, some
applications require other kinds of linear and non-linear models, such as Poisson
or logistic regression. The methodology presented here is tailored specifically to
the Gaussian case, so the calculations may not immediately apply in a problem
with a different model. But work is underway to extend both the theory and
methods described here to more general cases.
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