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Abstract
Young, Scariano, and Hallum (2005) study two univariate linear regression models, and establish
a certain condition for the variances estimates to be equal; however, the condition is in error.
They then apply this incorrect condition to some unknown completely randomized design model.
The present paper records the correct condition for the equality of the context variances, and
points out that this condition cannot be applied to experimental design models.
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1. Introduction
Given the linear regression model

2= ; (0, ),y X e e N I   (1)

where y is an n component (column) vectors, X n q is of rank <q n , and 
has q components. Changing ( )V y to 2A , the two estimates of  are

1 1 1 1
1 2
ˆ ˆ= ( ) , = ( ) .X X X y X A X X A y        (2)

The two estimates of 2 are
2 1 2 1 1 1 1 1
1 2ˆ ˆ= ( ( ) ) , = ( ( ) ) ,y I X X X X y y A A X X A X X A y             (3)

and they cannot be equal unless =A I .

Now Young, Scariano, and Hallum (2005, p. 627, (3)), (YSH), establish the
variances equality condition as

1 1(( ( ) ) ) = ( ( ) ).rank I X X X X A rank I X X X X      (4)

However, we are at a loss to understand what exactly the expression in the left
hand side brackets represents. Further (4) does not imply (3). Thus a condition
for equality, if any exits, other than that of (3), must be examined. We now show
that the equality of regression parameter estimates does not imply the equality of
the variances.
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The next section establishes a known condition, Rao and Toutenberg (1999, pp.
106-108), for regression parameter estimates equality. In section 3 we give two
examples to show that there is no loss of generality in linear regression theory to
using full rank matrices. Finally in section 4, it is shown that less than full rank
matrices are not allowed in design of experiments.

2. Regression Parameters Estimates Equality
The minimum value problem

min , = , ( ),y Ay subject to X y g X n q   (5)

where n n A is positive definite symmetric, yields the solution
1 1 1 1 1ˆ ˆ ˆ= ( ) , ' = ( ) .y A X X A X g yAy g X A X g       (6)

A solution representation to =X y g is
1 1 1 1= ( ) ( ) , = 0,y A X X A X X y C CAC CAy X C         (7)

where ( )n q n C  is orthogonal to X. Now (7) implies that
1 1 1= ( ) ( ) .A X X A X X AC CAC CA      (8)

Note that (6) and (8) do not hold if A is deficient in rank.

Thus if = 0XAC , then first multiplying (8) from the right by 1A and then from the
left by X  , we find that

1 1 1 1( ) = ( ) ,X X X y X A X X A y       (9)

ˆ ˆ. .( ) = ( ) .i e least squares covariance structure  (10)

It also follows from (7) that in this case
1 1= ( ) , = 0.A X X A X X if CA   (11)

However, the equality (9) does not imply (3).

Moreover (YSH) (2005, p. 627, (3)), i. e. ,

( ) ( ) = ( ),I XX A I XX I XX     (12)

is wrong. If A is less than full rank matrix, then it is simply the expected value
2(( ) ( )) = ( ) ( ),E I XX yy I XX I XX A I XX       (13)

and unless A is a full rank matrix, it cannot be the covariance matrix of
( )I XX y as they claim. They do not supply a mathematical proof that this is
actually the covariance matrix of ( )I XX y .
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If the covariance matrix of y is deficient in rank, then use the full rank
generalized inverse as follows

min( ) ( ), , .y X A y X subject to orwithrespect to     (14)

Write (14) as

min( ) ( )( ), ( ) = 0,y X A T T y X subject to TA y X       (15)

and also subject to ˆ( ( )) = 0E T y X  , where T is such that ( )A T T is a full rank

matrix. Thus e. g. assume = ( 1)X J n vector of unities, =  ,
1 0 0

= 0 1 0
0 0 0

A
 
 
 
  

.

Then our = (0,0,1)t , = 0t A , and the problem is

( ) ( )( ), ,min y J A tt y J subject to      (16)

the solution is 3 1 2ˆ= = ( ) / 2y y y  .

Thus there is absolutely no loss of generality in assuming A to be a full rank
matrix. Perhaps, (YSH) (2005) should have been careful to avoid the
complications that result with less than full rank matrices.
(YSH) (2005, p. 627, equation(3)) should be

1[ ( )(( ) ( )) ( )] = ( ).A I XX I XX A I XX I XX I XX            (17)

In the next section, we illustrate two examples to show that there is no loss of
generality in linear regression theory to using full rank matrices. In section 4, we
show that less than full rank matrices are not at all allowed in Experimental
Designs Theory.

3. Some Examples
Let the regression normal equation for the model (1) be

ˆ= ( ) .X y X X   (18)

Now if a  is estimable and has an unbiased estimator, then any solution of (18),
will yield the same a  . For example,

1
1

2
2

3

3
4

ˆ1 2 4 1 22 16 15
ˆ2 0 4 2 = 16 24 14 ,
ˆ1 1 3 0 15 14 16

y
y
y
y







                                

(19)
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where note that X X is of rank two, and hence set 1 = 0 , and let a be obtained
by adding first and third columns of X  , = (5,6, 4)a . The normal equations are

1

2
2

3

3
4

01 2 4 1 0 16 15
ˆ2 0 4 2 = 0 24 14 ,
ˆ1 1 3 0 0 0 0

y
y
y
y





                               

(20)

i. e.
1 1 2 3 4 2 3

2 1 2 4 2 3

= 2 4 =16 15 ,
= 2 4 2 = 24 14 ,

T y y y y
T y y y

 
 

   

  
(21)

and hence

2 2 1 3 1 2
ˆ ˆ= (16 14 ) /136, = (24 16 ) /136,T T T T   (22)

1 2 1 2 3 4
ˆ = (6 13 ) / 68 = (32 12 76 20 ) / 68.a T T y y y y     (23)

Thus (19) simply means
1

22

33

4

1 2 4 1 16 15
= ,

2 0 4 2 24 14

y
y
y
y




 
                  
 
 

(24)

i. e. , we have the "reduced" model

2 2

3

1 2
2 0

= , (0, ).
4 4
1 2

y e e N I





 
         
  

 (25)

However, now (25) is a full rank model. Thus there is no loss of generality in
assuming full rank models. We hope YSH (2005) might follow this suggestion of
ours.

Now such a solution as in (20) is not at all allowed in Design and Analysis of
Experiments.

Let now
2= , (0, )y A e e N I   (26)

be a one way classification model, and the normal equations are
10 0 0

0
ˆ = , = 0.0

A A JJ
A y J 


 
 
  

  
 
 
  

(27)
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However, A is of rank, say two, 1 2= ( , , )    , and hence

11

12
1

21
2

22

1 1 1 1 4 2 2
1 1 0 0 = 2 2 0 ,
0 0 1 1 2 0 2

y
y
y
y





 
      
      
      
           

 

(28)

where we have set the condition that 1 2= = 0J     , and modified A A in (27)
as

10 0 0
0 1 1

ˆ = .0 1 1
A A

A y


 
 
  

 
 
 
  

(29)

Hence, we have the normal equation (28). The solutions are

.. 1 11 12 21 22 1 2

1. 2 11 12 1

2. 3 21 22 2

= = = 4 2 2 ,
= = = 2 2 ,
= = = 2 2 ,

y T y y y y
y T y y
y T y y

  
 
 

    

 

 

(30)

giving us
..1

..

1.
1 .. 1. ..

2.
2 .. 2. ..

ˆ = = = ,
4 4

ˆ = = ,
2

ˆ = = .
2

yT y

y y y y

y y y y







 

 

(31)

We want solutions in exactly this format, no other format will do. Thus one must
use full rank generalized inverse. This full rank generalized inverse is always
obtained in Experimental Designs theory, by placing, if necessary, a linear
restriction on one or more of a set of parameters, as in (27).

4. Randomized Blocks Design

The following analysis of randomized blocks design or a two way classification
design is adapted from Chakravarti (1962). This is an orthogonal design.

Here pq observations are arranged in p rows and q columns, rows are A
classification 1( , , )pA A , and columns are B classification 1( , , )qB B .
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Let 1, , p  be block effects parameters, and 1, , q  the treatment effects
parameters. Then the model is

2= , (0, ).ij i j ij ijy e e N I    

The two hypotheses to be tested are
1 1 2

2 1 2

: = = = = ( ),

: = = = = ( ).
p

q

H unspecified
H unspecified

   

   




We now set
11 12 1 21 2 1

1 2 1 2

= ( , , , ; , , ; ; , , ),
= ( , , , ; , , , ),

0 0
0 0

( ) = , = ,

0 0

q q p pq

p q

y y y p y p y p

J I
J I

E y A A

J I

      






 
 
 
 
 
 

   
 




    


where J is a column vector of q unities, and I is q q identity matrix. The rank
of A is ( 1)p q  , and hence we set . = = 0J  , and write the normal equations
as

0 0 0 ˆ
0 ˆ = ,

A A JJ
A y





                 
and the solutions are the same as those obtained by minimizing

2

=1 =1
= ( ) .

p q

ij i j
i j

L y   
w. r. t.  and  .
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The normal equations are

. . . .= , = ,i i j jy q y p    

and the solutions are

. . . .. ..

. .. . ...

ˆ ˆ= = / , = / = ,
ˆ = ( / ) / = .
i i i

j j j

y y q y q y

y y q p y y

 

  

We get

2

=1 =1

=1 =1

22 2 2 2
.2 .. . .. ..

=1 =1

min =

ˆˆ= ( )

ˆˆ= ( )

= ( ) ( ) ( ).

p q

ij i j
i j

p q

ij i j ij
i j

p q
ji

ij
i j i j

L Error SS

y

y y

yy y y yy
pq q pq p pq

 

 

 

 

    





  

ANOVA Table

2 2ˆ ˆˆ ˆ( ) = 2 / , ( ) = 2 / ,
ˆ ˆ

= , ( 1)( 1) . .,
2 /
ˆ ˆ

= , ( 1)( 1) . ..
2 /

i j i j

i j

E

i j

E

V q V p

t twith p q d f
V q

t twith p q d f
V p

     

 

 

 


 


 

It seems (YSH) (2005) are not acquainted with Design and Analysis of
Experiments. They mention (2005, p. 628, equation (6)) a one way classification
design, which has an arbitrary covariance matrix, which is deficient in rank. There
is no such design. It would be impossible to analyze it. All experimental designs
have identity covariance matrices.
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