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Abstract  

 

The aim of this paper is to estimate probability distribution functions with maximum entropy and known 

quantiles. The paper formulates the problem as a nonlinear optimization problem, and converts it into a system of 

nonlinear equations by Lagrange multipliers method. Finally, an efficient method is proposed to obtain a solution 

of the nonlinear system. The method needs to solve a linear programming problem in each iteration. Since linear 

programming problems can be solved in a reasonable time, our proposed method is faster than generic methods of 

solving nonlinear programming problems. Several computational experiment are provided to demonstrate the 

performance and validation of our proposed method. 
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1. Introduction  

In probability and statistics, a random variable is described informally as a variable whose values depend on 

outcomes of a random phenomenon. The formal mathematical definition of random variables is a topic in 

probability theory. A random variable is a measurable function defined on a probability space that maps from the 

sample space, the set of all outcomes of a random phenomenon, to the set of real numbers. Whenever the image, or 

range, of a random variable is countable, it called a discrete random variable. Moreover, a probability distribution is 

the mathematical function that gives the probabilities of occurrence of different possible outcomes for a random 

variable. 

Sometimes it is needed to find a probability distribution function by some initial observations. If some data are 

available, we achieve the goal by fitting a probability function on the data. There are a variety of methods, such as 

method of moments, maximum spacing estimation, method of L-moments (Hosking, 1990), maximum likelihood 

method (Aldrich et al., 1997), and statistical software (Oosterbaan, 2019) that can be used to obtain a probability 

distribution function. These methods may provide several different solutions for one problem because their approach 

is different. 

In the case that some certain parameters of a distribution are known, instead of its data, there are also several 

methods to estimate the distribution. Since the selection of an appropriate distribution depends on several different 

factors, these methods usually do not provide a unique solution. For example, suppose that we know the data are 

symmetrically distributed around the mean while the frequency of occurrence of data farther away from the mean 

diminishes. One may select the normal distribution, the logistic distribution, or the student's t-distribution. The first 

two cases are very similar, while the last one, with one degree of freedom, has "heavier tails" meaning that values 

farther from the mean often occur relatively more, i.e., the kurtosis is higher. 
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By a pessimistic viewpoint, the maximum entropy provides an approach to estimate a unique solution to the problem 

(Cover and Thomas, 2006). Let us discuss it in the following. Shannon (1948) first introduced entropy for a random 

variable 𝑋 with a sample space 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛} and corresponding probabilities 𝑝𝑖 , 𝑖 = 1,2, …𝑛. as follow: 

𝐻(𝑋) = −∑𝑝𝑖𝑙𝑜𝑔𝑝𝑖 ,

𝑛

𝑖=1

 

 

 

where  ∑ 𝑝𝑖 = 1
𝑛
𝑖=1 and 𝑝𝑖 ≥ 0 for 𝑖 = 1,2, …𝑛. In information theory, the maximum entropy problem is formulated 

as follows (Cover and Thomas, 2006): 

 

 max 𝐻(𝑋) (1a) 

 
s.t. ∑𝑝𝑖 = 1,

𝑛

𝑖=1

 (1b) 

 
 ∑𝑝𝑖𝑔𝑗(𝑥𝑖) = 𝛽𝑗 ,   𝑗 = 1,2, … , 𝑛,

𝑛

𝑖=1

 (1c) 

  𝑝𝑖 ≥ 0,   𝑖 = 1,2, … , 𝑛. (1d) 

 

 

where 𝛽𝑗’s are known real numbers and 𝑔𝑗’s are real-value functions. The problem is to estimate a discrete 

probability function satisfying some given conditions (1c). Note that 𝑝𝑖  is the decision variable of the problem, 

which indicates the probability of observing 𝑥𝑖 . So its value must be non-negative (1d), and furthermore, the sum of 

its values must be equal to one (1b) to satisfy the principles of probability. 

Let us now review some papers in this field. At first, Jaynes (1957) estimated a probability distribution with minimal 

probability under some certain conditions using Shannon’s maximum entropy. Subsequently, many researchers 

focused on this issue. Zografos (2008) studied the features, applications and generalization of the maximum entropy 

problem. Landsman and Makov (1999) and Najafabadi et al. (2012) used it in belief theory. Krvavych and Mergel 

(2000) and Sachlas and Papaioannou (2014) examined the distribution modeling using the maximum entropy 

method. Most works were focused on estimating continuous probability functions. 

Dai et al. (2016) introduced the concept of maximum entropy in the reliability context. In the case of the maximum 

probability of entropic discrete functions, Van der Straeten (2009) expressed the concept of maximum entropy in 

random processes, especially in Markov chains. Then, Chliamovitch et al. (2015) completed his work. Moreover, 

Basset (2015) summarized this issue. Many researchers have used maximum entropy method to find a probability 

function with highest uncertainty under some known conditions. For example, Zhao and Zhang (2011) proposed an 

ensemble neural network, which combines the component networks using the entropy theory. The entropy-based 

ensemble neural network searches the best structure of each component network first, and employs entropy as an 

automating design tool to determine the best combining weights. Bajgiran et al. (2020) explored the maximum 

entropy models that are the minimum elaborations of the uniform and moment-based ME models by quantiles. This 

property provided a diagnostic for the utility of elaboration in terms of the information value of each type of 

information over the other. They said ”the maximum entropy model with quantiles and moments is represented as 

the mixture of truncated distributions on consecutive intervals whose shapes and existence are determined by the 

moments”. In another article, the application of maximum entropy principle has been discussed to establish a 

probability distribution when the mentioned summary statistics are available, and its extension to moment 

constraints has been introduced to satisfy the requirements of metrology (Barzdajn, 2014). 

In this paper, we investigate the maximum entropy problem of estimating discrete probability functions whenever 

some quantiles are known. Similar to the above argument, we obtain a nonlinear system and propose a novel method 

to solve the system. Our proposed method has an iterative process and needs to solve a linear programming problem 

in each iteration. Since there are several efficient methods, such as interior point methods (Vanderbei, 2015), to 

solve linear programming problems, our proposed method obtain a solution of the system in a reasonable time. 

Although there are many numbers of papers to estimate probability functions for continuous random variables, to the 

best of our knowledge, there is not any paper to investigate our proposed case (for discrete random variables with 

known quantities). Specially, the approach of solving the obtained nonlinear optimization problem is not presented 

in any paper. This is a bad news, because we cannot compare our results with the other available approaches. To 
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resolve the problem, the validation of approach is evaluated by comparing its solutions with ones obtained from the 

nonlinear programming solver of Matlab software whose solutions are exact. 

The reminder of this paper is organized as follows. Section 2 defines the problem and formulates it, mathematically. 

In Section 3, our proposed approach is presented to solve the problem. In Section 4, some computational 

experiments are conducted to demonstrate the validation and performance of the proposed approach. Finally, 

Section 5 points some concluding remarks, and proposes some subjects to future works. 

 

2. Problem statement 

Consider a discrete random variable 𝑋 with a sample space 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛} in which 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛. One 

can find many different distribution functions with some predetermined information, such as mean, variance, 

moments or quantiles. In this paper, we want to obtain a probability distribution function of the discrete random 

variable 𝑋 with prescribed quantiles. By a pessimistic viewpoint, we select one that has the greatest entropy value 

among all distributions with this property. This function will have the highest possible uncertainty. Consequently, 

the actual probability distribution function will be more definite than this function. To formulate the problem, 

assume that 𝛼𝑖, 𝑖 = 1,2, … , 𝑟 − 1, is the 𝑖th quantile with rank 𝑟 such that 

 

𝛼1 < 𝛼2 < ⋯ < 𝛼𝑟−1. 
 

Moreover, suppose that the value of 𝛼𝑗, 𝑗 = 1,2,… , 𝑟 − 1, belongs to the interval [𝑥𝑖𝑗 , 𝑥𝑖𝑗+1). So, we can formulate 

the problem of obtaining 𝑝𝑖 's with prescribed quantiles 𝛼𝑗 as follows: 

 

 
Max 𝑧 = −∑𝑝𝑖𝑙𝑜𝑔𝑝𝑖 ,

𝑛

𝑖=1

 (2a) 

 
s.t. ∑𝑝𝑖 = 1,

𝑛

𝑖=1

 (2b) 

 

 ∑(𝑝𝑖 +
𝛼𝑗 − 𝑥𝑖𝑗

𝑥𝑖𝑗+1 − 𝑥𝑖𝑗
𝑝𝑖𝑗+1) =

𝑗

𝑟
,   𝑗 = 1,2, … , 𝑟 − 1,

𝑖𝑗

𝑖=1

 (2c) 

  𝑝𝑖 ≥ 0,   𝑖 = 1,2, … , 𝑛. (2d) 

 

This is an optimization problem containing nonlinear objective function (2a) as well as linear constraints (2b-2d). So 

it is a constrained nonlinear programming problem. By multiplying the objective function by −1, one can convert the 

problem into a minimization problem. Similar to the papers (Arandjelovi´ c et al., 2014), (Van der Straeten, 2009), 

and (Templeman and Xingsi, 1987), we neglect the constraint 𝑝𝑖 ≤  1 because this is satisfied by the constraints (2b) 

and (2d). 

 

3. Our proposed method 

In this section, we convert problem (2) into a nonlinear system. Then, we propose a method based on linear 

programming to solve this system. 

To find an optimal solution of problem (2), we need to use nonlinear optimization techniques. One of the most 

popular techniques is Lagrange multipliers method. This method adds the constraints with some coefficients to the 

objective function. Hence, the problem changes to an unconstrained nonlinear programming problem. Then, by 

setting partial differentiations of the new objective function equal to zero, a critical point is found. 

Now, consider an arbitrary instance of problem (2). To construct the Lagrange function, we do neglect nonnegativity 

constraint (2d), although this constraint will be added later to the problem. The corresponding Lagrangian function 

is 

𝐿(𝑝, 𝜆) =∑𝑝𝑖𝑙𝑜𝑔𝑝𝑖

𝑛

𝑖=1

+∑𝜆𝑗 (∑(𝑝𝑖 +
𝛼𝑗 − 𝑥𝑖𝑗

𝑥𝑖𝑗+1 − 𝑥𝑖𝑗
𝑝𝑖𝑗+1) −

𝑗

𝑟

𝑖𝑗

𝑖=1

)

𝑟−1

𝑗=1

+ 𝜆𝑟 (∑𝑝𝑖

𝑛

𝑖=1

− 1) 

(3) 

 

in which 𝜆𝑗’s are Lagrange multipliers. 

Instead of solving problem (2), it is needed to find a non-negative solution that minimizes the function 𝐿(𝑝, 𝜆). Since 

the entropy function is concave (For a proof, see (Cover and Thomas, 2006), Theorem 2.7.3) and constraints (2b-2d) 
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are linear, it follows that 𝐿(𝑝, 𝜆) is convex. Hence, any local minimum point of 𝐿(𝑝, 𝜆) is a global minimum. To find 

a local minimum, it is sufficient to look for a critical point. In the other words, we find a non-negative solution for 

the following system: 
𝜕𝐿(𝑝, 𝜆)

𝜕𝑝𝑖
= 0,   𝑖 = 1,2, … , 𝑛, 

(4) 

𝜕𝐿(𝑝, 𝜆)

𝜕𝜆𝑗
= 0,   𝑗 = 1,2, … , 𝑟. 

(5) 

 

By substituting (3) in (4) and (5), we have 

 𝑙𝑜𝑔𝑝𝑖 + 1 + 𝑎𝑖
𝑇𝜆 = 0,   𝑖 = 1,2, … 𝑛, (6a) 

 
∑𝑝𝑖

𝑛

𝑖=1

= 1, 
(6b) 

 

∑(𝑝𝑖 +
𝛼𝑗 − 𝑥𝑖𝑗

𝑥𝑖𝑗+1 − 𝑥𝑖𝑗
𝑝𝑖𝑗+1) =

𝑗

𝑟

𝑖𝑗

𝑖=1

,   𝑗 = 1,2, … , 𝑟 − 1, 

(6c) 

 

where 𝜆 =  [𝜆1, . . . , 𝜆𝑟]
𝑇and 𝑎𝑖 is the 𝑖th column of the coefficient matrix of the problem (2). If 𝑖 =  𝑖𝑗0, then its 𝑗th 

element of 𝑎𝑖 is as 

𝑎𝑗𝑖 =

{
 

 
0 𝑗 ∈ {1,2, … , 𝑗0},

𝛼𝑗 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖
𝑗 = 𝑗0 + 1,

1 𝑗 ∈ {𝑗0 + 2,… , 𝑟}.

 

Otherwise, its jth element is as follows: 

𝑎𝑗𝑖 = {
0 𝑗 ∈ {1,2, … , 𝑗0},

1 𝑗 ∈ {𝑗0 + 1,… , 𝑟}.
 

 

In system (6), only equation (6a) is nonlinear due to the existence of 𝑙𝑜𝑔𝑝𝑖 . Although one can use any method of 

nonlinear systems, such as Newton method (Deuflhard, 2011), solving the system, it is not an easy issue due to its 

nonlinearity. 

To solve this system, we propose an iterative procedure. It generates a vector 𝑝(𝑘) in 𝑘th iteration which is an 

estimation of 𝑝. The process begins with an initial vector 𝑝(0) >  0. Suppose that the vector 𝑝(𝑘−1) is found in (𝑘 −
1)th iteration. The following problem is solved in 𝑘th iteration to generate 𝑝(𝑘). 

 
min 𝑤 =∑|𝑝𝑖

(𝑘−1)
𝑞𝑖 − (𝑙𝑜𝑔𝑝𝑖

(𝑘−1)
)𝑝𝑖|,

𝑛

𝑖=1

 (7a) 

 s.t. 𝑞𝑖 + 1 + 𝑎𝑖
𝑇𝜆 = 0,   𝑖 = 1,2, …𝑛, (7b) 

 
 ∑𝑝𝑖

𝑛

𝑖=1

= 1, (7c) 

 

 ∑(𝑝𝑖 +
𝛼𝑗 − 𝑥𝑖𝑗

𝑥𝑖𝑗+1 − 𝑥𝑖𝑗
𝑝𝑖𝑗+1) =

𝑗

𝑟

𝑖𝑗

𝑖=1

,   𝑗 = 1,2, … , 𝑟 − 1, (7d) 

  𝑝𝑖 ≥ 0,   𝑖 = 1,2, … , 𝑛. (7e) 

 

Constraints (7b-7d) are the same equations of system (6) with this difference that a new variable 𝑞𝑖 is replaced with 

𝑙𝑜𝑔(𝑝𝑖). Constraint (7e) is added to the problem to satisfy the nonnegativity of 𝑝𝑖 . The purpose of solving the 

problem is to find the vectors 𝑝∗, 𝑞∗and 𝜆∗ so that the distance between 𝑝(𝑘−1)𝑞∗and 𝑝∗𝑙𝑜𝑔𝑝(𝑘−1) is minimized. So 

𝑞∗ is an appropriate estimation of 𝑙𝑜𝑔𝑝𝑖 . After solving the problem, we set 𝑝(𝑘) = 𝑝∗ and repeat the process until the 

optimal objective value 𝑤∗ becomes zero. 

It is remarkable that the condition 𝑝𝑖 >  0 is required to be added to the problem because the logarithm function is 

not defined at zero. However, we do not need to express explicitly it in practice because 𝑙𝑜𝑔(0) is defined to be 

negative infinity, as a limitation value, in many programming languages. Hence, if this value appears in the 
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objective function, it increases the objective value to positive infinity. This never occurs because it is a minimizing 

optimization problem. 

 

Theorem 3.1. If problem (7) has an optimal solution 𝑝∗, 𝑞∗and 𝜆∗with the optimal value 𝑤∗ = 0, then the vectors 

𝑝∗and 𝜆∗are a solution of system (6). 

 

Proof. The equality 𝑤∗ = 0 guarantees that 𝑞𝑖
∗ = log (𝑝𝑖

(𝑘−1)
) and 𝑝𝑖

∗ = 𝑝𝑖
(𝑘−1)

 for every 𝑖 =  1,2, . . . , 𝑛. So 𝜆∗ and 

𝑝∗ are a solution from system (6).                                                                                                                               □ 

 

Because of the existence of absolute value, problem (7) is a nonlinear optimization problem in the current form. If 

we define non-negative variables 𝑥𝑖
− and 𝑥𝑖

+ for which 𝑥𝑖
+ − 𝑥𝑖

− = 𝑝𝑖
(𝑘−1)𝑞𝑖 − (𝑙𝑜𝑔𝑝𝑖

(𝑘−1))𝑝𝑖 , then the problem is 

converted to a linear programming problem. Using this linearization technique, problem (7) is rewritten as follows: 

min 𝑤 =∑𝑥𝑖
− + 𝑥𝑖

+,

𝑛

𝑖=1

 (8a) 

s.t. 𝑥𝑖
+ − 𝑥𝑖

− = 𝑝𝑖
(𝑘−1)𝑞𝑖 − (𝑙𝑜𝑔𝑝𝑖

(𝑘−1))𝑝𝑖 , (8b) 

 𝑞𝑖 + 1 + 𝑎𝑖
𝑇𝜆 = 0,   𝑖 = 1,2, …𝑛, (8c) 

 ∑𝑝𝑖

𝑛

𝑖=1

= 1, (8d) 

 ∑(𝑝𝑖 +
𝛼𝑗 − 𝑥𝑖𝑗

𝑥𝑖𝑗+1 − 𝑥𝑖𝑗
𝑝𝑖𝑗+1) =

𝑗

𝑟

𝑖𝑗

𝑖=1

,   𝑗 = 1,2, … , 𝑟 − 1, (8e) 

 𝑝𝑖 , 𝑥𝑖
+, 𝑥𝑖

− ≥ 0,   𝑖 = 1,2, … , 𝑛. (8f) 

 

The reason for transforming the nonlinear optimization problem to a linear programming problem is that linear 

programming problems can be solved exactly in a finite number of iterations by several algorithms, such as active 

set, and interior point methods (Terlaky, 2013). This aids us to use the inherent simplicity of linear programming. 

Now, we are ready to explain our proposed approach in complete details. This approach begins with an initial 

solution 𝑝(0) >  0. This solution can be obtained from solving the system of linear equations (8d-8f). Then, problem 

(8) is solved for every number 𝑘 =  1,2,3, . .. and the sequence {𝑝(𝑘)} is generated. The process is repeated until the 

optimal value becomes zero (see Theorem 3.1). 

 

4. Computational results 

In this section, some computational experiments are conducted to demonstrate the validation and the performance of 

our proposed approach. All experiments are performed on a 4-core computer with 8GB of RAM and Windows 10 

operating system. We used the software of MATLAB for implementing programs. 

To perform computations, two stopping conditions are used. The first condition is 𝑤∗  >  10−10, that is, the process 

terminates if the optimal value of problem (8) is sufficiently close to zero (see theorem 3.1). Results show that the 

accuracy of solutions is guaranteed even if the number of iterations is small. For this reason, the second stopping 

condition is that the number of iterations is at most equal to 5. 

To solve linear programming problems, the function “linprog” of Matlab is used. We compared our proposed 

approach with a nonlinear optimization method, called the intrinsic method that runs directly on problem (2). This 

approach is the default method used in the command “fmincon” of Matlab. 

 

4.1. Validation 

To check the validation of the approach, we have solved a small instance of the problem and have compared its 

solution with the one obtained from solving the problem by Matlab solver. For this purpose, we have supposed that 

𝑋 is a random variable on a sample space 𝑆 =  {1,2, . . . ,20}, moreover, 

𝛼1 = 2, 𝛼2 = 5.5, 𝛼3 = 11, 𝛼4 = 12.5, 
with rank r = 5. 

Our approach solved the problem in 0.425796 seconds while Matlab solved it in 0.706412 seconds. The entropy 

values are respectively −2.7966 and −2.7967. Table 1 shows the results and Figure 1 depicts them. It is obvious that 

the solutions are very close together. The results show the validation of our approach for this small instance.  
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However, comparing entropy values of randomly generated large instances is also another useful tool to check the 

validation of our approach. This issue together with comparing running times are performed in the next subsection. 

 
Table 1: Comparing our approach’s solution with the exact solution obtained from Matlab solver 

X 1 2 3 4 5 6 7 8 9 10 

Exact 

sol. 

0.1 0.1 0.0591 0.0591 0.0591 0.0457 0.0354 0.0354 0.0354 0.0354 

Our sol. 0.1 0.1 0.059 0.059 0.059 0.0457 0.0354 0.0354 0.0354 0.0354 

X 11 12 13 14 15 16 17 18 19 20 

Exact 

sol. 
0.0354 0.1673 0.0655 0.0239 0.0239 0.0239 0.0239 0.0239 0.0239 0.0239 

Our sol. 0.0354 0.1682 0.0636 0.024 0.024 0.024 0.024 0.024 0.024 0.024 

 

 
Figure 1 Comparing our approach's solution with the exact one 

 

4.2. Performance 

Now we perform several randomly generated experiments to guarantee the performance of the method. In 

experiments, only the parameters 𝑛 and 𝑟 are determined exactly, and other data are generated randomly from the 

interval [0, 𝑛] by uniform distribution, i.e., 

𝑥𝑖 ∼  𝑈(0, 𝑛), 𝑖 =  1, . . . 𝑛, 
𝛼𝑗 ∼  𝑈(0, 𝑛), 𝑗 =  1, . . . , 𝑟. 
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Figure 2: The performance graph for 𝒏 = 𝟏𝟎𝟎 and different values 𝒓 

 

All experiments were repeated ten times and the average of results (running time and entropy value) were reported. 

Two types of experiments were performed for comparison. In the first experiment, it is assumed that n = 100 and the 

number of quantiles varies from 𝑟 =  3 to 𝑟 =  10 (see Figure 2). In the second experiment, the number of 

quantiles is equal to 4, and 𝑛 =  50,75,100,125,150,175,200 (see Figure 3). 

As we expected, the running time of our proposed approach was significantly less than that of the generic nonlinear 

method because ours applies linear programming methods as fast tools to solve the nonlinear problem. On the other 

hand, the entropy values obtained from both the approaches were approximately the same. This establishes that our 

proposed approach has a fairly good performance both in running time and in solution accuracy. 

 

4.3. Sensitivity Analysis 

Here, we conduct a sensitivity analysis of our approach. Since the problem does not contain any single parameter, 

we run the sensitivity analysis by changing the range of randomly generated data. Recall that input data were 

generated randomly as 

𝑥𝑖 ∼  𝑈(0, 𝑛), 𝑖 =  1, . . . 𝑛, 

𝛼𝑗 ∼  𝑈 (0,
1

𝑠
𝑛) , 𝑗 =  1, . . . , 𝑟. 

for 𝑠 = 1. Now, assume that 𝑛 =  20 and 𝑠 varies from 1 to 4. This sequentially changes the range of 𝛼𝑗. Specially, 

all values 𝛼𝑗  are in the range [0,5] for 𝑘 =  4 to show the probability distribution function has positive skewness. 

Table 2 and Figure 4 provide the numerical results as well as the graphs obtained from the sensitivity analysis. The 

graphs show that the skewness changes significantly whenever s varies from 1 to 4. By comparing the numerical 

results, it is easily observed that our approach performs correctly and its time is better than Matlab Solver. 
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Figure 3: The performance graph for 𝒓 = 𝟒 and different values 𝒏 

 

5. Conclusions 

 

In this paper, the problem of estimating a discrete probability function with given quantiles was investigated. The 

well-known Lagrange multipliers method was used to obtain a nonlinear system for finding a probability distribution 

with some known quantiles and maximum entropy value. Then, a novel approach was proposed to solve the 

nonlinear system. 

The use of linear programming approach is the most important feature of our approach because in spite of the fact 

that the problem is inherently nonlinear, we could design the approach that uses the intrinsic simplicity of linear 

programming problems at each iteration. This causes that the approach has a fairly good performance both in 

running time and in solution accuracy. Another feature of the approach is that the linear programming problems 

corresponding to two consecutive iterations are different only in a set of constraints. So one can apply the sensitivity 

analysis approach of linear programming problems to obtain the optimal solution of an iteration from that of the 

previous iteration. 

The problem has the property that any probability value 𝑝𝑖  cannot be zero because the logarithmic value at zero is 

assumed to be equal to −∞. This imposes the limitation of using the well-known simplex method because this 

method obtains a basic optimal solution which contains many nonbasic variables being equal to zero. So other 

methods have to be used for solving linear programming problems. 

As an application of our approach, it will be meaningful to investigate the maximum entropy problem for estimating 

continuous probability functions whenever some quantiles are known. For this purpose, one can apply a numerical 

discretization method and then, uses our approach to obtain a near-optimal solution. Due to the existence of different 

discretization methods and time-consuming computations, this can be a vital issue in this field. As another 

suggestion, one can use nonlinear programming techniques for designing other approaches of estimating probability 

distribution functions. 
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Figure 4: The graphs of probability distribution in the sensitivity analysis 
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Table 2: The numerical results of sensitivity analysis 

S  Time Entr. 1 2 3 4 5 6 7 8 9 

1 Sol. 0.404 2.79 0.090 0.090 0.030 0.024 0.024 0.024 0.024 0.024 0.024 

 Ours 0.016 2.8 0.085 0.085 0.050 0.023 0.023 0.023 0.023 0.023 0.023 

2 Sol. 0.125 2.18 0.253 0.060 0.074 0.033 0.258 0.175 0.010 0.010 0.010 

 Ours 0.061 2.18 0.234 0.038 0.09 0.100 0.197 0.202 0.009 0.009 0.009 

3 Sol. 0.078 2.32 0.183 0.206 0.140 0.133 0.130 0.019 0.013 0.013 0.013 

 Ours 0.0313 2.32 0.183 0.206 0.140 0.132 0.129 0.025 0.013 0.013 0.013 

4 Sol. 0.140 3.73 0.359 0.499 0.00 0.856 0.066 0.066 0.066 0.066 0.066 

 Ours 0.0625 3.64 0.330 0.459 0.00 0.786 0.061 0.061 0.061 0.061 0.061 

s  10 11 12 13 14 15 16 17 18 19 20 

1 Sol. 0.024 0.027 0.041 0.041 0.041 0.041 0.047 0.066 0.066 0.070 0.178 

 Ours 0.023 0.028 0.040 0.040 0.040 0.040 0.047 0.061 0.061 0.085 0.172 

2 Sol. 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 

 Ours 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 

3 Sol. 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 

 Ours 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 

4 Sol. 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 

 Ours 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061 
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