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Abstract

Actuaries are often in search of finding an adequate loss model in the scenario of actuarial and
financial risk management problems. In this work, we propose a new approach to obtain a new class
of loss distributions. A special sub-model of the proposed family, called the Weibull-loss model is
considered in detail. Some mathematical properties are derived and maximum likelihood estimates
of the model parameters are obtained. Certain characterizations of the proposed family are also
provided. A simulation study is done to evaluate the performance of the maximum likelihood
estimators. Finally, an application of the proposed model to the vehicle insurance loss data set is
presented.

Keywords: Family of distributions; Heavy tailed distributions; Weibull distribution;
Vehicle insurance losses; Estimation.

1. Introduction

Speaking broadly, modeling insurance loss data with a heavy tail is a prominent
research topic. Insurance loss data are positive, for detail see Klugman et al. (2012),
and their distribution is often unimodal shaped, for example see Cooray and Ananda
(2005), right-skewed, for detail see Lane (2000), Vernic (2006), Bolance et al. (2008),
Bernardi et al. (2012), Ahn et al. (2012), Kazemi and Noorizadeh (2015) and Adcock
et al. (2015), and with heavy tails, see Ibragimov et al. (2015). Actuaries are often
interested in distributions that offer data modeling with heavy tail and provide a good
estimate of the associated business risk level. Numerous heavy-tailed models have
been proposed in the literature such as Pareto, lognormal, Lomax, Burr, Weibull,
and gamma distributions, for a brief discussion, we refer the interested readers to
Hogg and Klugman (2009).

Amongst these distributions, the Pareto distribution does not provide a better
fit for many applications due to the monotonically decreasing shape of the density
function, in particular when the shape of the data is hump-shaped, see, Cooray and
Ananda (2005). On the other hand, due to incomplete form of distribution function,
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the lognormal and gamma distributions causing difficulties in the estimation process
and computation of mathematical properties. Whereas, the Weibull model, which
is a super-exponential distribution is a prominent heavy-tailed model. Thus Weibull
distribution may be the initial choice to use for modeling losses with high outcomes
(heavy tail) in finance and insurance, for detail we refer to Benckert and Jung (1974),
Hogg and Klugman (1984), Szegö (2005), McNeil et al. (2005) and Klugman et al.
(2012).

The Weibull model, however, fails to cover the behavior of large losses. Further-
more, other models have been introduced to handle this issue of fitting the tails of
insurance losses, see for example, Scollnik and Sun (2012), Nadarajah and Abu Bakar
(2014) and Abu Bakar et al. (2015).

To address some of the former issues with the existing models, several methods
have been proposed to extend the existing distributions. These methods including,
but not limited to, the following four approaches (i) transformation method, (ii) com-
position of two or more distributions, (iii) compounding of distributions and (iv) finite
mixture of distributions. However, the new distributions introduced through these
methods involve two or more extra parameters and the form of the density function
becomes more complicated causing difficulties in estimating the model parameters.

To overcome these issues, we propose a new method of constructing new distri-
butions. The proposed method is very flexible adding only one additional parameter
to the existing distributions and provide greater distributional flexibility. If a random
variable X follows a family of loss (for short F-Loss) distributions, then its cumulative
distribution function (cdf) is given by

G (x;σ, ξ) = 1− σF̄ (x; ξ)

σ − log
(
F̄ (x; ξ)

) , σ, ξ > 0, x ∈ R, (1)

where, F̄ (x; ξ) = 1− F (x; ξ) is the survival function (sf) of the baseline distribution
which may depend on the vector parameter (ξ)T . To the best of our knowledge, the
proposed method has not been used so far. This is another motivation for using the
proposed method. Using our method several new distributions can also be obtained.
The probability density function (pdf) corresponding to (1) is given by

g (x;σ, ξ) =
σf (x; ξ)

[
1 + σ − log

(
F̄ (x; ξ)

)][
σ − log

(
F̄ (x; ξ)

)]2 , x ∈ R. (2)

We denote X ∼ F −Loss (x;σ, ξ) a random variable with pdf (2). The sf and hazard
rate function (hrf) corresponding to (1) are given respectively, by

S (x;σ, ξ) =
σF̄ (x; ξ)

σ − log
(
F̄ (x; ξ)

) , x ∈ R,

and

h (x;σ, ξ) =
f (x; ξ)

[
1 + σ − log

(
F̄ (x; ξ)

)]
F̄ (x; ξ)

[
σ − log

(
F̄ (x; ξ)

)] , x ∈ R.

The goal of this research is to define and study a new family of loss distributions
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suitable for modeling insurance losses. Another main feature is that, it add greater
flexibility to the generated distributions by introducing a single additional parameter
rather than two or more parameters. Based on the proposed method, we introduce a
three-parameter Weibull-Loss (W-Loss) model and give a comprehensive description
of some of its mathematical properties in order to attract wider applications in the
insurance sciences and other related areas. In fact, the W-Loss model can provide
better fit to the insurance loss data than other well-known competitive models.

This article is organized as follows: In Section 2, we define the W-Loss distri-
bution and provide some plots for its pdf. We provide in Section 3 some general
mathematical properties of the F-Loss distributions. The maximum likelihood es-
timates (MLEs) of the unknown parameters and simulation study are presented in
Section 4. In Section 5, certain characterizations of the proposed model are provided.
The proposed W-Loss distribution is applied to the vehicle insurance loss data in
Section 6. Finally, the article is concluded in Section 7.

2. A Special Sub-Model

In this section, we introduce a three-parameter special sub-model of the proposed
family. Consider the cdf and pdf of the two-parameter Weibull distribution given by
F (x; ξ) = 1 − e−γxα , x ≥ 0, ξ > 0, and f (x; ξ) = αγxα−1e−γx

α
, respectively, where

ξ = (α, γ) . Then, the cdf of W-Loss distribution is given by

G (x;σ, ξ) = 1− σe−γx
α

σ + γxα
, x ≥ 0, σ, ξ > 0, (3)

with pdf

g (x;σ, ξ) =
ασγxα−1e−γx

α
(1 + σ + γxα)

(σ + γxα)2 , x > 0. (4)

For different combination of the parameters values, the plots of the density function
are sketched in Figure 1.

Figure 1: Plots of density function for selected parameter values.
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3. Mathematical Properties

Here, statistical properties of the F-Loss distributions including quantile function,
moments and moment generating function are discussed.

3.1 Quantile Function

The quantile function of the F-Loss distributions is derived as

x = Q (u) = G−1 (u) = F−1 (t) , (5)

where t is the solution of the equationσ (1− t)− (1− u) (σ − log (1− t)) = 0, and u
has the uniform distribution on the interval (0, 1). The nonlinear equation (3) can
be used to obtain the random numbers for the F-Loss family of distributions.

3.2 Moments

In this sub-section, we derive the rth moment of a random variable X following the
expression (2) as follows

µ/r =

∫ ∞
−∞

xr
f (x; ξ)

[
1 + σ − log

(
F̄ (x; ξ)

)]
σ

[
1− log(F̄ (x;ξ))

σ

]2 dx, (6)

Using the following series (see, https://en.wikipedia.org/wiki/Taylor series)

1
(1+x)2

=
∑∞

n=1 (−1)n nxn−1, and letting x =
− log(F̄ (x;ξ))

σ
, we have

1

1 + 1
σ
{− log(F̄ (x, ξ))}

=
∞∑
n=1

(−1)n
n

σn−1

[
− log

(
F̄ (x; ξ)

)]n−1
. (7)

Inserting (7) in (6), we arrive at

µ
/
r =

∑∞
n=1 (−1)n n(1+σ)

σn

∫∞
−∞ x

rf (x; ξ)
[
− log

(
F̄ (x; ξ)

)]n−1
dx

+
∑∞

n=1 (−1)n n
σn

∫∞
−∞ x

rf (x; ξ)
[
− log

(
F̄ (x; ξ)

)]n
dx.

(8)

A useful expansion of the expression
[
− log

(
F̄ (x; ξ)

)]n
and

[
− log

(
F̄ (x; ξ)

)]n−1
can

be derived using the formula (http://functions.wolfram.com/Elementary Functions/
Log/06/01/04/03/):

(− log (1− z))a = a
∞∑
i=0

(
i− a
i

) i∑
j=0

(−1)i+j

a− j

(
i
j

)
pj,iz

a+i, (9)

where a > 0 is any real value. The constants pj,i can be calculated, recursively, via

pj,i =
1

i

i∑
m=1

(jm+m− i) (−1)m

m+ 1
pj,i−m, for i = 1, 2, 3, ..., and pj,0 = 1. (10)
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Taking a = n and b = n− 1, in (9), respectively, then from (8), we have

µ
/
r =

∑∞
n=1 (−1)n

n(1+σ)Kb,j,i
σn

∫∞
−∞ x

rf (x; ξ)F (x; ξ)b+i dx

+
∑∞

n=1 (−1)n
nKa,j,i
σn

∫∞
−∞ x

rf (x; ξ)F (x; ξ)a+i dx,
(11)

where Kb,j,i = b
∑∞

i=0

(
i− b
i

)∑i
j=0

(−1)i+j

b−j

(
i
j

)
pj,i and

Ka,j,i = a
∑∞

i=0

(
i− a
i

)∑i
j=0

(−1)i+j

a−j

(
i
j

)
pj,i.

The moment generating function (mgf), say MX (t), of the F-Loss distributions can
be obtained as follows

MX (t) =
∞∑
r=0

tr

r!
µ/r. (12)

Using (11) in (12), we get the mgf of the F-Loss distributions.

4. Estimation and Simulation

In this section, we derive the maximum likelihood estimators of the F-Loss distribu-
tions using the maximum likelihood estimation method and provide the simulation
study evaluating the behavior of these estimators.

4.1 Maximum likelihood estimation

Let x1, x2, ..., xn be the observed values from the F-Loss distributions with parameters
(σ, ξ). The total log-likelihood function corresponding to (2) is

L (xi;σ, ξ) = n log σ +
∑n

i=1 log f (xi; ξ) +
∑n

i=1 log [1 + σ − log (1− F (xi; ξ))]
− 2

∑n
i=1 log [σ − log (1− F (xi; ξ))] .

(13)

The log-likelihood function can be maximized either directly or by solving the non-
linear likelihood equation obtained by differentiating (13). We used the goodness
of fit function in R with “L-BFGS-B” algorithm to obtain the MLEs. The partial
derivatives of (13) with respective to the parameters are given, respectively by

∂

∂σ
L (xi;σ, ξ) =

n

σ
+

n∑
i=1

1

1 + σ − log
(
F̄ (xi; ξ)

) − n∑
i=1

2

σ − log
(
F̄ (xi; ξ)

) . (14)

and

∂
∂ξ
L (xi;σ, ξ) =

∑n
i=1

∂f(xi;ξ)/∂ξ
f(xi;ξ)

+
∑n

i=1

(F̄ (xi;ξ))
−1
∂F (xi;ξ)/∂ξ

[1+σ−log(F̄ (xi;ξ))]

− 2
∑n

i=1

(F̄ (xi;ξ))
−1
∂F (xi;ξ)/∂ξ

[σ−log(F̄ (xi;ξ))]
.

(15)
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4.2 Simulation Study

In this sub-section, we evaluate the performance of the maximum likelihood estimators
presented in sub-section 4.1 for W-Loss distribution with respect to the sample size n.
The mean square errors (MSEs), biases and absolute biases of the model parameter
estimates are calculated by means of R software. The evaluation procedure is based
on a simulation study as follow:

1. We generate N = 1000 samples of sizes n = 25, 50, ... , 1000 from the W-Loss
distribution.

2. Calculate the maximum likelihood estimates for the model parameters.

3. Compute the MSEs and biases given by MSE (n) = 1
1000

∑1000
i=1 (ŵ − w)2 and

Bias (n) = 1
1000

∑1000
i=1 (ŵ − w) for w = (α, σ, γ), respectively.

Figures 2 and 3, sketch the numerical results for the α with green line, σ with blue
line and γ with red line. From Figures 2 and 3, we can easily observe that when
the sample size increases, the empirical means approach the true parameter value.
Whereas the biases and absolute biases decreases as the sample size n increases. This
fact reveals the accuracy property of the MLEs. Furthermore, the estimated MSEs
also decay toward zero as n increases. This fact reveals the consistency property of
the MLEs.

Figure 2: Plots of Estimated parameters, MSEs, Absolute Biases and Biases for α=0.8, σ=0.5 and
γ=1.
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Figure 3: Plots of Estimated parameters, MSEs, Absolute Biases and Biases for α=1.4, σ=0.3 and
γ=1.1.

5. Characterizations

This section deals with the characterizations of the F-Loss distribution based on: (i)
a simple relation between two truncated moments; (ii) hazard function and (iii) the
conditional expectation of a function of the random variable. Welike to mention that
the characterization (i) can be employed when the cdf does not have a closed form.
We present our characterizations (i)-(iii) in three subsections.

5.1 Characterizations based on two truncated moments

In this subsection we present characterizations of F-Loss distribution in terms of a
simple relationship between two truncated moments. The first characterization result
employs a theorem due to Glänzel (1987); see Theorem 1 below. Note that the result
holds also when the interval H is not closed. Moreover, as mentioned above, it could
be also applied when the cdf G does not have a closed form. As shown in Glänzel
(1990), this characterization is stable in the sense of weak convergence.

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [d, e] be an
interval for some d < e (d = −∞; e =∞ might as well be allowed). Let X: Ω→ H
be a continuous random variable with the distribution function G and let q1 and q2

be two real functions defined on H such that
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E (q2 (X) |X ≥ x) = E (q1 (X) |X ≥ x) η (x) , x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H) , η ∈ C2 (H) and
G is twice continuously differentiable and strictly monotone function on the set H.
Finally, assume that the equation ηq1 = q2 has no real solution in the interior of H.
Then G is uniquely determined by the functions q1, q2 and η particularly

G (x) =

∫ x

a

C

∣∣∣∣ η/ (u)

η (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du,

where the function s is a solution of the differential equation s/ = η/q1
ηq1−q2 and C is the

normalization constant, such that
∫
H
dG = 1.

Proposition 5.1. Let X:Ω → R be a continuous random variable and let q1 (x) =
[σ−log(F̄ (x;ξ))]

2

1+σ−log(F̄ (x;ξ))
and q2 (x) = q1 (x)F (x; ξ) for x ∈ R. The random variable X has pdf

(2) if and only if the function η defined in Theorem 1 is of the form

ξ (x) =
1

2
(1 + F (x; ξ)) , x ∈ R.

Proof. Suppose the random variable X has pdf (2), then

(1−G (x))E (q1 (X) |X ≥ x) = σ (1− F (x; ξ)) , x ∈ R,

and

(1−G (x))E (q2 (X) |X ≥ x) =
σ

2

(
1− F (x; ξ)2) , x ∈ R,

and finally

η (x) q1 (x)− q2 (x) =
q1 (x)

2
(1− F (x; ξ)) > 0, for x ∈ R.

Conversely, if η is of the above form, then

s/ (x) =
η/ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

f (x; ξ)

1− F (x; ξ)
, x ∈ R,

and hence

s (x) = − log (1− F (x; ξ)) , x ∈ R.

Now, in view of Theorem 1, X has density (2).
Corollary 5.1. Let X: Ω → R be a continuous random variable and let q1 (x) be
as in Proposition 5.1. The random variable X has pdf (2) if and only if there exist
functions q2 and η defined in Theorem 1 satisfying the following differential equation

η/ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

f (x; ξ)

1− F (x; ξ)
, x ∈ R.

The general solution of the differential equation in Corollary 5.1 is
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η (x) = (1− F (x; ξ))−1

[
−
∫
f (x; ξ) (q1 (x))−1 q2 (x) dx+D

]
,

Note that a set of functions satisfying the above differential equation is given in
Proposition 5.1 with D=1/2. However, it should be also noted that there are other
triplets (q1 (x) , q2 (x) , η (x)) satisfying the conditions of Theorem 1.

5.2 Characterization in terms of hazard function

It is known that the hazard function, hG (x), of a twice differentiable distribution
function, G, satisfies the following first order differential equation

g/ (x)

g (x)
=
h
/
G (x)

hG (x)
− hG (x) .

For many univariate continuous distributions, this is the only characterization avail-
able in terms of the hazard function. The following characterization establish a non-
trivial characterization of F-Loss distribution in terms of the hazard function, which
is not of the above trivial form.

Proposition 5.2. Let X : Ω → R be a continuous random variable. The random
variable X has pdf (2) if and only if its hazard function hG (x) satisfies the following
differential equation

h
/
G (x) =

f / (x; ξ)

f (x; ξ)
hG (x) = f (x; ξ)

d

dx

{
1 + σ − log

(
F̄ (x; ξ)

)
F̄ (x; ξ)

[
σ − log

(
F̄ (x; ξ)

)]} x ∈ R.

Proof. Is straightforward and hence omitted.

5.3 Characterization based on the conditional expectation of certain function
of the random variable

The following proposition has already appeared in Hamedani’s previous work (2013),
so we will just state it here which can be used to characterize the F-Loss distribution.

Proposition 5.3. Let X: Ω→ (a, b) be a continuous random variable with cdf F. Let
ψ (x) be a differentiable function on (a, b) with limx→a+ ψ (x) = 1.. Then for δ 6= 1,

E [ψ (X) |X ≥ x] = δψ (x) , x ∈ (a, b) ,

if and only if

ψ (x) = {1− F (x)}
1
δ
−1 , x ∈ (a, b) ,

Remark 5.1. For (a, b) = R, ψ (x) = σF̄ (x;ξ)

σ−log(F̄ (x;ξ))
andδ = 1

2
, Proposition 5.3 provides

a characterization of F-Loss distribution. Of course there are other suitable functions
than the one we mentioned above, which is chosen for simplicity.
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6. Application to the Vehicle Insurance Loss Data

The main applications of the heavy tail models are the so-called extreme value theory
or insurance loss phenomena. We consider a data set from insurance losses. The data
set representing the vehicle insurance losses available at:
http://www.businessandeconomics.mq.edu.au. We fitted the proposed model in com-
parison with the other heavy tailed distributions including the two parameters Weibull,
Marshall-Olkin Weibull (MOW), modified Weibull (MW), exponentiated Weibull
(EW), new Weibull burr X-II (NWBX-II), Kumaraswamy Weibull (Ku-W), Lomax,
exponentiated Lomax (EL) and Burr X-II (BX-II) distributions. The distribution
functions of the competitive models are:

1. Weibull

G (x) = 1− e−γxα , x ≥ 0, α, γ > 0.

2. Marshall Olkin Weibull

G (x) =
1− e−γxα

1− (1− σ) e−γxα
, x ≥ 0, α, γ, σ > 0.

3. Modified Weibull

G (x) = 1− e−γxα−θx, x ≥ 0, α, θ, γ > 0.

4. Exponentiated Weibull

G (x) =
(
1− e−γxα

)a
, x ≥ 0, α, a, γ > 0.

5. NWBX-II

G (x) = 1− exp (−γ (k log (1 + xc))α) , x ≥ 0, c, k, α, γ > 0.

6. Kumaraswamy Weibull

G (x) = 1−
(
1−

(
1− e−γxα

)a)b
, x ≥ 0, α, γ, a, b > 0.

7. Lomax

G (x) = 1−
(

1 +
x

γ

)−α
, x ≥ 0, α, γ > 0.

8. Exponentiated Lomax

G (x) =

(
1−

(
1 +

x

γ

)−α)a

, x ≥ 0, α, a, γ > 0.
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9. BX-II

G (x) = 1− (1 + xc)−k , x ≥ 0, c, k > 0.

To decide about the goodness of fit among the applied distributions, we consider
certain analytical measures. In this regard, we consider four discrimination measures
such as the Akaike information criterion (AIC), Bayesian information criterion (BIC),
Hannan-Quinn information criterion (HQIC) and Consistent Akaike Information Cri-
terion (CAIC). These measures are given by

• The AIC is given by

AIC = 2k − 2l.

• The BIC is given by

BIC = k log (n)− 2l.

• The HQIC is given by

HQIC = 2k log (log (n))− 2l.

• The CAIC is given by

CAIC =
2nk

n− k − 1
− 2l,

where l denotes the log-likelihood function evaluated at the MLEs, k is the number
of model parameters and n is the sample size.
A lower value of these analytical measures is desirable. The maximum likelihood
estimates of the model parameters are reported in Table 1. Whereas, the analytical
measures are provided in Table 2. These results show that the proposed W-Loss
distribution provides better fit than the other considered competitors. In support of
Table 2, the estimated pdf and cdf of the W-Loss distribution are sketched in Figure
4. Whereas, the PP and Kaplan Meier survival plots are presented in Figure 5.

Table 1: Estimated values of the proposed and other competitive models
for the vehicle insurance loss data.

Dist. α̂ γ̂ σ̂ â b̂ ĉ k̂

W-Loss 0.760 0.104 8.490
Weibull 0.759 0.106
MOW 1.153 0.085 3.098
MW 0.529 0.001 100.000
EW 0.176 3.389 9.120
NWBX-II 0.253 1.883 1.993 0.399
Ku-W 0.4387 2.800 31.00 0.175
Lomax 1.690 19.139
EL 0.981 1.508 3.936
BX-II 0.109 3.984
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Table 2: Analytical measures of the proposed and other competitive mod-
els for the vehicle insurance loss data.

Dist. AIC BIC CIAC HQIC

W-Loss 1334.687 1347.750 1334.729 1339.781
Weibull 1432.698 1441.406 1432.719 1436.094
MOW 1410.814 1423.877 1410.856 1415.909
MW 1433.109 1441.056 1431.201 1417.094
EW 1400.419 1413.482 1397.440 1405.514
NWBX-II 1400.026 1417.443 1400.096 1406.819
Ku-W 1397.006 1414.423 1397.076 1403.799
Lomax 1418.450 1427.158 1418.471 1421.846
EL 1403.994 1417.057 1404.036 1409.089
BX-II 1467.001 1475.710 1467.022 1470.397

Figure 4: Estimated pdf and cdf of the W-Loss distribution for the vehicle insurance loss data.

Figure 5: Kaplan Meier Survival and PP-plots of the W-Loss distribution for the vehicle insurance
loss data.

7. Concluding Remarks

In this article, a family of loss distributions is proposed. Some of its properties
along with certain characterizations of the family are derived. A three-parameter
special sub-model of the proposed family called, the Weibull loss distribution capable
of modeling heavy tailed data is studied in detail. Maximum likelihood estimators
of the model parameters are obtained and simulation study is provided to evaluate
the behavior of these estimators. A practical application to the insurance loss data
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is analyzed and the comparison of the proposed model with nine other well-known
competitors is provided. The practical applications shows that the proposed model is
a good candidate for modeling insurances losses. We hope that the proposed method
will attract the wider applications in the actuarial sciences and other related fields.
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