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Abstract 

 

The Huber M-estimator is proposed in this study as a robust method for estimating the parameters of the cumulative 

odds model, which includes a logistic link function and polytomous explanatory variables. With the help of an 

intensive Monte Carlo simulation study carried out using the statistical software R, this study evaluates the 

performance of the maximum likelihood estimator (MLE) and the robust technique developed. Bias, RMSE, and 

the Lipsitz Statistic are used to measure comparisons. When conducting the simulation study, different sample 

sizes, contamination proportions, and error standard deviations are considered. Preliminary findings indicate that 

the M-estimator with Huber weight estimates produces the best results for parameter estimation and overall model 
fitting compared to the MLE. As an illustration, the procedure is applied to real-world data of students' final exam 

grades as measured by two different estimators. 
 

Key Words: Cumulative Odds Model, Maximum Likelihood Estimator, Ordinal Response Model, Robust M-

estimator, Students' Final Exam Grades. 
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1. Introduction  

The Fourth Industrial Revolution requires more precise data analysis to produce new technology and apps that improve 

people's lives. Many academics have recently moved to qualitative data to do more profound research. Qualitative 

data are frequently measured using nominal and ordinal scales. Ordinal data is commonly used in scientific research, 

education, sociological psychology, and economics (Agresti, 2010). The emergence of item instruments has raised 

interest in this form of data. Generally, category data appear when the item is expressed as an opinion, judgment, or 

rating. An online solution also reduces the cost of data collection. 

 
Past scholars have built numerous ordinal data models based on Agresti (2010) and Tutz (2014). Ordinal data can be 

analysed using log-linear and logit models. Unlike the logit model, which treats one variable as a response and another 

as a covariate, the log-linear model solely looks at the relationship pattern between ordinal category variables. Previous 

researchers created various logit models. The models include polytomous, cumulative, partial proportional, adjacent 

category, continuation ratio, and stereotype ordinal regression. 
 

As demonstrated by Huber (1981), Hampel et al. (1986), Maronna et al. (2006), and Huber & Ronchetti (2009), 

literature has made a significant contribution to the robustness of discrete and continuous data. However, the ordinal 
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model's robustness has overshadowed its gains. Occasionally, respondents purposefully or mistakenly choose the 

wrong category (Jiang et al., 2019). This situation changed the estimator's nature and modelling. Only a few research 

have revealed a robust ordinal regression model. Recently, Scalera et al. (2021) presented requirements for evaluating 

the robustness of link functions when the covariates are outlier free. Iannario et al. (2017) used a robust M-estimator 

instead of maximum likelihood estimates of ordinal response models. They evaluated the estimator's performance in 
five different models with dichotomous and continuous explanatory variables. To test the Cub model's resilience, 

Iannario et al. (2016) used uniform random variables and binomial shifts. Croux et al. (2013) propose a robust 

estimator that includes a weighting step for an ordinal response model with a logistic link function. Moustaki & 

Victoria-Feser (2006) created a robust LISREL alternative and a robust estimator for latent variable models. On the 

other hand, the Bayesian technique has become increasingly popular among researchers (Al-Taweel & Sadeek, 2020). 

Albert & Chib (1993) and Albert & Chib (1995) developed residual Bayesian for categorical and ordinal data to detect 

outliers. However, none of the researchers employs M-estimator to estimate ordinal models with polytomous 

explanatory variables. 

 

Thus, this study only estimates the cumulative odds model (COM) parameter with a logistic link function and 

polytomous explanatory factors to overcome outlier data. This model was chosen because it is extensively utilised by 

researchers who prefer its outcomes to other ordinal models. This paper developed a robust M-estimator based on 
Huber's weighting method. Monte Carlo simulation will be used to compare the maximum likelihood estimator (MLE) 

and the suggested M-estimator. Fitting models will evaluate the performance of these estimators to simulation data 

for various sample sizes, contamination proportions, and outlier point distances. The model's overall performance is 

assessed using the Lipsitz Statistic. Next, the approach will be applied to students' final exam grades estimated by two 

estimators. 

 

2. Cumulative Odds Model 

 

McCullagh (1980) proposed the COM, known as an odds ratio model. The latent regression model is translated into 

the Equation using variable Y as a multinomial categorical response and variable X as an m-dimensional vector for 

covariates with polytomous categories: 

 

𝑃(𝑌𝑖 ≤ 𝑗) = 𝑌𝑖
∗ =∑𝑥𝑖𝑗

′ 𝛽𝑗

𝑚

𝑗=1

+ 𝜀𝑖 , 𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2,… ,𝑚; 𝛼𝑗−1 < 𝑌𝑖
∗ < 𝛼𝑗 , (1) 

 

where  𝛽 is the parameter of slope and 𝑥′ is matrix transpose for covariates. 

 

The probability distribution of 𝑌𝑖 is denoted by: 

𝑃(𝑌𝑖 = 𝑗|𝑥𝑖𝑗) = 𝑃(𝛼𝑗−1 < 𝑌𝑖
∗ < 𝛼𝑗) = 𝐹 (𝛼𝑗 −∑𝑥𝑖𝑗

′ 𝛽𝑗

𝑚

𝑗=1

)− 𝐹(𝛼𝑗−1 −∑𝑥𝑖𝑗−1
′ 𝛽𝑗−1

𝑚

𝑗=1

), (2) 

 

where −∞ = 𝛼0 < 𝛼1 < ⋯ < 𝛼𝑚 = +∞ and 𝐹(. ) is a cumulative distribution function for a random variable 𝜀𝑖. 
𝑃(𝑌𝑖 ≥ 𝑗) is another similar equation proposed by scholars and software (Croux et al., 2013). The estimator coefficient 

in the second equation has the opposite sign. 
 

According to (2), the regression coefficient vector is not dependent on i. This implies that the link between 𝑥𝑖 and 𝑌𝑖 
is independent of the variable i. McCullagh (1980) defines it as a proportional odds assumption of equality in 

logarithmic proportions that crosses k point deductions. 

 

The COM is the most extensively used ordinal regression model due to its simplicity. It can also be used on continuous 

variables that have been made discrete after data gathering (Iannario et al., 2017). 

 

 

2.1. Maximum Likelihood Estimator 
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The parameters in (2) can be estimated using the MLE. This is because the logit function is a complex function that 

requires cell calculations, which results in the probability function not always having the approximation form. 

 

The log-likelihood function defined by 

𝐿(𝑦𝑖 , 𝑥𝑖𝑗 ; 𝛼𝑗 , 𝛽𝑗) =∑∑𝐼(𝑦𝑖 = 𝑗)𝑙𝑜𝑔𝑃(𝑌𝑖 = 𝑗|𝑥𝑖𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 

=∑∑𝐼(𝑦𝑖 = 𝑗)𝑙𝑜𝑔 [𝐹 (𝛼𝑗 −∑𝑥𝑖𝑗
′

𝑚

𝑗=1

𝛽𝑗) − 𝐹(𝛼𝑗−1 −∑𝑥𝑖𝑗−1
′

𝑚

𝑗=1

𝛽𝑗−1)]

𝑚

𝑗=1

𝑛

𝑖=1

, 

 

(3) 

where 𝐼(𝑦𝑖 = 𝑗) = {
1, 𝑦𝑖 = 𝑗         
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

The first derivative of the log-likelihood can be represented as: 

𝜕

𝜕𝛽𝑗
𝐿(𝑦𝑖 , 𝑥𝑖𝑗 ; 𝛼𝑗 , 𝛽𝑗)                                                                                                                                       

= −∑∑𝐼(𝑦𝑖 = 𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

𝑙𝑜𝑔 [𝐹 (𝛼𝑗 −∑𝑥𝑖𝑗
′

𝑚

𝑗=1

𝛽𝑗)− 𝐹(𝛼𝑗−1 −∑𝑥𝑖𝑗−1
′

𝑚

𝑗=1

𝛽𝑗−1)] 

= −∑ ∑ 𝐼(𝑦𝑖 = 𝑗)
𝑚
𝑗=1

𝑛
𝑖=1

𝑓(𝛼𝑗−∑ 𝑥𝑖𝑗
′𝑚

𝑗=1 𝛽𝑗)−𝑓(𝛼𝑗−1−∑ 𝑥𝑖𝑗−1
′𝑚

𝑗=1 𝛽𝑗−1)

𝐹(𝛼𝑗−∑ 𝑥𝑖𝑗
′𝑚

𝑗=1 𝛽𝑗)−𝐹(𝛼𝑗−1−∑ 𝑥𝑖𝑗−1
′𝑚

𝑗=1 𝛽𝑗−1)
𝑥𝑖𝑚, 

(4) 

where  

𝜕𝐹(𝛼𝑗 −∑ 𝑥𝑖𝑗
′𝑚

𝑗=1 𝛽𝑗) − 𝐹(𝛼𝑗−1 −∑ 𝑥𝑖𝑗−1
′𝑚

𝑗=1 𝛽𝑗−1)

𝜕𝛽𝑗
 

= [𝑓 (𝛼𝑗 −∑𝑥𝑖𝑗
′

𝑚

𝑗=1

𝛽𝑗)− 𝑓(𝛼𝑗−1 −∑𝑥𝑖𝑗−1
′

𝑚

𝑗=1

𝛽𝑗−1)]𝑥𝑖𝑚 . 

Franses & Paap (2010) defined generalised errors as follows: 

𝑒𝑖𝑗(𝛼𝑗 , 𝛽𝑗) =
𝑓(𝛼𝑗−∑ 𝑥𝑖𝑗

′𝑚
𝑗=1 𝛽𝑗)−𝑓(𝛼𝑗−1−∑ 𝑥𝑖𝑗−1

′𝑚
𝑗=1 𝛽𝑗−1)

𝐹(𝛼𝑗−∑ 𝑥𝑖𝑗
′𝑚

𝑗=1 𝛽𝑗)−𝐹(𝛼𝑗−1−∑ 𝑥𝑖𝑗−1
′𝑚

𝑗=1 𝛽𝑗−1)
, (5) 

 

where for 𝑗 = 1 and 𝑗 = 𝑚 yields 

 

𝑒𝑖1(𝛼1, 𝛽1) =
𝑓(𝛼1−𝑥𝑖𝛽)

𝐹(𝛼1−𝑥𝑖𝛽)
, 𝑒𝑖𝑚(𝛼𝑚 , 𝛽𝑚) =

𝑓(𝛼𝑚−1−𝑥𝑖𝛽)

1−𝐹(𝛼𝑚−1−𝑥𝑖𝛽)
.   

Equating (4) with zero yields 

𝜕

𝜕𝛽𝑗
𝐿(𝑦𝑖 , 𝑥𝑖𝑗 ; 𝛼𝑗 , 𝛽𝑗) = 0      

−∑∑𝐼(𝑦𝑖 = 𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

𝑒𝑖𝑗(𝛼𝑗 , 𝛽𝑗)𝑥𝑖𝑚 = 0. 
(6) 

 

In the linear regression model, (6) has the same structure as the maximum likelihood equation of the Gaussian, which 

has the form ∑ 𝑟𝑖𝑥𝑖
𝑛
𝑖=1  and can be solved using Newton-Raphson iterations. 



Pak.j.stat.oper.res.  Vol.18  No.2 2022 pp 337-347  DOI: http://dx.doi.org/10.18187/pjsor.v18i2.2996 

 
Huber M-estimator for Cumulative Odds Model with Application to the Measurement of Students' Final Exam Grades 340 

 

Respondents can be dissatisfied with their choices or data to be collected incorrectly. There may be outliers in the 

response Y that have limited responses, such as {1,2,...,m} that affect the generalised residuals in equation (5). The 

resulting residual leaves an indelible imprint in (6). 
 

3. Robustness 

 

The breakdown point examines the robustness of estimated procedures by identifying the lowest breakdown of the 

data before producing unacceptable estimates. The breakdown point size can be used to test the robustness of an 

estimator. The estimates are more robust in overcoming extreme data if the breakdown point is higher. When 𝑛 × 𝛼 

approaches infinity and the estimator becomes obsolete, the finite sample breakdown for the estimator is the lowest 

fraction  of data points. This is the breakdown point formula: 

 

𝜑(�̂�𝑚; 𝑦1, 𝑦2,… , 𝑦𝑚) =
𝑚∗

𝑛
× 100, 

 
(7) 

where: �̂�𝑚  is the estimate for a set of m outlier data points,  

𝑚∗ = 𝑚𝑎𝑥{𝑚 ≥ 0; �̂�𝑚 < ∞} and 𝑛 is a sample size. 

The breakdown point should not be higher than 50% of the total in most cases. According to Rousseeuw & Leroy 

(1987), when more than 50% of the points are contaminated, it is impossible to discern between the original 
distribution and the contaminating distribution of the points. 

 

3.1. Robust Estimation 

 

The MLE is typically used to estimate the COM. However, it is essential to note that this strategy works best when 

the terms of the error match the predetermined assumptions exactly. When these assumptions are not followed, 

estimators are more sensitive. When dealing with data availability extremes and leverage points that affect the 

estimator's performance, there should be vigilance. Even in the regression line, good leverage points significantly  

impact on the standard residuals but are difficult to identify (Huber, 1981). The MLE for the COM with polytomous 

explanatory variables has issues, and this study presents a robust technique to solve those concerns. The least absolute 

deviations, the least median of squares, the M-estimator, and the MM-estimator are among the most popular robust 
regression model estimates. 

 

The M-estimator follows the same procedures as the MLE. Adding weights to Equation (6) creates this estimator's 

concept 

−∑∑𝐼(𝑦𝑖 = 𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

𝑒𝑖𝑗(𝛼𝑗 , 𝛽𝑗)𝑥𝑖𝑚𝑤(𝑦𝑖 , 𝑥𝑖; 𝛼𝑗 , 𝛽𝑗) = 0. (8) 

The M-estimator error functions must meet three requirements: they cannot have a negative value, they cannot be a 

decreasing function, and they must be symmetrical. It is essential to adjust the errors of the M-estimator to solve the 

minimization problem, as it does not change scale with the M-estimator. 

 
The M-estimator has a breakdown point that is somewhat close to 0.5. Huber is one of the most widely used objective 

functions among the many others available (Jiang et al., 2019). This method is utilised for a robust estimate because 

of its widespread use and excellent performance. The weight function of Huber can be expressed as follows: 

 

𝑤(𝑦𝑖 , 𝑥𝑖; 𝛼𝑗 , 𝛽𝑗) =

{
 
 

 
                         1                      ,∑𝐼(𝑦𝑖 = 𝑗)

𝑚

𝑗=1

|𝑒𝑖(𝛼𝑗, 𝛽𝑗)| ≤ 𝑐    

𝑐

∑ 𝐼(𝑦𝑖 = 𝑗)
𝑚
𝑗=1 |𝑒𝑖(𝛼𝑗 , 𝛽𝑗)|

,∑𝐼(𝑦𝑖 = 𝑗)

𝑚

𝑗=1

|𝑒𝑖(𝛼𝑗 , 𝛽𝑗)| > 𝑐

 

 

(9) 
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Where c is set to the best option of 1.345σ, where σ is the errors' standard deviation. The standard deviation should 

be calculated using a robust measure of dispersion for the errors. Estimator �̂� =
𝐴𝑀𝑅

0.6745
 is commonly employed, where 

AMR is the median absolute residuals. 

 

4. Procedures for Monte Carlo Simulation 

 

Monte Carlo simulation is used to test the robustness of model estimators on simulation data with varying levels of 

contamination and error standard deviations. Monte Carlo simulation studies can evaluate the accuracy of existing 

statistical models when they are subjected to adverse circumstances (Mahdizadeh & Strzalkowska-Kominiak, 2017). 

In this study, the ordinal model was 𝑦𝑖𝑗 = 𝛼𝑗 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝜀𝑖 where 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… ,12 - using a high 

number of categories to evaluate polytomous explanatory variable as well as matching the actual data for the 

illustration. The ordinal discrete scale is used for all variables. 

 

The steps in the simulation are: 

First, choose from 100, 250, or 500 samples. Divide the sample into two groups: good and contaminated. The number 

of outlier data points is 𝑛 × 𝑝, where p is the proportion of contamination (5, 10, 20, 40, and 50%). The rest of the 

sample will be good. 

Second, the X values of all independent variables should be generated with a range of 0 to 12. Then obtain the error 

standard deviation for both the good and contaminated data points, 𝑒𝑐𝑜𝑛𝑡.. A logistic distribution is used for both, with 

the same mean and standard deviation for each, as shown by 𝑒~𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜇 = 0, 𝜎 = 1) and 𝑒𝑐𝑜𝑛𝑡.~𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜇 =
0, 𝜎 = 𝑘) where k=2,3, 4 and 5 and 𝜇 is the mean. 

Third, generate true slope parameters from the uniform distribution over intervals 0 to 1, then log-odds values using 

the ordinal model's equation. The intercept parameters 𝛼𝑗  are set to a constant value. 

Forth, by employing a logistic distribution, calculate the cumulative probability for each category of Y: 𝑃(𝑌 ≤ 𝑦) =
𝑒𝑥𝑝(log−𝑜𝑑𝑑𝑠)

1+𝑒𝑥𝑝(log−𝑜𝑑𝑑𝑠)
 . Then variable Y is generated by taking a value between 0 and 12 from the set of cumulative probability 

obtained. 

Fifth, find the standardised residuals of model �̃� by fitting it with MLE and then repeat fitting the model with Huber 

weighting, as described therein (9). 

Sixth, calculate the p-values for each estimate �̂�. Essentially, all p-values must be less than or equal to 0.05. (at 5 per 

cent significance level). This simulation only accepts statistically significant models on each of their variables. 

Seventh, the process is repeated 5000 times, and then the bias and root mean square error (RMSE) of �̂� for the proposed 

MLE and the M-estimator are calculated. Both measurements have the following formulas: 𝐵𝑖𝑎𝑠 =
∑ (�̂�𝑖−𝛽)
200
𝑖=1

5000
 and 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖−𝛽)

2200
𝑖=1

5000
. The best estimator for estimating the parameters 𝛽 is the one with the lowest bias and RMSE 

values. 

Finally, the value of the Lipsitz statistic, 𝑋2 will be used to determine whether or not a model is overall good. The 

optimal model fitting will result in the average test statistic having the least value possible. The formula is given by 

𝑋2 = 2∑ ∑ 𝑂𝑔𝑗𝑙𝑜𝑔
𝑂𝑔𝑗

𝐸𝑔𝑗

𝑟
𝑗=1

𝐺−1
𝑔=1   where O is the number of subjects, 𝐸 is an estimate of the number of subjects, r is the 

number of responses, and G is the area based on the predicted mean score’s percentile. 

 

These simulation procedures will yield data that may be used to evaluate the model estimators. The simulation data 

anticipate the contamination proportion and the distance between the most outlier points. There are three methods 

used to evaluate the model estimators: bias, RMSE, and Lipsitz statistic. Bias and RMSE are the most accurate 

estimator for estimating model parameters as a rule of thumb. No statistical significance in the model is found if there 

is no statistically significant difference between observed and predicted frequencies. Monte Carlo simulation using 

the statistical software R was used to derive the study's findings. The analysis section will go into greater detail about 

the measurement findings. 
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5. Simulation Results 

 

In order to evaluate the estimation of the MLE and the proposed M-estimator, Monte Carlo simulation was utilized 

with a variety of data sets. The produced random data should contain three constant values that change and match the 

conditions of ordinal regression. The constants are the proportion of contamination, error standard deviation, and 
sample size. The proportions of selected contamination were 5%, 10%, 20%, 40%, and 50%. Errors are logistically 

distributed with standard deviations (S.D.) of 2s, 3s, 4s and 5s, where s is S.D. for the most non-extreme points. The 

sample sizes were 100, 250, and 500 with 5000 replications. The parameter estimations were measured via bias and 

RMSE. Meanwhile, the Lipsitz statistic was used to assess the overall goodness of fit. The model employed two 

parameters: 𝛽1 and 𝛽2.  

 

5.1. The MLE 

 

Figure 1 shows how the MLE approach could adapt to data with varying proportions of contamination. The 

combination of S.D. and sample size has produced a more consistent pattern of bias and RMSE. With more samples, 

the RMSE decreased until it was practically zero for both 𝛽1 and 𝛽2. However, the bias and RMSE values grow when 

the outlier point are placed further away from the rest of the data. The COM parameters can be affected by influencing 

points, according to this. 

 

 
  

Figure 1: Bias and RMSE for MLE. 

 

Figure 2 shows the Lipsitz statistic for the MLE against various combinations of simulated factors. The statistic 

numbers demonstrate an upward tendency as contamination levels rise. As the sample size and the S.D. of the outlier 
data increase, the pattern appears more frequently. Increases in the distance of outlier data, contamination proportion, 
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and sample size have impacted parameter estimation and the accuracy of response variable predictions. These findings 

serve as a basis for developing a more robust estimator approach for the COM, as proposed by Croux et al. (2013) and 

Iannario et al. (2017). 

 

 
Figure 2: Lipsitz Statistic for MLE. 

 

5.2. The Huber M-estimator 

 

The Bias and RMSE patterns for the M-estimator with Huber weights have shown a more consistent trend, as 

illustrated in Figure 3. The bias pattern exhibits slight fluctuation since it permits values to be taken in either a positive 

or a negative direction. When the sample size is large, bias and RMSE trends for both parameters are close to zero. 

Conversely, the values of both measures increase in parallel with the rise in the outlier data’s S.D. 
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Figure 3: Bias and RMSE for Huber M-estimator. 

 

The Huber M-estimator was also affected by changes in the S.D. of the outlier data, the proportion of contamination, 

and the sample size, as seen in the Lipsitz statistic plot from Figure 4. When all three components are raised, Lipsitz 

statistics demonstrate an upward tendency. In the comparison section, the performance of the M-estimator versus the 

MLE approach will be discussed. 

 

 
Figure 4: Lipsitz Statistic for Huber. 

 

 

5.3. Bias, RMSE and Lipsitz Statistic between MLE and Huber M-estimator 

 

The previous discussion patterns of bias, RMSE, and Lipsitz statistics for the two estimators focused primarily on 

simulation factors without identifying which estimator may produce the best measurement results. Figure 5 depicts 

the relationship between bias or RMSE and the proportion of contaminated data according to sample size and the S.D. 

of outlier data. 

 

The bias and RMSE patterns for 𝛽1 and 𝛽2 tend to increase as contaminate levels rise. Both MLE and Huber estimators 
exhibit the same pattern. Huber weights, however, always have the lowest curve line or measurement value compared 

to the MLE. Outlier data S.D. values and sample sizes had no effect on this trend. The M-estimator can produce more 

accurate estimation values than the MLE, according to these data. Lipsitz statistics will examine the M-estimator's 

performance in more detail. 
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Figure 5: Bias and RMSE Between the MLE and the M-estimator. 

 

Figure 6 illustrates that the Lipsitz statistical plot reveals that the M-estimator is better than the MLE. All estimates 

show an upward trend as contamination levels rise based on Lipsitz statistics. Huber weights produced the lowest 

Lipsitz statistic compared to the MLE, as evidenced by measurements of bias and RMSE. Variability in the S.D. of 

outlier data and sample size did not affect the performance. 
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Figure 6: Lipsitz Statistic Between the MLE and the M-estimator. 

 

6. Numerical Example 

 

As an illustration, this study uses data from the final exam grades of 326 students as an example of how this research 

might be applied. Four explanatory variables that have the potential to impact the response variable have been 

discovered. The variables are the student’s continuous assessment performance taken throughout the semester. All 

variables were graded into a 13-level system to satisfy the COM and categorical polytomous assumptions. Meanwhile, 

the selected course is "Introduction to Statistics and Probability", which collects data using cluster sampling. Lipsitz 

statistics will be employed once more to assess the accuracy of the estimators established for this study. 
 

Table 1 shows the model fitting results using the MLE and the Huber M-Estimator. As seen in the table, Lipsitz's 

statistic fell dramatically when the Huber M-estimator was applied to the COM. This shows that the M-estimator is 

more effective than the MLE at reducing the impacts of outlier data on the model estimation. 

 

Table 1: Lipsitz Statistic for Different Estimators 

Estimator Lipsitz Statistic 

MLE 549.94 

Huber M-estimator 64.70 
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Conclusion 

In this study, an M-estimator with Huber weights was tested for its estimation parameter of the COM with logistic 

link function and polytomous explanatory variables. This study effectively evaluated the accuracy of the MLE and the 

Huber M-estimator using simulation data with a variety of sample sizes, contamination proportions, and error standard 

deviations. Both estimators' Monte Carlo simulation results indicate that the Huber estimator produced the best results 
for parameter estimation and overall model fitting. Both estimators obtained a 50% breakdown point for data, 

including outlier points that are very distant from the mean. Additionally, extreme points that are merely five times 

the distance from the most points do not affect the MLE. This means that if the model's error S.D. is between -5 and 

5, the MLE and the Huber M-estimator are likely to produce the same result. This condition is also possible for data 

with less than a 5% contamination rate. As an illustration, this approach has been applied to the final exam grades 

data, and the results are consistent with those obtained in prior studies. 

 

To ensure that the analysis's results are reliable and consistent across different data types, the researchers recommend 

doing simulations on data with multiple explanatory variables, a higher percentage of contamination, a larger sample 

size, and broader extreme point distances. In order to achieve this, simulation results can only be generated using high-

end computers capable of increasing the test's speed and accuracy. Additionally, where many more knowledge gaps 

remain unexplored, the usage of other weights or robust methods can be suggested. 
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