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Abstract

Many tests based on alternative models are considered to test the proportionality assumption for specified covariate.
The common point of all these alternatives is the linear form of an added component according to the covariate
concerned by the test while the proportionality can be also violated by a non linear form of this added component.
In this paper, we propose a test for proportional hazards assumption for specified covariates. The test is based on a
new alternative which can be applied in the two situations cited above and also when the hazards rates under different
values of covariates is not only constant as in the Cox model, but it may cross, go away, and may be monotonic with
time. The limit distribution of the test statistic is derived. Finite samples properties of the test power are analyzed by
simulation and compared with those of existing tests. Application on Real data examples are considered.
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1. Introduction

The most known semi-parametric model for analysis of failure time regression data is the Cox model introduced by
Cox (1972). A key assumption in this model is the proportionality of the effects of the covariates on the hazard rates.
Let Sx(t) and λx(t) be the survival and hazard rate functions under a p-dimensional covariate x = (x1, ..., xp). Denote
by Λx(t) =

∫ t
0
λx(u)du = −log(Sx(t)) , t ≥ 0, the cumulative hazard rate under x. The Cox model express the

hazard rate according to x as follow
λx(t) = eβ

T xλ0(t), (1)

where β is a vector of unknown parameters and λ0(t) stands for an unknown baseline hazard function. Under the
model (1) the cumulative hazard rate under x has the forme

Λx(t) = eβ
T xΛ0(t),

where Λ0(t) =
∫ t

0
λ0(t)dt is the cumulative baseline hazard function.

One of the main assumptions in the model (1) is of course the proportionality, that the ratio of two hazard under a
covariates x and y is constant in time,

λx(t)

λy(t)
= eβ

T (x−y).

Note that a model misspecification give an inappropriate interpretation of obtained results. This allowed several global
hazard proportionality tests to be developed. Among these tests we can cite those given by Cox (1972), Moreau et al.
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(1985), Lin (1991), Nagelkerke et al. (1984), Grambsch and Therneau (1994), Quantin et al. (1996), Bagdonavičius
et al. (2004).
If the proportionality hypothesis is rejected, so the identification of the covariates causing a such assupmtion violation
will be a matter of great interest. Statistical tests for checking the proportionality of a single covariate have been
considered by a number of authors, see for instance Kvaløy and Neef (2004), Kraus (2007), Grambsch and Therneau
(1994), Bagdonavičius and Levuliene (2019).

One of the most important inference tools is the following p score functions:

Uj(β, t) =

n∑
i=1

∫ t

0

x(i)
j −

n∑
k=1

Yk(u)x
(k)
j eβ

T x(k)

n∑
k=1

Yk(u)eβT x(k)

 dNi(u), j = 1, ..., p,

where n is the number of subjects and x(i), Ni(t), and Yi(t) are respectively the covariate, the failure indicator, and
the risk indicator at the moment t of the ith subject.
The estimation of the unknown vector parameters β in model (1) Cox (1972) proposed to solve the system U(β,∞) =

(U1(β,∞), ..., Up(β,∞)) = (0, ..., 0). Let β̂ be the obtained estimate of β.
Denote by I(β, t) minus the derivative of U(β, t) with respect to β. Note that J(β) = I(β,∞) is the information
matrix.
To examine the proportionality assumption of xj the jth component of the covariate x, Lin et al. (1993) propose to
use the tests of Kolmogorov-Smirnov type (KS) based on the statistic

KS =

√
Jjj(β̂) sup

t
|Uj(β̂, t)|,

where Jjj(β̂) is the jth diagonal element of the information matrix. On a 5% level, the null hypothesis is rejected
when KS ≥ 1.36.
There are also the test of Anderson-Darling (AD) and Cramer-von Mises (CV ) type based respectively on the fol-
lowing statistics:

CV = Jjj(β̂)

∫ ∞
0

Uj(β̂, t)
2 dq̂j(t) , AD = Jjj(β̂)

∫ ∞
0

Uj(β̂, t)
2

q̂j(t)(1− q̂j(t))
dq̂j(t),

where q̂j(t) =
Ijj(β̂,t)

Jjj(β̂)
. Note that these tests are studied by Kvaløy and Neef (2004) and the null hypothesis will be

rejected on a 5% level if CV ≥ 0.461, also if AD ≥ 2.492.

The second set of tests cited below consists on a different alternative models given by inserting a time varying compo-
nent depending on xj in the Cox model. We cited here three tests:

- The first that we note (G), is proposed by Grambsch and Therneau (1994) using the following model:

λx(t) = e(β+γg(t))T xλ0(t),

and test H0 : γj = 0 against H1 : γj 6= 0 for each j = 1, ..., p with wald test by estimating γ using the
scaled Schoenfeld residual and the generalized least squares. Some used form of g function are g(t) = t or
g(t) = log(t). Another choice of g(t) is the Kaplan-Meier estimate which is the default transform argument
in the function cox.zph from the package survival in R.

- The idea of the second test proposed by Kraus (2007) that we note (KR), consists of testing the proportionality
assumption of the component xj using a d smoothly time-varying coefficients. The test is score test and the
used alternative model have the following form:

λx(t) = eβ
T x+θTψ(t)xjλ0(t),
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where ψ is the smooth functions vector such that ψ(t) = (ψ1(t), ...ψd(t)),

ψj(t) = ϕj

(
F0(t)

F0(τ)

)
, (2)

ϕj , j = 1, ..., d are the smooth functions, and F0(t) = 1 − e−Λ0(t) is baseline distribution function. There are
many possible choices of ϕj (see, for instance, Peña (1998) and Kraus (2007)).

For deriving the reject or not of the proportionality assumption, we note that the test statistic is asymptotically
χ2
d-distributed.

- The third test that we note (BAG), is proposed by Bagdonavičius and Levuliene (2019). The authors consider the
following model as an alternative of proportionality assumption:

λx(t) =
eβ

T x+Λ0(t)eγxj

1 + eγxj
(
eΛ0(t)eγxj − 1

)λ0(t). (3)

This model by its complex expression form seems for the first time out of the class of the first two models for
testing the proportionality assumption of xj , but this is not true. Indeed, we can easily show that when γ tends
towards 0 (i.e we approach the null hypothesis), λx(t) reduces to the following form:

λx(t) = eβ
T x−γF0(t)xjλ0(t). (4)

An immediate consequence is that the two tests based on the two models (3) and (4) as alternatives, have the
same power. Note that the statistic of this test is asymptotically χ2

1-distributed and the null hypothesis will be
rejeted with a significance level α when the statistic value exceed the (1−α) critical value of the χ2

1 distribution.

In this paper, we present a test of the proportionality assumption in Cox model for each covariate separately. This
test is based on the score function corresponding to a new alternative which will be described in the next section. In
section 3, we present the test statistic. Investigation by simulation for the finite samples properties of the power of
the proposed test compared to those of the other tests cited below, is given in section 4. An application to a three real
examples is considered in section 5.

2. A new test alternative model

The formulation of the alternative model in (G), (KR) and (BAG) tests, is based on the following alternative:

λx(t) = eβ
T x+Ψ(t,γ)x, (5)

which the vector function Ψ(t, γ) take a special form in each of those tests and Ψ(t, 0) = 0.
Note that the added component for detecting the non proportionality in (5) is supposed to have a linear form according
to x, but it will be important to take in mind that the violation of the proportionality can be caused not only by time
dependent coefficients, but also by a non-linear form of the added component as for example if Ψ(t, γ) depend also
on x.
This idea is the principal motivation to generalizate (5) by the following classe of alternative models:

λx(t) = eβ
T x+Φ(t,γ,x)λ0(t), (6)

where in Φ(t, 0, x) = 0.
The classe (6) can provide a more and interesting elements serving to deal with many new cases of violation of the
proportionality assumption. In this article, we propose from this classe the following model defined as:

λx(t) = eβ
T x
(
1 + eβjxj t

)e−γxj−1
λ0(t), (7)

where βj and xj are respectively the jth components of the parameter vector β and the vector covariate x. Note that
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the model (7) can be generalized by remplacing t by a general positive function H(t) which can take many form (as
H(t) = t, H(t) = log(t), H(t) = Λ0(t), ...).
The Cox model is a particular case of the model (7) when γ = 0. The model (7) is very wide to the Cox model.
Indeed, we consider two vector covariates x and y. The ratio of hazard rates under model (7) is

λx(t)

λy(t)
= eβ

T (x−y)

(
1 + eβjxj t

)e−γxj−1

(1 + eβjyj t)
e−γyj−1

.

Note that c0 = eβ
T (x−y), so the ratio of hazard rates has the following properties:

(i) If γxj < γyj then the ratio of hazard increase with time of c0 to∞.

(ii) If γxj > γyj then the ratio of hazard decrease with time of c0 to 0.

(iii) If γ = 0 then we have the Cox model.

We remark that if c0 < 1 in (i) or if c0 > 1 in (ii) then the hazard rates (also the survival functions) intersect in a single
point t0.

3. Test statistic construction

Suppose that n patients are observed. The ith of them is observed under the covariate x(i). Denote by Ti and Ci the
failure and censoring times for the ith patient and set

Xi = min(Ti, Ci), δi = 1{Ti≤Ci},

Ni(t) = 1{Ti≤t,δi=1}, Yi(t) = 1{Xi≥t},

where 1A denotes the indicator of the event A. Then N(t) =
∑n
i=1Ni(t) and Y (t) =

∑n
i=1 Yi(t) are the numbers

of observed failures in the interval [0, t] and patients at risk just before the moment t, respectively. We suppose that
failure times Ti are absolutely continuous random variables.
Our purpose here is testing the proportionality assumption of a specified covariate let be xj the jth component of the
vector covariate x. Using the model (2), the null hypothesis will be so H0 : γ = 0 tested by the score test.
The partial likelihood function (PL) (see Andersen et al. (1993)) adapted to model (2) is

L(β, γ) =

n∏
i=1

∫ ∞
0

g
(
x(i), β, γ, u

)
n∑
j=1

Yj(u)g
(
x(j), β, γ, u

)dNi(u)


δi

(8)

where g(x, β, γ, u) = eβ
T x
(
1 + eβjxju

)e−γxj−1
.

So the γ-component score function derived from (4) is

Uγ(β, γ) =
∂

∂γ
log(L(β, γ))

=

n∑
i=1

∫ ∞
0

 ∂

∂γ
log
(
g(x(i), β, γ, u)

)
−

n∑
k=1

Yk(u) ∂
∂γ g(x(k), β, γ, u)

n∑
k=1

Yk(u)g(x(k), β, γ, u)

 dNi(u),

Under the null hypotheses H0 : γ = 0, this partial score function depend on the unknown β value which will be
replaced by its partial maximum likelihood estimator β̂ (see Cox (1972)). So the test statistic is

Ûj = Uγ(β̂, 0)

=

n∑
i=1

∫ ∞
0

(
ŵ(i)(u)− Ẽ(u, β̂)

)
dNi(u),
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where

ŵ(i)(u) = −x(i)
j log

(
1 + eβ̂jx

(i)
j Λ0(u)

)
, Ẽ(t, β) =

S̃(1)(t, β)

S(0)(t, β)
,

S(0)(t, β) =

n∑
i=1

Yi(t)e
βT x(i)

, S̃(1)(t, β) =

n∑
i=1

Yi(t)ŵ
(i)(t)eβ

T x(i)

To finalize the test construction, we need the asymptotic distribution of Ûj under the Cox model.
Set

E(t, β) =
S(1)(t, β)

S(0)(t, β)
, S(1)(t, β) =

n∑
i=1

x(i)(t)Yi(t) e
βT x(i)

,

S(2)(t, β) =

n∑
i=1

(x(i)(t))⊗2Yi(t) e
βT x(i)

,

S̃(2)(t, β) =

n∑
i=1

ŵ(i)(t)(x(i)(t))TYi(t) e
βT x(i)

,

˜̃S
(2)

(t, β) =

n∑
i=1

(ŵ(i)(t))⊗2Yi(t) e
βT x(i)

,

where A⊗2 = AAT for any vector A.
Denote by β0 the true value of β. Under the usual regularity conditions, the Doob-Meier decomposition, the delta
method, and the following representation:

n1/2(β̂ − β0) = (Σ(β0))
−1

n∑
i=1

∫ τ

0

{x(i)(u)− E(u, β0)}dMi(u) + op(1)

imply that

n−1/2Ûj = n−1/2
n∑
i=1

∫ ∞
0

{ŵ(i)(u)− Ẽ(u, β̂)}dNi(u) =

n−1/2
n∑
i=1

∫ ∞
0

{ŵ(i)(u)− Ẽ(u, β̂)}dMi(u)+

n−1/2

∫ ∞
0

{Ẽ(u, β0)− Ẽ(u, β̂)}S(0)(u, β0)dΛ0(u).

Applying the Taylor formula to the function β −→ Ẽ(u, β) give

Ẽ(u, β̂)− Ẽ(u, β0) =
∂Ẽ(u, β0)

∂β

(
β̂ − β0

)
.

That imply

n−1/2Ûj = n−1/2
n∑
i=1

∫ ∞
0

{ŵ(i)(u)− Ẽ(u, β0)}dMi(u)−

n−1

∫ ∞
0

∂Ẽ(u, β0)

∂β
S(0)(u, β0)dΛ0(u)n1/2(β̂ − β0) + op(1) =

n−1/2
n∑
i=1

∫ ∞
0

{ŵ(i)(u)− Ẽ(u, β0)}dMi(u)−

Σ∗Σ−1n−1/2
n∑
i=1

∫ ∞
0

{x(i)(u)− E(u, β0)}dMi(u) + op(1),
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where Σ and Σ∗ are the limits in probability of the random matrices,

Σ̂ = n−1

∫ ∞
0

V (u, β̂)dN(u), Σ̂∗ = n−1

∫ ∞
0

Ṽ (u, β̂)dN(u),

V (t, β) =
S(2)(t, β)

S(0)(t, β)
− (E(t, β))

⊗2
, Ṽ (t, β) =

S̃(2)(t, β)

S(0)(t, β)
− Ẽ(t, β)ET (t, β).

So

< n−1/2Ûj >= n−1
n∑
i=1

∫ ∞
0

{ŵ(i)(u)− Ẽ(u, β0)}⊗2eβ
T
0 x

(i)(u)Yi(u)dΛ0(u)−

2Σ∗Σ−1n−1
n∑
i=1

∫ ∞
0

{ŵ(i)(u)− Ẽ(u, β0)}{x(i)(u)− E(u, β0)}T eβ
T
0 x

(i)(u)

×

Yi(u)dΛ0(u) + Σ∗Σ−1n−1
n∑
i=1

∫ ∞
0

{x(i)(u)− E(u, β0)}⊗2eβ
T
0 x

(i)(u)×

Yi(u)dΛ0(u)Σ−1(Σ∗)T + op(1) = Σ∗∗ − Σ∗Σ−1(Σ∗)T + op(1),

where Σ∗∗ is the limit in probability of

Σ̂∗∗ = n−1

∫ ∞
0

˜̃V (u, β̂)dN(u),

with

˜̃V (u, β) =
˜̃S

(2)

(t, β)

S(0)(t, β)
−
(
Ẽ(t, β)

)⊗2

.

Similarly, the Lindeberg condition (see Andersen et al. (1993))

n−1
n∑
i=1

∫ ∞
0

{ŵ(i)
j (u)− Ẽj(u, β0)}21{|ŵ(i)

j (u)−Ẽj(u,β0|≥
√
nε}e

βT0 x
(i)

Yi(u)dΛ0(u)
P→ 0.

is verified. It follows that the stochastic process n−1/2Ûj converges in distribution to the zero-mean Gaussian. In
particular,

n−1/2Ûj
D→ N(0, D),

where D = Σ∗∗ − Σ∗Σ−1(Σ∗)T .
Finally, the score statistic for testing H0 : γ = 0 is

T = Û2
j /D̂,

where D̂ = n
(

Σ̂∗∗ − Σ̂∗Σ̂−1(Σ̂∗)T
)

. T is asymptotically χ2
1-distributed as n tend to∞. So H0 will be rejected with

a significance level α if T > χ2
1−α(1) where χ2

1−α(1) is the (1− α) critical value of the χ2
1 distribution.

4. Simulation study

The primary objective of the small simulation study performed in this section is to investigate the finite sample prop-
erties of the suggested test according to different form of added component to Cox model. Specially the level and
power properties of the proposed test presented in Section 2 and finalized in section 3, are studied and compared
simultaneously with those of the other tests cited in section 1.
In this study, we consider five cases: the first to examine the level properties of considered tests, the second and the third
to study the power and the level properties when the ratio of hazard rates is respectively monotonic and nonmonotonic
in function of time, the fourth and last case to show the power comportement when violating the proportionality by
including a non linear form of covariate component.
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Rejection probabilities are estimated by Monte Carlo simulations, in all cases studied. 5000 repetitions in each case
are used with a fixed level for the test is 5%. This implies that the standard deviation of the reported estimated rejection

probabilities is at most
√

0.5×0.5
5000 ' 0.0071 and for level simulations typically around

√
0.05×0.95

5000 ' 0.0031.
The simulations are performed in R language (Lafaye de Micheaux et al. (2011)). The both complete and censoring
cases are considered. The number of units is n = 50, 100, and 200. The failure time is genereted from the specific
model in each case. The used expression to do it is Ti = F−1

xi (Ui) for any i = 1, ..., n, where Ui is the ith element in
n generated observations from Uniform[0,1] distribution and Fxi is the distribution function of the ith unit.
The choosing probability of censoring is p = 0 (for complete data), p = 0.2 and p = 0.5 (there are approximately 20%
and 50% censoring units respectively). The censoring time is taken constant of each subject, that means that Ci = di,
for any i = 1, ..., n. The constant di verify Sxi(di) = p (p 6= 0) where Sxi is the survival function of the ith unit.
For the (G) test, we use the function cox.zph from the package survival in R with the default transform
argument value which is ''km'' (the Kaplan-Meier estimate computed from the data without covariates). Among
the many choice of the smoothly functions in (KR) test, we use d orthonormal Legendre polynomials provided
by orthopolynom package in R with d = 2, 3, and 4.

4.1. Case 1

We start the study of level properties of the different tests considered by generating failure time Ti (i = 1, ..., n) from
the model

λx(t) = 2e2x1+x2 ,

where the covariates x1 and x2 are Uniform[0,1] distributed.
The rejection probabilities for different sample sizes n are reported in Table 1.

Table 1: Estimated rejection probabilities for different values of censoring probability p and different sample sizes n.

Test
Proposed (AD) (CV ) (KS) (G) (BAG) (KR)

n p Cov. test d = 2 d = 3 d = 4
50 0 x1 0.0506 0.0674 0.0620 0.0462 0.0318 0.0568 0.0432 0.0372 0.0320

x2 0.0570 0.0618 0.0544 0.0418 0.0370 0.0564 0.0343 0.0268 0.0264

0.2 x1 0.0528 0.0532 0.0566 0.0404 0.0246 0.0552 0.0474 0.0410 0.0328
x2 0.0550 0.0618 0.0610 0.0444 0.0412 0.0546 0.0398 0.0352 0.0304

0.5 x1 0.0566 0.0536 0.0570 0.0372 0.0164 0.0566 0.0480 0.0402 0.0318
x2 0.0578 0.0584 0.0586 0.0342 0.0338 0.0534 0.0420 0.0350 0.0262

100 0 x1 0.0532 0.0568 0.0524 0.0442 0.0276 0.0490 0.0378 0.0380 0.0410
x2 0.0566 0.0602 0.0568 0.0450 0.0446 0.0564 0.0378 0.0352 0.0340

0.2 x1 0.0582 0.0608 0.0602 0.0494 0.0224 0.0526 0.0478 0.0428 0.0416
x2 0.0624 0.0646 0.0604 0.0470 0.0458 0.0598 0.0482 0.0398 0.0346

0.5 x1 0.0488 0.0486 0.0492 0.0386 0.0112 0.0514 0.0460 0.039 0.0346
x2 0.0496 0.0596 0.0552 0.0420 0.0318 0.0544 0.0418 0.0350 0.0286

200 0 x1 0.0572 0.0586 0.0576 0.0482 0.0356 0.0574 0.0424 0.0408 0.0418
x2 0.0534 0.0570 0.0536 0.0460 0.0444 0.0540 0.0430 0.0362 0.0360

0.2 x1 0.0490 0.0476 0.0474 0.0420 0.0174 0.0490 0.0434 0.0402 0.0368
x2 0.0498 0.0528 0.0504 0.0474 0.0352 0.0488 0.0440 0.0402 0.0364

0.5 x1 0.0508 0.0478 0.0496 0.0364 0.0308 0.0450 0.0448 0.0408 0.0338
x2 0.0512 0.0522 0.0534 0.0430 0.0308 0.0450 0.0448 0.0408 0.0338

Table 1 illustrate level properties of the considered tests. We see that the all tests have generally a very good level
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properties even for fairly small sample sizes. The tests (G), (KS) and (KR) are clearly conservative. Specially (KR)
becomes more conservative when the number of the used smoothly functions increases which is natural because when
including a redundant component that will increases the test critical value with non significative change in the test
statistic value.

4.2. Cas 2

In this second case we shall examine the level and the power of the test in the same model containing both proportional
and non-proportional covariates. The suggested model is

λx(t) = 2e(6t−1)x1+2x2 ,

where x1 and x2 are Uniform[0,2] distributed. It is clear that the proportionality is violated for x1 which is due to the
added component 6tx1. Note that under this model the ratio of hazard rates is monotonic in function of time.
The table 2 contain the probability of rejection of proportionality assumption of x1 and x2.

Table 2: Estimated rejection probabilities for different values of censoring probability p and different sample sizes n.

Test
Proposed (AD) (CV ) (KS) (G) (BAG) (KR)

n p Cov. test d = 2 d = 3 d = 4
50 0 x1 0.4818 0.5602 0.5220 0.4292 0.4768 0.5856 0.3722 0.2816 0.2194

x2 0.0512 0.0778 0.0680 0.0490 0.0352 0.0760 0.0468 0.0386 0.0412

0.2 x1 0.3022 0.3896 0.3618 0.2802 0.3314 0.3962 0.2210 0.1632 0.1238
x2 0.0518 0.0608 0.0564 0.0364 0.0216 0.0670 0.0510 0.0436 0.0384

0.5 x1 0.1266 0.1768 0.1700 0.1206 0.1512 0.1708 0.0924 0.0618 0.0474
x2 0.0534 0.0676 0.0652 0.0426 0.0164 0.0670 0.0518 0.0412 0.0342

100 0 x1 0.8128 0.8832 0.8608 0.7996 0.8376 0.9034 0.7974 0.7114 0.6270
x2 0.0486 0.0776 0.0704 0.0530 0.0428 0.0836 0.0574 0.0518 0.0500

0.2 x1 0.5674 0.6866 0.6564 0.5638 0.6476 0.7072 0.5298 0.4304 0.3642
x2 0.0462 0.0594 0.0582 0.0454 0.0316 0.0542 0.0566 0.0534 0.0458

0.5 x1 0.1720 0.3144 0.2992 0.2318 0.1778 0.3040 0.1828 0.1404 0.1094
x2 0.0548 0.0712 0.0682 0.0454 0.0158 0.0804 0.0522 0.0450 0.0350

200 0 x1 0.9826 0.9952 0.9936 0.9858 0.9918 0.9970 0.9890 0.9788 0.9658
x2 0.0418 0.0724 0.0702 0.0600 0.0664 0.0772 0.0808 0.0666 0.0700

0.2 x1 0.8464 0.9306 0.9160 0.8718 0.9196 0.9416 0.8804 0.8242 0.7692
x2 0.0500 0.0660 0.0648 0.0508 0.0508 0.0592 0.0696 0.0716 0.0614

0.5 x1 0.3450 0.5444 0.5192 0.4484 0.5110 0.5584 0.4046 0.3246 0.2646
x2 0.0444 0.0766 0.0628 0.0532 0.0188 0.0898 0.0632 0.0516 0.0456

For detecting the non-proportionality of x1, all considered tests have not a great difference power except when n take
a small value, the (KR) test has a lowest power. In testing the proportionality of x2, the (G) test is conservative and
it is more conservative if p increases, while the probability of the proportionality rejection of the two tests (AD) and
(CV ) exceed the fixed level test.
We find also and clearly that the proposed and (KS) tests on the one hand, and (AD) and (CV ) on the other hand,
have the same results in all cases of n and p, and in (KR) test, the power and level decrease when the number of
smoothly functions increase.
In conclusion, by comparing and analyzing the different results in table 2, of testing the proportionality of the two
covariates x1 and x2, the proposed and (KS) tests are the best in this case.
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4.3. Cas 3

This third case is an example of nonmonotonic ratio of hazard rates in time. The associated model is

λx(t) = e0.1x1−0.75|t−1|x1−0.5x2 ,

where x1 and x2 are Uniform[0,1] distributed. Note that the adding component here is −0.75|t− 1|x1 which is linear
according to x1. The table 3 show the results of testing the proportionality assumption of each one of the covariates
x1 and x2.

Table 3: Estimated rejection probabilities for different values of censoring probability p and different sample sizes n.

Test
Proposed (AD) (CV ) (KS) (G) (BAG) (KR)

n p Cov. test d = 2 d = 3 d = 4
50 0 x1 0.3716 0.4276 0.3598 0.2496 0.3244 0.3930 0.2926 0.2486 0.1952

x2 0.0598 0.0654 0.0596 0.0424 0.0424 0.0558 0.0498 0.0396 0.0346

0.2 x1 0.2648 0.3132 0.2820 0.1958 0.2694 0.3070 0.2854 0.2190 0.1620
x2 0.0488 0.0506 0.0494 0.0380 0.0386 0.0468 0.0532 0.0508 0.0438

0.5 x1 0.2546 0.2926 0.2966 0.2010 0.2600 0.2978 0.3134 0.2056 0.1624
x2 0.0546 0.0436 0.0450 0.026 0.0326 0.0460 0.0558 0.0450 0.0356

100 0 x1 0.6754 0.7596 0.6514 0.5228 0.6416 0.6932 0.6342 0.7182 0.6484
x2 0.0532 0.0528 0.0498 0.0464 0.0410 0.0504 0.0490 0.0490 0.0422

0.2 x1 0.4872 0.6160 0.5070 0.4142 0.4858 0.5374 0.6126 0.6586 0.5445
x2 0.0510 0.0536 0.0550 0.0412 0.0462 0.0562 0.0518 0.0454 0.0404

0.5 x1 0.5198 0.6348 0.5870 0.4926 0.5112 0.5646 0.7146 0.6442 0.5472
x2 0.0552 0.0520 0.0530 0.0374 0.0388 0.0540 0.0538 0.0450 0.0392

200 0 x1 0.9408 0.9800 0.9272 0.8772 0.9262 0.9446 0.9358 0.9870 0.9878
x2 0.0548 0.0544 0.0522 0.0398 0.0458 0.0542 0.0490 0.0492 0.0464

0.2 x1 0.8012 0.9354 0.8354 0.8090 0.7926 0.8360 0.9290 0.9748 0.9748
x2 0.0458 0.0450 0.0474 0.0426 0.0378 0.0450 0.0514 0.0542 0.0510

0.5 x1 0.8400 0.9498 0.9022 0.8746 0.8116 0.8498 0.9730 0.9830 0.9696
x2 0.0514 0.0544 0.0564 0.0438 0.0400 0.0582 0.0512 0.0480 0.0448

We see in Table 3 that all considered tests has a similar and large power for detecting a nonmonotonic deviation of the
proportionality assumption, and they give a probability of rejection near to the fixed level in testing the proportionality
of the proportional covariate x2.

4.4. Cas 4

As mentionned in section 2, the violation of the proportionality can be caused not only by time dependent coefficients
as in case 1-3, but may be by a non-linear form of the added component in Cox model. Our aim here is to study the
power comportement of the tests cited in this article according to a nonlinear added component in function of x. For
that we propose the following simple model with one covariate:

λx(t) = e0.5x+xat,

where x is Uniform[0,2] distributed and a present the non-linearity degree taking the following values: 0, 1, 2, 3, 4,
5. In this case n is fixed at 100, and p take the two values: 0 and 0.2. The results of the performed simulations are
resumed in the table 4.
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Table 4: Estimated rejection probabilities for different values of both probability of censoring p and a.

Test
Proposed (AD) (CV ) (KS) (G) (BAG) (KR)

p a test d = 2 d = 3 d = 4
0 0 0.0520 0.0518 0.0496 0.0404 0.0378 0.0532 0.0430 0.0392 0.0374

1 0.2268 0.2874 0.2632 0.1952 0.1964 0.2996 0.1758 0.1250 0.0998
2 0.4746 0.4126 0.4032 0.3252 0.2814 0.3630 0.2180 0.1636 0.1290
3 0.7006 0.4110 0.4130 0.3660 0.2552 0.2430 0.1850 0.1668 0.1296
4 0.8944 0.3422 0.3252 0.3156 0.1592 0.0996 0.1030 0.1254 0.1168
5 0.9594 0.2682 0.2150 0.2450 0.0662 0.0662 0.0420 0.0742 0.0812

0.2 0 0.0540 0.0524 0.0558 0.0410 0.0290 0.0576 0.0470 0.0418 0.0374
1 0.1050 0.1080 0.111 0.0834 0.0544 0.1136 0.0846 0.0628 0.0536
2 0.1946 0.1704 0.1680 0.1330 0.0768 0.1462 0.1060 0.0840 0.0678
3 0.3460 0.1846 0.1926 0.1616 0.0798 0.1092 0.1136 0.0958 0.0802
4 0.5202 0.1902 0.1806 0.1724 0.0568 0.0660 0.0974 0.1026 0.0928
5 0.6704 0.1886 0.1534 0.1696 0.0442 0.0892 0.0768 0.0920 0.0898

As shown in Table 4, for a = 0 all the tests give almost the same probability of rejection which is close to the fixed
level. This is natural since a = 0 corresponds to the proportionality hypothesis and the corresponding results are
already discussed in case 1.
For a = 1, all the tests almost have similar power except that of the (KR) test with d = 3 and d = 4.
When a exceeds 1, the proposed test has shown that it is the powerfull compared to other tests and the difference
between its power and that of other tests becomes clearer when a increases.

4.5. Cas 5

This case was included in order to confirm the results obtained in case 4 by considering two covariates one is non-
proportional caused by adding a non-linear component according to herself and the other is proportional. The proposed
model is

λx(t) = e0.5x1+ 4
x1
t+0.5x2 , (9)

where x1 and x2 are Uniform[0,1] distributed.
The results of the performed simulations are reported in the table 5.

The obtained results in this case show the great power of the proposed test based on alternative model (7) to distinguish
between the proportional and non proportional covariates in (9). The (AD), (CV ), (KS) and (BAG) is not able
to have this properties with their very poor power as shown in table 5 while the (G) and (KR) tests asserted the
proportionality in the two covariates which is shown in their rejection probabilities close to the fixed level for the
different values of n and p.

4.6. Comments

The simulation study carried out in this article clearly showed in testing the proportionality of specified covariate that:

First, the proposed test give the same results as the existing tests, if this covariate is proportional (its corresponding
coefficient is constant in time) or not (its coefficient is time dependent, which means, introduction into the cox
model, of a time and linear component with respect to the covariate concerned by the test).

Second, the proposed test proved that it is the only one among all the tests cited here able of detecting the non-
proportionality of a covariate which due to the existence, in the cox model, of a time and non-linear component
with respect to this covariate .
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Table 5: Estimated rejection probabilities for different values of censoring probability p and different sample sizes n.

Test
Proposed (AD) (CV ) (KS) (G) (BAG) (KR)

n p Cov. test d = 2 d = 3 d = 4
50 0 x1 0.4250 0.1012 0.0976 0.1018 0.0526 0.097 0.0512 0.0468 0.0476

x2 0.0548 0.0582 0.0500 0.0372 0.0368 0.0520 0.0416 0.0388 0.0348

0.2 x1 0.3796 0.1116 0.1082 0.1028 0.0632 0.0998 0.0562 0.0532 0.0520
x2 0.0566 0.0512 0.0500 0.0360 0.0398 0.0492 0.0506 0.0448 0.0372

0.5 x1 0.2172 0.0882 0.0906 0.0770 0.0540 0.0786 0.0566 0.0468 0.0408
x2 0.0534 0.0474 0.0484 0.0344 0.0404 0.0494 0.0522 0.0424 0.0358

100 0 x1 0.6594 0.1048 0.0970 0.1140 0.0560 0.1000 0.0456 0.0484 0.0454
x2 0.0540 0.0560 0.0546 0.0416 0.0428 0.0486 0.0470 0.0424 0.0408

0.2 x1 0.6556 0.1140 0.1096 0.1130 0.0602 0.0950 0.0590 0.0582 0.0518
x2 0.0542 0.0580 0.0554 0.0428 0.0460 0.0550 0.0470 0.0410 0.0432

0.5 x1 0.3946 0.1016 0.0974 0.0960 0.0566 0.0838 0.0580 0.0512 0.0478
x2 0.0514 0.0512 0.0476 0.0362 0.0376 0.0502 0.0518 0.0460 0.0398

200 0 x1 0.9056 0.1168 0.0990 0.1274 0.0586 0.1006 0.0490 0.0458 0.0482
x2 0.0592 0.0572 0.0546 0.0494 0.0472 0.0504 0.0472 0.0476 0.0414

0.2 x1 0.9116 0.1314 0.1144 0.1308 0.0650 0.1000 0.0672 0.0646 0.0646
x2 0.0522 0.0532 0.0508 0.0440 0.0430 0.0486 0.0470 0.0498 0.0476

0.5 x1 0.6704 0.0998 0.0918 0.1010 0.0528 0.0814 0.0572 0.0564 0.0540
x2 0.0512 0.0456 0.0496 0.0418 0.0360 0.0494 0.0514 0.0466 0.0430

5. Real data analysis

For illustrating application on real data of the proposed test compared to the cited tests in this article, we use three
examples. To calculate the p-value of (AD), (CV ), and (KS) we use respectively the following functions: pAD,
pCvM (both are from goftest package), and pkolmim (from kolmim package).

5.1. Example 1 (Gastric cancer data):

Stablein and Koutrouvelis (1985) studied the well-known two-sample data of the Gastrointestinal Tumor Study Group
concerning effects of chemotherapy (x = 0) and chemotherapy plus radiotherapy (x = 1) on the survival times of
gastric cancer patients. The number of patients is n = 90. The data are right-censored. The p-values of the tests are
reported in the table 6.

Table 6: P-value of test statistic in testing the proportionality assumption for treatmen covariate in gastric cancer
data.

Test
Proposed (AD) (CV ) (KS) (G) (BAG) (KR)

Covariable test d = 2 d = 3 d = 4
treatment 0.0041 0.0004 0.0003 0.0006 0.0003 0.0003 0.0018 0.0051 0.0065

The proportionality assumption of the chemo and chemo-radiotherapy is strongly rejected by all tests. The result is
natural because the Kaplan-Meier estimators of the survival functions of two patient groups intersect (see for instance
Stablein and Koutrouvelis (1985) and Bagdonavičius et al. (2004)).
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5.2. Example 2 (The PBC data):

The primary biliary cirrhosis (PBC) data from the Mayo Clinic is a fatal chronic liver disease, and out of the 418
patients followed in the study, 161 died before study closure. A listing of the data is found in survival package in R.
In a study of the data by Dickson et al. (1989) a proportional hazards model with the five covariates age , edema,
log(bilirubin), log(protime) and log(albumin) was fitted. By applying the coxph function from
survival package in R, the results of fitted covariates are

> coxph(Surv(time,status==2)˜age+edema+log(bili)+log(protime)
+log(albumin),data=pbc)

Call:
coxph(formula = Surv(time, status == 2) ˜ age + edema + log(bili) +

log(protime) + log(albumin), data = pbc)

coef exp(coef) se(coef) z p
age 0.03961 1.04040 0.00767 5.16 2.4e-07
edema 0.89631 2.45055 0.27141 3.30 0.00096
log(bili) 0.86355 2.37157 0.08294 10.41 < 2e-16
log(protime) 2.38684 10.87905 0.76851 3.11 0.00190
log(albumin) -2.50692 0.08152 0.65292 -3.84 0.00012

All covariates have a significant effect in Cox model as shown in above fit results. We now examine the proportionality
assumption for each covariate among the five covariates. By applying the cited tests, the p-value of the corresponding
test statistics are reported in the table 7.

Table 7: P-value of test statistic in testing the proportionality assumption for age, edema, log(bili),
log(protime), and log(albumin) covariates in PBC data.

Test
Proposed (AD) (CV ) (KS) (G) (BAG) (KR)

Covariable test d = 2 d = 3 d = 4
age 0.2835 0.7334 0.6252 0.5768 0.9622 0.8203 0.2783 0.4430 0.4663

edema 0.0541 0.0447 0.0356 0.0194 0.3870 0.1625 0.0860 0.1207 0.0088
log(bili) 0.2045 0.2388 0.2110 0.1489 0.1329 0.2667 0.3775 0.4005 0.2218

log(protime) 0.0005 0.0009 0.0009 0.0043 0.0010 0.0187 0.0004 0.0003 0.0008
log(albumin) 0.4325 0.4837 0.4608 0.5380 0.6557 0.2775 0.4960 0.2918 0.4305

We see that on the one hand all tests strongly reject the proportionality assumption in log(protime) covariate and
show its validation for age, log(bili), and log(albumin) covariates. On the other hand, we note that only the
proposed test and (AD), (CV ), (KS) tests can detect non-proportionality in edema while the (KR) test detect the
same result if the number of used smoothly functions is well chosen.

5.3. Example 3 (The Colon cancer data):

A national intergroup trial was conducted in the 1980’s to study the drugs levamisole and fluorouracil for adjuvant
therapy of resected colon carcinoma. In the study, 929 patients with stage C disease were randomly assigned to ob-
servation, levamisole alone, or levamisole combined with fluorouracil (treatment covariate). The time to cancer
recurrence and the survival time were both considered important outcome measures. There are two rows per person,
indicated by the event type (etype) covariate – etype==1 indicates that row corresponds to recurrence; etype==2
indicates death.
In this trial, 315, 310 and 304 patients received observation, levamisole alone, and levamisole combined with fluo-
rouracil, respectively. The data are imported from survival package and each subjet is described by 10 covariates
other than treatment. This data was modeled by the Cox model of mutivariate failure time (recurrence time, death
times) in Lin (1994).
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Our aim here is to test the proportionality of each individual covariate in these data. That will be performed on two
subsets of original data. The first is the survival time data and the second is the recurrence cancer time data noted
respectively colon death and colon recurr. To obtain those two subsets, we filter the original data according
to the etype covariate. Then we eliminate the patients having a NA value in any of their described covariates in
both two subsets. We note the obtained subsets respectively colon death1 and colon recurr1. They have
888 patients in each one. In the categorical treatment covariate (noted in colon data rx) we take 1, 2, and 3
values respectively for Obs (observation), Lev (levamisole), and Lev+5FU ( levamisole combined with fluorouracil)
categories.

5.3.1. Survival time data

In this part, we are interested in the survival time data subset colon death1. Among the 10th covariates in data
we use the backward elimination procedure to select those that are significant in Cox model. The last step in this
procedure give the following result:

> coxph(Surv(time,status==1)˜as.numeric(rx)+nodes+extent+surg,data=colon_death1)
Call:
coxph(formula = Surv(time, status == 1) ˜ as.numeric(rx) + nodes +

extent + surg, data = colon_death1)

coef exp(coef) se(coef) z p
as.numeric(rx) -0.17634 0.83834 0.05944 -2.97 0.003
nodes 0.09076 1.09500 0.00923 9.83 < 2e-16
extent 0.50275 1.65325 0.11530 4.36 1.3e-05
surg 0.25129 1.28568 0.10603 2.37 0.018

The following table contain the obtained test statistic p-values in testing the proportionality hypothesis by the different
tests presented in this article.

Table 8: P-value of test statistic in testing the proportionality assumption for rx (treatment), nodes, extent, and
surg covariates in suvival time data

Test
Proposed (AD) (CV ) (KS) (G) (BAG) (KR)

Covariable test d = 2 d = 3 d = 4
treatment 0.0551 0.1761 0.2066 0.3746 0.1365 0.1711 0.2544 0.2896 0.4297
nodes 0.0017 0.9799 0.9833 0.9965 0.8190 0.8812 0.9813 0.9888 0.3381
extent 0.0686 0.0765 0.0658 0.1489 0.0497 0.0564 0.1329 0.2481 0.3870
surg 0.5305 0.7424 0.7978 0.8609 0.7617 0.9664 0.4652 0.6721 0.7780

We see in table 8 that the proportionality hypothesis is accepted by all tests in surg covariate, also the proposed
test and (AD), (CV ), (G) and (BAG) tests reject it with a fixed level 10% in extent covariate while (KS) and
(KR) tests accept it. The importante result here is that the proposed test is the only one that detected the violation of
proportionality assumption in treatment cavariate (for fixed level equal to 10%) and strongly in nodes covariate.

5.3.2. Recurrence time data

By using the backward elimination procedure in colon recurr1 data we obtained the same significant covariates
as in colon death1. The results of fitted covariates by cox model are

> coxph(Surv(time,status==1)˜as.numeric(rx)+nodes+extent+surg,data=colon_recurr1)
Call:
coxph(formula = Surv(time, status == 1) ˜ as.numeric(rx) + nodes +

extent + surg, data = colon_recurr1)

Testing the proportionality assumption for specified covariate in the cox model 447



Pak.j.stat.oper.res. Vol.17 No.2 2020 pp 435-449 DOI: http://dx.doi.org/10.18187/pjsor.v17i2.2998

coef exp(coef) se(coef) z p
as.numeric(rx) -0.23891 0.78749 0.05849 -4.08 4.4e-05
nodes 0.08130 1.08469 0.00919 8.85 < 2e-16
extent 0.50968 1.66476 0.11611 4.39 1.1e-05
surg 0.23260 1.26188 0.10379 2.24 0.025

Now we perform the cited tests on colon recurr1 data to test the hypothesis of proportionality of each of the
covariates. The p-values of the test statistics are calculated and resumed in the table 9 The results in the table 9 shown

Table 9: P-value of test statistic in testing the proportionality assumption for rx (treatment), nodes, extent, and
surg covariates in recurrence time data.

Test
Proposed (AD) (CV ) (KS) (G) (BAG) (KR)

Covariable test d = 2 d = 3 d = 4
rx 0.8539 0.7460 0.7085 0.8920 0.7190 0.8888 0.4773 0.6427 0.6292

nodes 0.0004 0.3699 0.3529 0.7384 0.3618 0.3061 0.1757 0.2934 0.3633
extent 0.9157 0.3995 0.3732 0.4218 0.7802 0.5845 0.1073 0.1885 0.2743
surg 0.1252 0.2792 0.3091 0.6179 0.1908 0.1754 0.4048 0.3532 0.4368

that all tests accept the proportionality in all covariates, except the proposed test which the only one detecting the non
proportionality in nodes.

6. Conclusion

To test the proportionality assumption for specified covariate, an alternative model of the Cox model is considered.
This alternative is motivated by that the considered tests based on alternatives suppose that the violation of the pro-
portionality assumption is due to an added time component with a linear form according to the covariate concerned
by the test while this added component can to have a non linear form. The properties of the proposed alternative
model are discussed, the test statistic based on it, is based on score function and it is asymptotically χ2

1-distributed. To
compare the power of the proposed test against the existing tests, a simulation study is performed using five cases. The
obtained results shown that the proposed test is almost powerfull compared to the others tests specially when the added
component to the cox model have a non linear form. In the end, three real data are considered. For some covariates
the proposed test is the only one that detect the non proportionality in them.
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