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Abstract  

This work presents a novel two-parameter G family of continuous probability distributions with compounded 
parameters. To determine and examine the pertinent mathematical properties, calculations are performed. In one of 

the special sections, the standard inverse-Rayleigh baseline model is mathematically and statistically emphasized. 

We generated a number of bivariate and multivariate distributions using the copula method. These new distributions 

will aid in the modelling of bivariate and multivariate data. The applicability and flexibility of the new compounded 

two-parameters-G family are demonstrated through three applications to real-life data sets. These examples 

demonstrate the applicability of the family. 
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1 Introduction 

In the fields of statistics and probability theory, one of the most important classes of distributions is known as the 

geometric G (GC-G) family of probability distributions. These distributions find use in a wide variety of domains for 
a variety of purposes. In a series of independent Bernoulli trials, the geometric distribution, which is a member of the 

family GC-G, is frequently used to describe waiting times or the number of tries until the first success. This is because 

the geometric distribution is a member of the GC-G family. It has found use in dependability analysis, queueing theory, 

and a variety of real-life scenarios that include waiting times. The GC-G family of distributions includes models that 

can accurately simulate difficult-to-predict occurrences. For instance, the negative binomial distribution, which 

belongs to this family of distributions, can be used to simulate the number of tests that must be conducted in order to 

see a predetermined number of successes. Because of this, it is useful for modelling unusual events, such as the number 

of accidents that occur over a specific time or the number of defective items that are produced during a given 

manufacturing process. Applications in risk analysis and insurance frequently make use of the GC-G distributions, 

which include the geometric-exponential and geometric-gamma distributions, among others. These distributions can 

be utilized to represent claim frequencies or inter-arrival durations between claims, both of which are significant 

components in the process of evaluating risk and calculating insurance rates. Within the realms of reliability and 
survival research, the GC-G family has a wide variety of potential applications.  

 

Utilizing geometric distribution is one way to model the length of time a system has left before it fails or the amount 

of time individuals in a population have left to live. This can be done to model the amount of time individuals have 

left to live. Reliability engineers and medical researchers can make predictions about the reliability and longevity of 

specific systems or people by analyzing these distributions. Modelling discrete data is made easier with the help of 

the GC-G family's versatile architecture. Count data and discrete events can both be modelled with different members 

of this family, such as the geometric distribution, the negative binomial distribution, and the Poisson distribution. 

Analysis and modelling of discrete phenomena are common applications for these distributions, particularly in the 

domains of epidemiology, ecology, finance, and telecommunications, to name a few. The GC-G family is frequently 

utilised for simulation research as well as the creation of random numbers. The process of simulating events using a 
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geometric distribution or one of its related distributions can be helpful in generating random sequences that replicate 

real-life conditions. This can be useful for testing theories, evaluating algorithms, and conducting Monte Carlo 

simulations. 

 

The compound G family is the name that we give to a novel family of probability distributions that we define in this 
research. This new family of probability distributions is derived from an existing family of probability distributions 

known as the geometric generated Rayleigh G (GCGR-G) family, which is founded on the generated Rayleigh-G (GR-

G) family. This new family of probability distributions is referred to as the GCGR-G family. Let 𝝕𝕧(𝓎) and 𝜔𝕧(𝓎) 

are two functions which denote to the cumulative distribution function (CDF) and its corresponding probability density 

functions (PDF) with main parameter vector 𝕧. First, we will consider the CDF of the well-known generated-Rayleigh 

G (GR-G) family class (𝑊𝜎,𝕧(𝓎)) with the following CDF: 

𝑊𝜎,𝕧(𝓎) = 𝑒𝑥𝑝[−∆𝜎,𝕧
2 (𝓎)] |𝓎∈𝓡,𝜎>0, (1) 

where ∆𝜎,𝕧
2 (𝓎) refers to squared odd ratio function which can be explained as 

∆𝜎,𝕧(𝓎) = 𝝕𝕧
𝜎(𝓎)/[1 − 𝝕𝕧

𝜎(𝓎)]|𝓎∈𝓡,𝜎>0, 

and 
𝑑

𝑑𝓎
𝑊𝜎,𝕧(𝓎) = 𝑤𝜎,𝕧(𝓎)  is the PDF corresponding to the CDF in (1).  On the other hand, the CDF of the geometric 

G (GC-G) family is defined as follows: for any random variable (RV) according to any standard baseline model which 

has the CDF represented by _ v (y), then the CDF of the geometric G (GC-G) family is defined as follows: 

𝐹𝛾,𝕧(𝓎) =
𝛾𝝕𝕧(𝓎)

𝑅𝕧(𝓎) + 𝛾𝝕𝕧(𝓎)
|𝓎∈𝓡,𝛾>0, 

 

(2) 

where 𝑅𝕧(𝓎) = 1 − 𝝕𝕧(𝓎) refers to the reliability function (RF) for the base line model. By substituting (1) in (2), 

we get a new extension of the GC-G class to provide a new flexible compound G family. The new compound G family 

has a wide physical interpretation as given later in Section 2. The new compound G family is derived via expanding 
the GC-G family and the GR-G family. 

 

In reality, there are a lot of helpful contributions in the statistical literature on compound G families. Many applied 

disciplines and fields, including medical, reliability, actuarial sciences, engineering, insurance, econometrics, biology, 

demography, environmental sciences, etc., employ these contributions in the field of modelling real-life datasets. In 

this sense, the following examples can be made: Afify et al. (2016a) for the complementary transmuted geometric G 

family with modelling real-life datasets, Afify et al. (2016a) for the complementary geometric transmuted G family 

with properties and applications, and Aryal and Yousof (2017) for the exponentiated generalized Poisson family are 

some examples of the families that have been studied. Cordeiro and de Castro (2011) studied the Kumaraswamy 

family with some applications. Cordeiro et al (2014). 

 
The new GCGR-G class stands out for having a wide range of applications. Using three examples, we show that the 

GCGR class provides better matches than many other families. Figures 5, 8, and 11 (1st row right graphs) depict 

"asymmetric monotonically increasing hazard rate functions (HRF)"; Figures 5 and 8 (2nd row right and left graphs) 

depict "real-life data with some extreme values;" and Figures 5 and Figure 7 (3rd row right and left graphs) depict 

"real-life data with some extreme values." The new family may be useful in modelling such real-life data. Real-life 

data without extreme values, as seen in Figure 10's second row right and left graphs, real-life data with symmetric and 

unimodal nonparametric Kernel densities, as seen in Figures 5, 8, and the first row left graph of Figure 10, real-life 

data with bimodal and heavy-tailed nonparametric Kernel densities, as seen in Figures 5, and Figure 7, respectively, 

and real-life data whose nonparametric Kernel density cannot be fit by common models. 

 

2. The new family and its related representations 

We build a new two-parameter family of continuous probability distributions called the GCGR-G family by utilizing 

(1) and (2) to generate the baseline CDF of (2). This family of distributions is known as the GCGR-G family. The 

CDF of the GCGR-G family can be defined in the following manner: 
 

𝐹𝕌(𝓎) =
𝛾 − 𝛾 𝑒𝑥𝑝[−∆𝜎,𝕧

2 (𝓎)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎,𝕧
2 (𝓎)]} + 𝛾{1 − 𝑒𝑥𝑝[−∆𝜎,𝕧

2 (𝓎)]}
, 

 

(3) 

where  𝕌 = (𝛾, 𝜎, 𝕧)|𝓎 ∈ 𝓡,𝛾 > 0, 𝜎 > 0 refers to the parameter vector. See Aboraya et al. (2020), Ibrahim et al. 

(2021), Chesneau et al. (2021), Yousof et al. (2021) and Emam et al. (2023b) for additional information on how to 
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generate a new discrete G family by modeling the count data using the new CDF introduced in (3). The following is 

the contents of the PDF that match to (3): 

𝑓𝕌(𝓎) = 2𝛾𝜎
𝜔𝕧(𝓎)𝝕𝕧

2𝜎−1(𝓎)[1 − 𝝕𝕧
𝜎(𝓎)]

−3
𝑒𝑥𝑝[−∆𝜎,𝕧

2 (𝓎)]

(1 − (1 − 𝛾){1 − 𝑒𝑥𝑝[−∆𝜎,𝕧
2 (𝓎)]})

2 |𝓎∈𝓡,𝛾>0,𝜎>0. 
 

(4) 

 

The generalized G (GZX-G family) family of distributions can be used to generate some power series expansions for 

Equations (3) and (4). The PDF in (4) can be stated as follows by using the generalized binomial expansion and the 

power series: 

 

𝑓𝕌(𝓎) = 2𝛾𝜎𝜔𝕧(𝓎) ∑
(1 − 𝛾)𝔦(−1)𝜏

𝜏! (1 + 𝔦)−𝜏

+∞

𝔦,𝒿,𝜏=0

𝝕𝕧
2𝜎(𝜏+1)−1(𝓎)

[1 − 𝝕𝕧
𝜎(𝓎)]

3+2𝜏 (
−2
𝔦

) (
𝔦
𝒿
). 

Then, using the expansion of Taylor, we have  

𝑓𝕌(𝓎) = ∑ 𝛀𝜏,𝓌

+∞

𝜏,𝓌=0

 𝜋𝜎∗,𝕧(𝓎)|𝜎∗=𝜎[2(𝜏+1)+𝓌]>0, 
 
(5) 

where  

𝜴𝜏,𝓌 = 2𝛾𝜎 ∑∑
(1 − 𝛾)𝔦(−1)𝜏(1 + 𝔦)𝜏

𝜏! 𝜎∗

𝔦

𝒿=0

+∞

𝔦=0

(
−2
𝔦

) (
𝔦
𝒿
) (

−3 − 2𝜏
𝓌

). 

As a consequence of this, it is possible to infer certain mathematical properties of the GCGR-G family directly from 

those of the GZX-G family. Equation (5) represents the most important result of this section. In the same way, the 
CDF of the GCGR-G family can be expressed through the combination of densities from the GZX-G family. By 

integrating equation (5), we arrive to the same representation for the mixture: 

𝐹𝕌(𝓎) = ∑ 𝜴𝜏,𝓌

+∞

𝜏,𝓌=0

𝚷𝜎∗,𝕧(𝓎)|𝜎∗>0, 
 

(6) 

where the function 𝚷𝜎∗,𝕧(𝓎)  refers to the baseline CDF of the GZX-G family with power parameter 𝜎∗.  

3. Copulas 

In order to represent data with two or more variables, a copula, a fundamental statistical concept, is used. A function 

that links the marginal distributions of two or more variables to their combined distribution is known as this. It links 

the marginal distributions of each variable in particular. Copulas have been more well-liked in recent years as a result 

of their versatility and ability to mimic intricate dependency patterns between variables. They are now better able to 

replicate complex dependency patterns because to this talent. The significance of copulas and their use in statistical 
modelling and modelling of bivariate data are demonstrated by the following examples: 

1. Copulas are used to show the variables' relationship to one another, which is a key idea in many different 

fields of data and statistical research. We can describe the joint distribution of all variables while maintaining 

the marginal distributions of each variable by using copulas. Finding intricate interactions between variables, 

which cannot be measured using conventional correlation techniques, is made considerably easier as a result. 

2. Copulas are used in the realm of finance to emphasise the connection between the returns on different assets. 

For portfolio optimisation, which tries to create an asset allocation that maximises returns while minimises 

risk, this is very necessary. It is essential that you have this knowledge at your disposal. When we use copulas 

as a modelling tool for the dependency between assets, we are able to more accurately assess the risk 

associated with a portfolio and construct portfolios that are more effective. 

3. Copulas can be used in risk management to estimate the likelihood of catastrophic occurrences like market 

collapses and natural disasters. Copulas are also used to estimate the likelihood of catastrophic catastrophes. 
Because copulas model the dependence structure that exists between variables, they can give a more precise 

evaluation of the likelihood that such occurrences will occur. A crucial element of risk management and 

insurance is this. 

4. Copulas can also be used to generate data, which is useful in circumstances when it is challenging or costly 

to get the required data. By simulating new data sets with the identical dependent structures as the original 

data, we are able to generate brand-new data for testing and analysis. This provides us with extra data to work 

with. This will be achieved by using a copula to characterise the structure of the interrelationships between 
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the variables. 

 

In order to replicate the dependence structure that exists between two or more random variables, the FAGM copula, 

which is a family of parametric copulas, is utilized. It is an approximation of the copulas of Ali Mikhail Haq, Frank, 

and Placket that is of the first order, and it has a simple form that enables explicit calculus and exact results (see Ali 
et al. (1978) for more information). The FAGM copula is attractive not only due to the ease with which it may show 

a broad variety of dependency patterns, such as positive, negative, and mixed dependence, but also due to the fact that 

it can do so. The FAGM copula has been applied in a variety of contexts, such as in the management of financial risk, 

the underwriting of insurance policies, and the evaluation of environmental risk. For instance, the FAGM copula has 

been utilized to symbolize the connection between asset values and insurance claims, as well as the connection 

between environmental variables and other factors. Modelling a wide variety of dependent structures can be 

accomplished with the flexible assistance of the FAGM copula. 

 

It is simple to implement and has a number of benefits over other families of copulas, including the capacity to show 

mixed dependency, among other things. In this section, we provide some new bivariate type GCGR-G variations that 

are based on the FAGM copula that was developed by Morgenstern (1956), Farlie (1960), Gumbel (1958 and 1960), 

Johnson and Kotz (1975), Balakrishnan and Lai (2009), and Johnson and Kotz (1977). There is also discussion of the 
"modified FAGM (MFAGM)" copula, the "Clayton copula" copula, the "Archimedean-Ali-Mikhail-Haq" copula, and 

the "Renyi's entropy" copula (for more information, see Balakrishnan and Lai (2009), Ali et al. (1978), and Pougaza 

and Djafari (2011)). In addition, the Multivariate GCGR-G type (also known as Mv GCGR-G) is provided (for further 

information, refer to Balakrishnan and Lai 2009). Nevertheless, in the not-too-distant future, there might be some 

attempts made to investigate and evaluate these new models.  

 

3.1 BGCGR-G type via FAGM copula 

The following are some applications that make use of the FAGM copula:  

I. The FAGM copula may be utilized to provide a representation of the reliance of asset prices. This can be utilized in 

the process of developing hedging strategies as well as conducting risk assessments on asset portfolios.  

II. A simulation of the interdependence of insurance claims can be carried out with the help of the FAGM copula. This 
can be utilized to decide pricing and reserving techniques, in addition to evaluating the risk that is posed by an 

insurance firm. 

III. A simulation of the interdependence of environmental variables can be carried out with the assistance of the FAGM 

copula. This can be put to use to determine the likelihood of environmental catastrophes and to design strategies for 

mitigating their effects. Using the joint CDF of the FAGM family we have 

𝓒𝞧(𝜘, 𝜅) = 𝜘𝜅(1 + 𝞧𝜘𝜅), 
where 𝜘 ∈ (0,1), 𝜅 ∈ (0,1), are two continuous marginal functions and 𝞧 ∈ [−1,1] is a dependence parameter. Then, 

we have 

𝓒𝞧(𝜘, 0) = 𝓒𝞧(0, 𝜅) = 0|(𝜘,𝜅∈(0,1)), 

which is "grounded minimum condition" and 𝓒𝞧(𝜘, 1) = 𝜘 and 𝓒𝞧(1, 𝜅) = 𝜅 which is "grounded maximum 

condition".  

 

In the context of statistical copulas, the grounded minimum condition is an important property that copulas must 

satisfy to ensure their validity and consistency. A copula is a mathematical function that links marginal distributions 

to a joint distribution. It plays a crucial role in multivariate statistical analysis, especially in applications like risk 

management, finance, and insurance, where modeling the dependence structure between variables is crucial.  The 
grounded minimum condition ensures that the copula is well-behaved and interpretable. The fact that the copula attains 

its minimum value at the lower bounds of its arguments aligns with our intuition about dependence. When all variables 

are at their minimum value, the joint probability should also be minimized, which is reflected by this condition. The 

grounded minimum condition is a part of the more general concept of coherence, which imposes certain properties on 

copulas to ensure their consistency and validity. Coherence is a fundamental requirement for any valid copula function, 

and the grounded minimum condition contributes to fulfilling this requirement. Then, setting 

 

𝜘 = 1 − 𝜘, 𝜘 = 1 −
𝛾1 − 𝛾1 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝓎1)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧
2 (𝓎1)]} + 𝛾1{1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝓎1)]}
, 

and 
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𝜅 = 1 − 𝜅, 𝜅 = 1 −
𝛾2 − 𝛾2 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎2)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧
2 (𝓎2)]} + 𝛾2 {1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎2)]}
. 

 

Then, we have  

𝐹(𝓎1,𝓎2) = (1 + 𝞧𝜘𝜅)𝜘𝜅. 
 
3.2  BGCGR-G type via MFAGM copula 

The MFAGM copula is a flexible tool that was produced based on the primary version of the FAGM; it has the ability 

to be used in the modeling of a large range of different sorts of dependence structures. The MFAGM copula was 

developed based on the primary version of the FAGM. It is simple to implement, and it offers a number of benefits 

over other families of copulas, such as the ability to simulate mixed dependency (for more details regarding this topic, 

refer to Rodriguez-Lallena and Ubeda-Flores (2004)). As a result of this, the FAGM copula is a well-liked choice for 

a variety of diverse applications due to its many advantageous characteristics. In this section of the article, we are 

going to look at the MFAGM copula in the following form: 

𝓒(𝜘, 𝜅,𝞧) = 𝞧𝓘(𝜘)̃𝓛(𝜅)̃ + 𝜘𝜅, 
 

where 

𝓘(𝜘)̃ = 𝜘𝓘(𝜘),  𝓛(𝜅)̃ = 𝜅𝓛(𝜅) 
and the two continuous functions 𝓘(𝜘) and 𝓛(𝜅) are two functions on (0,1) with the following condition boundary 

condition: 

𝓘(0) = 𝓛(0) = 𝓘(1) = 𝓛(1) = 0, 
where 

 

𝐴(𝜘; ℎ1) = 𝑖𝑛𝑓 {
𝜕

𝜕𝜘
𝓘(𝜘)̃: ℎ1(𝜘)} < 0, 𝐵(𝜘; ℎ1) = 𝑠𝑢𝑝 {

𝜕

𝜕𝜘
𝓘(𝜘)̃: ℎ1(𝜘)} < 0, 

 

𝐴(𝜅; ℎ2) = 𝑖𝑛𝑓 {
𝜕

𝜕𝜅
𝓛(𝜅)̃: ℎ2(𝜅)} > 0, 𝐵(𝜅; ℎ2) = 𝑠𝑢𝑝 {

𝜕

𝜕𝜅
𝓛(𝜅)̃: ℎ2(𝜅)} > 0. 

Then, 

𝑚𝑖𝑛(𝐴(𝜘; ℎ1)𝐵(𝜘; ℎ1), 𝐴(𝜅; ℎ2)𝐵(𝜅; ℎ2)) ≥ 1, 
where 

𝜕

𝜕𝜘
𝓘(𝜘)̃ = 𝓘(𝜘) + 𝜘

𝜕

𝜕𝜘
𝓘(𝜘) 

 

 

ℎ1(𝜘) = {𝜘: 𝜘 ∈ (0,1)|
𝜕

𝜕𝜘
𝓘(𝜘)̃   exists}, 

and 

ℎ2(𝜅) = {𝜅: 𝜅 ∈ (0,1)|
𝜕

𝜕𝜅
𝓛(𝜅)̃   exists}. 

A model of the correlation between asset prices can be constructed utilizing the MFAGM copula. The creation of 

hedging strategies for asset portfolios and risk assessments are also possible using this information. A model of the 

interdependence of environmental variables can be constructed with the help of the MFAGM copula. This can be used 

to make predictions about the possibility of environmental disasters and come up with measures for mitigating their 

effects. It is possible to demonstrate the interconnectedness of insurance claims by utilizing the MFAGM copula. This 

can be utilized to design pricing and reservation policies, in addition to providing an estimate of the risk level that an 
insurance company faces. In light of the limitations imposed by the ongoing study, we will conduct the following 

investigation of four possible kinds of MFAGM copulas. 

 

The Type I BGCGR-G via the MFAGM copula: 

Consider the two functional forms 𝓘(𝜘) and 𝓛(𝜅), then the Type I BGCGR-G according the MFAGM copula can be 

expressed as 
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𝓒𝞧(𝜘, 𝜅) = 𝞧[𝓘(𝜘)̃𝓛(𝜅)̃ ] +

(

  
 

𝛾1 − 𝛾1 𝑒𝑥𝑝[−∆𝜎1,𝕧
2 (𝓎1)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧
2 (𝓎1)]} + 𝛾1{1 − 𝑒𝑥𝑝[−∆𝜎1 ,𝕧

2 (𝓎1)]}

×
𝛾2 − 𝛾2 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎2)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧
2 (𝓎2)]} + 𝛾2{1 − 𝑒𝑥𝑝[−∆𝜎2 ,𝕧

2 (𝓎2)]})

  
 

, 

where 

𝓘(𝜘)̃ = 𝜘 {1 −
𝛾1 − 𝛾1 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝓎1)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧
2 (𝓎1)]} + 𝛾1{1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝓎1)]}
} |𝕌1>0, 

and 

𝓛(𝜅)̃  = 𝜅 {1 −
𝛾2 − 𝛾2 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎2)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧
2 (𝓎2)]} + 𝛾2{1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎2)]}
} |𝕌2>0. 

 

The Type II BGCGR-G via the MFAGM copula: 

Consider the two functional forms 𝓘(𝜘) and 𝓛(𝜅), then the Type II BGCGR-G according the MFAGM copula can be 

expressed as 

 

𝓘(𝜘)|(𝞧1>0) = 𝜘𝞧1(1 − 𝜘)1−𝞧1 and 𝓛(𝜅)|(𝞧2>0) = 𝜅𝞧2(1 − 𝜅)1−𝞧2 . 

 

Then, the new Type II BGCGR-G version can be derived from 

𝓒𝞧,𝞧1,𝞧2
(𝜘, 𝜅) = [1 + 𝞧𝜘𝞧1𝜅𝞧2(1 − 𝜅)1−𝞧1(1 − 𝜅)1−𝞧2]𝜘𝜅. 

 
The Type III BGCGR-G via the MFAGM copula: 

According to the Type III of the MFAGM copula, a new two function (𝑾(𝜘)̃ and 𝑴(𝜅)̃) can be considered where 

 

𝑾(𝜘)̃ = 𝜘[𝑙𝑜𝑔(1 + 𝜘)] and 𝑴(𝜅)̃ = 𝜅[𝑙𝑜𝑔(1 + 𝜅)]. 
Then, depending on Ghosh and Ray (2016), one can easily apply the following type  

 

𝓒𝞧(𝜘, 𝜅) = 𝜘𝜅[1 + 𝞧𝑾(𝜘)̃𝑴(𝜅)̃]. 
 

The Type IV BGCGR-G via the MFAGM copula: 

Following Ghosh and Ray (2016) the bivariate CDF of the type IV BGCGR-G model can be derived from 

𝓒(𝜘, 𝜅) = 𝜘𝐹−1(𝜘) + 𝜅𝐹−1(𝜅) − 𝐹−1(𝜘)𝐹−1(𝜅), 
where 𝐹−1(𝜘) = 𝑄(𝜘) and 𝐹−1(𝜅) = 𝑄(𝜅). 
 

3.3 BGCGR-G type under the Clayton copula 

The Clayton copula is a type of copula that can be found in nature. This particular copula permits any non-zero degree 
of (lower) tail dependence between the different variables to be modelled. In addition to being interchangeable, it 

possesses an Archimedean copula as one of its properties. The Clayton copula lends itself to a variety of different 

interpretations, some of which are as follows: 

𝓒(𝜘1, 𝜘2) = (𝜘1
−𝞧 + 𝜘2

−𝞧 − 1)−
1
𝞧|𝞧∈[0,∞]. 

Let us assume that 𝑇 ∼ GCGR-G (𝛿1, 𝑏1, 𝜗) and 𝑋 ∼ GCGR-G  (𝛿2, 𝑏2, 𝑎). Then, setting  

𝜘1 = 𝜘(𝔱;𝕌1) =
𝛾1 − 𝛾1 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝔱)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧
2 (𝔱)]} + 𝛾1{1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝔱)]}
|𝕌1>0, 

and  

𝜘2 = 𝜘(𝓎;𝕌2) =
𝛾2 − 𝛾2 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧
2 (𝓎)]} + 𝛾2{1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎)]}
|𝕌2>0, 

After conducting an analysis using the Clayton copula, the BGCGR-G type distribution can then be managed in the 

following manner: 
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𝐹(𝔱, 𝓎) = 𝓒(𝐹𝕌1
(𝔱), 𝐹𝕌2

(𝓎)) =

[
 
 
 
 
 
 

(
𝛾1 − 𝛾1 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝔱)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧
2 (𝔱)]} + 𝛾1{1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝔱)]}
)

−𝞧

+(
𝛾2 − 𝛾2 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧
2 (𝓎)]} + 𝛾2{1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎)]}
)

−𝞧

−1 ]
 
 
 
 
 
 
−

1
𝞧

. 

 

3.4 BGCGR-G type under the Renyi's entropy 

The Renyi's entropy copula allows us to easily build bivariate probability distributions without requiring costly 

mathematical derivations, making bivariate data mathematics and statistical modeling easy. The Renyi's entropy 

copula can be used to directly deduce the bivariate version. Renyi's entropy copula introduces no new parameters into 

the new bivariate model. The Renyi's entropy copula can be found in Pougaza and Djafari (2011). Then, according to 

the theorem of Pougaza and Djafari (2011), we have: 

𝓒(𝜘, 𝜅) = 𝓎2𝜘 + 𝓎1𝜅 − 𝓎1𝓎2, 
then, the associated CDF of the BGCGR-G will be 

𝓒(𝓎1,𝓎2) = 𝑅 (𝐹𝑷1
(𝓎1), 𝐹𝑷2

(𝓎1)) = −𝓎1𝓎2 + 𝓎2 {
𝛾1 − 𝛾1 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝓎1)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧
2 (𝓎1)]} + 𝛾1{1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝓎1)]}
} 

+𝓎1 {
𝛾2 − 𝛾2 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎2)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧
2 (𝓎2)]} + 𝛾2{1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎2)]}
}. 

3.5 BGCGR-G type via the Archimedean Ali-Mikhail-Haq copula 

The Archimedean Ali-Mikhail-Haq copula makes it simpler to build bivariate probability distributions without 
requiring significant mathematical derivations, which makes it easier to mathematically and statistically characterize 

bivariate data. This is because it simplifies the process of developing bivariate probability distributions. It is possible 

to generate the bivariate form of the Archimedean Ali-Mikhail-Haq copula (see Ali et al. (1978)) in a straightforward 

manner by utilizing the two above-mentioned functions. According to the Archimedean Ali-Mikhail-Haq copula, the 

innovative bivariate model can only add one parameter to the mix. Balakrishnan and Lai (2009) and Ali et al. (1978) 

are the primary references that are utilized in the construction of the Archimedean Ali-Mikhail-Haq copula. Under 

more stringent Lipschitz conditions, one may then construct the one-of-a-kind joint CDF of the Archimedean Ali-

Mikhail-Haq copula by making use of the fundamental formula that is as follows: 

 

𝓒(𝜘, 𝜅) =
1

1 − 𝜗𝜘𝜅
𝜘𝜅|𝞧∈(−1,1). 

As a result, the Archimedean Ali-Mikhail-Haq copula's matching joint PDF can be determined as follows: 

𝑐(𝜘, 𝜅) =
1 − 𝜗 + 2𝜗

𝜘𝜅
1 − 𝜗𝜘𝜅

[1 − 𝜗𝜘𝜅]2
|𝞧∈(−1,1). 

Then, for any RVs 𝑇 ∼ GCGR-G (𝛿1, 𝑏1, 𝑐) and  𝑋 ∼ GCGR-G  (𝛿2, 𝑏2, 𝑎) we have the following main result 

𝓒(𝜘, 𝜅) =

𝛾2 − 𝛾2 𝑒𝑥𝑝[−∆𝜎2,𝕧
2 (𝓎)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧
2 (𝓎)]} + 𝛾2{1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎)]}

×
𝛾1 − 𝛾1 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝔱)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧
2 (𝔱)]} + 𝛾1{1 − 𝑒𝑥𝑝[−∆𝜎,𝕧

2 (𝔱)]}

1 − 𝜗

(

 
 

𝛾2 − 𝛾2 𝑒𝑥𝑝[−∆𝜎2,𝕧
2 (𝓎)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧
2 (𝓎)]} + 𝛾2{1 − 𝑒𝑥𝑝[−∆𝜎2,𝕧

2 (𝓎)]}

×
𝛾1 − 𝛾1 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝔱)]

1 − {1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧
2 (𝔱)]} + 𝛾1{1 − 𝑒𝑥𝑝[−∆𝜎1,𝕧

2 (𝔱)]})

 
 

|𝞧∈(−1,1). 

3.6 The MvGCGR-G type 

When it comes to the procedure of generating multivariate distributions or families, the Clayton copula is typically 

considered to be one of the simplest methods that can be used and is widely regarded for this fact. This is due to the 

fact that Clayton Copula was the one who initially designed the Clayton copula. As a result of this, the Clayton copula 

should be taken into consideration as a possibility. This is because both its mathematical formulation and its 

application can be carried out with an amount of work that is manageable. The reason for this is due to the fact that 
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both can be done with relative ease. In practical applications for multivariate data modeling in engineering and medical 

journals validity, insurance, and reinsurance, as well as other fields, the multivariate distributions or families that are 

based on the Clayton copula are adaptive. This is the case because the Clayton copula is a copula that is based on a 

multivariate distribution. These distributions and families are also flexible enough to be applied in a variety of other 

settings. This is because the Clayton copula acts as a foundation for the distributions, which are also referred to as 
families.  In accordance with the idea of the Clayton copula, which is summarized as follows, the multivariate GCGR-

G version can be formed using the follows: 

𝐻(𝜅𝒿) = (∑{
𝛾𝒿 − 𝛾𝒿 𝑒𝑥𝑝 [−∆𝜎𝒿 ,𝕧

2 (𝔱)]

1 − {1 − 𝑒𝑥𝑝 [−∆𝜎𝒿 ,𝕧
2 (𝔱)]} + 𝛾𝒿 {1 − 𝑒𝑥𝑝 [−∆𝜎𝒿 ,𝕧

2 (𝔱)]}
}

−𝞧
𝓌

𝒿=1

+ 1 − 𝓌)

−
1
𝞧

. 

 

It is possible that we may devote future independent works to the investigation of a number of these binary and 

multivariate distributions, along with their application to binary and multivariate data in important journals like 

engineering, health, insurance, and actuarial sciences. This is as a result of the limitations that the current study 

imposes. 

 

4. Some properties 

It is essential to comprehend these mathematical properties for a number of reasons. The first advantage is that they 

enable us to construct a variety of statistical measures that can characterize the behavior of a random variable. For 

instance, the mean and variance can be used to describe the central tendency and variability of a probability 

distribution. Second, these characteristics enable us to forecast a random variable's future behavior. By comprehending 

the PMF or PDF, we may forecast the probability of specific events and base our judgements on that knowledge. 

Creating and evaluating statistical models requires a comprehension of these mathematical features. We build models 

that precisely mimic the behavior of real-life phenomena using probability distributions with well-defined 

mathematical features. 

4.1 Ordinary moment 

Moments are fundamentally important pieces of statistical equipment in a wide variety of fields, including physics, 

engineering, insurance, economics, and finance. It is a mathematical method that discloses information on the shape, 

position, and variability of a probability distribution. Specifically, it shows how the shape of the distribution varies. 

The 𝑝𝑡ℎ  ordinary moment of 𝒴, say  𝜇𝑝,𝒴
′  , follows from (5) as  

𝜇𝑝,𝒴
′ = 𝐸(𝒴𝑝) = ∑ 𝜴𝜏,𝓌

+∞

𝜏,𝓌=0

𝐸(𝑍𝜎∗
𝑝 ). 

 

Henceforth, the RV  𝑍𝜎∗  refers to the GZX-G family of probability distributions with power parameter 𝜎∗ where 

𝐸(𝑍𝜎∗
𝑝 ) = 𝜎∗ ∫ 𝓎𝑝

+∞

−∞

 𝝕𝕧(𝓎)𝜎∗−1 𝜔𝕧(𝓎)𝑑𝓎, 

The quantity 𝐸(𝑌𝜎∗
𝑝 ) can be numerically evaluated in terms of the baseline quantile function (QF) 𝑄𝝕,𝕧(𝑢) = 𝝕𝕧

−1(𝑢) 

where 

𝐸(𝑍𝛾
𝑝
) = 𝜎∗ ∫ 𝑄𝝕,𝕧(𝑢)𝑝

1

0

𝑢𝜎∗−1𝑑𝑢. 

Moreover, many statistical measures like the variance, skewness, and kurtosis measures can now be calculated via 

simple relations.  

 

4.2 Moment generating function 

The moment generating function, or MGF for short, is significant because it can offer detailed details about the 

characteristics of a probability distribution. One can precisely pinpoint the distribution's moments by employing the 

moment generating function. The mean, variance, skewness, and kurtosis are some of these moments. The 

characteristic function, the cumulant generating function, and the cumulant generating function are all statistical 

measures that are derived from the moment generating function. The MGF can then be calculated by using the equation 

below: 
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𝑀𝒴(𝔱) = ∑ 𝜴𝜏,𝓌

+∞

𝜏,𝓌=0

𝑀𝜎∗(𝔱), 

where 𝑀𝜎∗(𝔱) is the MGF of the RV  𝑍𝜎∗ . That being said: the 𝑀𝒴(𝔱) can be easily derived after deriving the  𝑀𝜎∗(𝔱) 

for any baseline model. 

 

4.3 The incomplete moments 

Moments and incomplete moments are both significant in terms of the information that can be gleaned about the 

properties of a probability distribution from the two types of moments. Moments might be whole or they can be 

missing something. They are helpful in finding, among other statistical measures, the mean, variance, skewness, and 

kurtosis of a distribution. Additionally, they are important in determining the shape of a distribution. In addition to 

this, you may make an estimate of the shape of the distribution by using them. The 𝜁𝑡ℎ incomplete moment, say  𝐼𝜁,𝒴(𝔱) 

, of  𝒴  can be expressed from (5) as: 

𝐼𝜁,𝒴(𝔱) = ∫ 𝓎𝜁
𝔱

−∞

𝑓𝕌(𝓎)𝑑𝓎 = ∑ 𝜴𝜏,𝓌

+∞

𝜏,𝓌=0

𝐼−∞
𝔱 (𝓎𝜁; 𝜎∗), 

where  

𝐼−∞
𝔱 (𝓎𝜁; 𝜎∗) = ∫ 𝓎𝜁

𝔱

−∞

𝜋𝜎∗(𝓎)𝑑𝓎. 

4.4 The residual life function and the reversed residual life function 

The term "residual life" describes the amount of time that has passed from a particular moment in time or since the 

system reached a particular age without experiencing a failure. The 𝔫th moment of the residual life, say  𝓌𝔫,𝒴(𝔱) =

𝐸[(𝒴 − 𝔱)𝔫 | 𝒴 > 𝔱] ,  𝔫 = 1, 2 ,…. The 𝔫𝑡ℎ moment of the residual life of  𝒴  is given by 

𝓌𝔫,𝒴(𝔱) =
1

1−𝐹𝕌(𝓎)
∫ (𝓎 − 𝔱)𝔫+∞

𝔱
𝑑𝐹(𝓎). 

Then, 

𝓌𝔫,𝒴(𝔱) =
1

1 − 𝐹𝕌(𝓎)
∑ ∑ 𝜴𝜏,𝓌

𝔫

𝑝=0

+∞

𝜏,𝓌=0

(
𝔫
𝑝) (−𝔱)𝔫−𝑝𝐈𝔱

+∞(𝓎𝔫; 𝜎∗), 

where 𝐈𝔱
+∞(𝓎𝔫; 𝜎∗) = ∫ 𝓎𝔫+∞

𝔱
𝜋𝜎∗(𝓎)𝑑𝓎. The events that occur during the residual life provide crucial insights into 

the functioning and dependability of systems. They are helpful in determining the remaining useful life of an item, 

organizing maintenance activities, evaluating hazards, establishing warranty durations, and making decisions based 

on accurate information. When firms take into account these periods in their dependability analyses, they are able to 

improve the performance of their systems, lower their expenses, and increase their overall operational efficiency. The 

remaining useful life of a system or component after a specific time point is referred to as the reversed residual life 
(RSRL), which is an abbreviation. In the process of reliability analysis, the moments of the RSRL play a crucial role, 

particularly in the context of survival analysis and deterioration modeling.   

 

The  𝔫𝑡ℎ  moment of the RSRL, say  𝑀𝔫,𝒴(𝔱) = 𝐸[(𝔱 − 𝒴)𝔫 | 𝒴 ≤ 𝔱]  for  𝔱 > 0  and  𝔫 = 1, 2,…, follows as 𝑀𝔫,𝒴(𝔱) =
1

𝐹𝕌(𝔱)
∫ (𝔱 − 𝓎)𝔫𝔱

0
𝑑𝐹(𝓎). Therefore, the  𝔫th moment of the RSRL of  𝒴  becomes 

𝑀𝔫(𝔱) =
1

𝐹𝕌(𝔱)
∑ ∑ 𝜴𝜏,𝓌

𝔫

𝑝=0

+∞

𝜏,𝓌=0

(−1)𝑝 (
𝔫
𝑝) 𝔱𝔫−𝑝𝐈0

𝔱 (𝓎𝔫; 𝜎∗), 

where 𝐈0
𝔱 (𝓎𝔫; 𝜎∗) = ∫ 𝓎𝔫𝔱

0
𝜋𝜎∗(𝓎)𝑑𝓎. The moments of the RSRL can be helpful in determining the pace of 

improvement in a system's dependability when it is increasing over time, such as when it is undergoing the burn-in 

phase or when it is improving as a result of learning effects. The evaluation of dependability growth models as well 

as the identification of prospective trends or anomalies can be made possible through the monitoring of changes in the 

moments. 
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4.5 Studying a special model 

The inverse- Rayleigh (IR) model is without a doubt among the most important distributions that are utilized in the 

process of modelling extreme values. Fréchet (1927) is credited with making the first recommendation regarding the 

IR model. It has a wide range of applications, some of which are accelerated life tests, earthquakes, floods, wind speed, 

horse racing, showers, lineups at the grocery store, and sea waves (for further information, see Von Mises (1964) and 

Kotz and Johnson (1992)). One can obtain additional information regarding the IR model by reading the relevant 

literature. Nadarajah and Kotz (2003), for example, investigated the generalized IR distribution. Please refer to 

Jahanshahi et al. (2019), Krishna et al. (2013), and Al-Babtain et al. (2020) for additional information regarding 

pertinent IR extensions. The RV 𝒴 is claimed to have the continuous IR model if its RF is given by 

R𝔞(𝓎) = 1 − 𝝕𝔞1,𝔞2
(𝓎) = exp [− (

1

𝓎
𝔞)

2

] |𝓎≥0, 

where 𝔞 > 0 is a scale parameter of the base line IR model. The CDF of the geometrically generated Rayleigh Inverse- 

Rayleigh (GCGR-IR) model can be defined as follows, with reference to equation (3): 

𝐹𝕌(𝓎) =

𝛾 − 𝛾 exp (− {exp [𝜎 (
1
𝓎 𝔞)

2

] − 1}
−2

)

1 − (1 − 𝛾) [1 − 𝑒𝑥𝑝(− {exp [𝜎 (
1
𝓎 𝔞)

2

] − 1}
−2

)]

|𝓎≥0,𝛾>0,𝜎>0, 

where  𝕌 = (𝛾, 𝜎, 𝔞)  refers to the parameters vector. For the GCGR-IR model, we obtain the following results: 

𝜇𝑝,𝒴
′ = 𝐸(𝒴𝑝) = 𝔞𝑝 ∑ 𝜴𝜏,𝓌

+∞

𝜏,𝓌=0

𝜎∗
𝑝
2Γ(1 −

1

2
𝑝) |𝔞2>𝑝, 

 

 

𝜙1,𝒴(𝔱) = 𝔞 ∑ 𝜴𝜏,𝓌

+∞

𝜏,𝓌=0

𝜎∗
1
2𝛾 (1 −

1

2
, (

1

𝔱
𝔞)

2

) |𝔞2>1, 
 

 

𝓌𝔫,𝒴(𝔱) =
1

𝑹𝕌(𝔱)
∑ ∑𝜴𝜏,𝓌

𝔫

𝑝=0

+∞

𝜏,𝓌=0

(
𝔫
𝑝) (−𝔱)𝔫−𝑝𝔞𝔫𝜎∗

𝔫
2Γ(1 −

𝔫

2
, (

1

𝔱
𝔞)

2

) |2>𝔫 
 

 

𝑀𝔫,𝒴(𝔱) =
1

𝐹𝕌(𝔱)
∑ ∑ 𝜴𝜏,𝓌

𝔫

𝑝=0

+∞

𝜏,𝓌=0

(−1)𝑝 (
𝔫
𝑝) 𝔱𝔫−𝑝𝔞𝔫𝜎∗

𝔫
2𝛾 (1 −

𝔫

2
, (

1

𝔱
𝔞)

2

) |2>𝔫 , 
 

 

where 

𝛤(𝓌) = ∫ 𝑞𝓌−1
+∞

0

𝑒𝑥𝑝(−𝑞)𝑑𝑞, 

and 𝛾(𝓌,𝑢) refers to the lower incomplete gamma function, where 

𝛾(𝓌, 𝑢) = ∫ 𝑞𝓌−1
𝑢

0

𝑒𝑥𝑝(−𝑞)𝑑𝑞 = ∑𝑢𝓌+𝜅

+∞

𝜅=0

(−1)𝜅

𝜅! (𝓌 + 𝜅)
. 

On the other hand, the functionuu 

𝛤(𝓌,𝑢)|𝑢>0 = ∫ 𝑞𝓌−1+∞

𝑢
𝑒𝑥𝑝(−𝑞)𝑑𝑞 = 𝛤(𝓌,𝑢) = 𝛤(𝓌) − 𝛾(𝓌, 𝑢),  

refer to the upper incomplete gamma function. 

 

5. The maximum likelihood (MLE) method 

One of the most popular techniques used to estimate unknown parameters in statistical models is the maximum 

likelihood approach. The likelihood function, which measures the likelihood that the provided data will be observed 

in line with the predicted model, can be used to determine the parameter values that will maximise this likelihood. It 

provides a methodical approach to doing so. For the aim of generating parameter estimates in a range of statistical 
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models, the method known as maximum likelihood estimation, or MLE, is often employed and typically adaptable. 

Efficiency is one of the ideal characteristics of estimates based on the greatest likelihood. The maximum likelihood 

technique yields estimate that are asymptotically efficient, which means that they achieve the lowest asymptotic 

variance among all reliable estimators. This is so that the maximum likelihood technique may make use of the data 

that is already accessible. To put it another way, compared to estimates produced by other estimators, the maximum 
likelihood estimates tend to be quite close to the actual values of the parameters being estimated. They also have a 

comparatively low level of variability.  

 

To obtain the MLE of 𝕌, the log-likelihood function can be expressed as 

ℓ(𝕌) = 𝔫 log(2) + 𝔫 log(𝛾) + 𝔫 log(𝜎) + ∑log𝜔𝕧 (𝓎𝔦)

𝔫

𝔦=0

+ (2𝜎 − 1)∑log𝝕𝕧 (𝓎𝔦)

𝔫

𝔦=0

 

−3∑log[1 − 𝝕𝕧
𝜎(𝓎𝔦)]

𝔫

𝔦=0

− ∑∆𝜎,𝕧
2 (𝓎𝔦)

𝔫

𝔦=0

− 2∑log 𝑇𝔦

𝔫

𝔦=0

(𝓎𝔦), 

where 

𝑇𝔦(𝓎𝔦) = {1 − (1 − 𝛾) [1 − 𝑒𝑥𝑝 (−∆𝜎,𝕧
2 (𝓎))]}. 

The function ℓ(𝕌) can be numerically maximized either directly by using softwires like the R (using the optim 

function), the SAS (using the PROC NLMIXED) or the Ox program (by using the sub-routine MaxBFGS) or 

analytically via solving the nonlinear equations of the likelihood  function which obtained by differentiating ℓ(𝕌). 

The maximum likelihood method has a close connection to information theory. The likelihood function can be 

interpreted as a measure of the information contained in the data about the unknown parameters. Maximizing the 

likelihood is equivalent to maximizing the information extracted from the data. This connection to information theory 

has led to several developments in statistical theory and provides a theoretical foundation for the maximum likelihood 

method. 

 

6. Simulation study and assessing the estimation method 

In this section, we would like to highlight the significance of simulation by presenting a full simulation study. 

Additionally, we would want to evaluate the estimators produced by the MLE approach using specific statistical 

criteria. When evaluating the effectiveness of the MLE technique, simulation studies are an extremely important 

component. The following is a list of the most essential reasons why simulations are necessary in this setting: 

I. We are able to compare the estimated values that were derived by MLE with the actual parameter values in a 

controlled environment thanks to the power of simulations. We are able to determine the bias of the estimator by 

performing the simulation process an innumerable number of times. The systematic difference between the values 

that are estimated and the values that actually exist is referred to as bias. Researchers are able to identify and 

address any biases that may be present because to the support that simulations provide in understanding how MLE 

functions in a variety of settings and with varying sample sizes. 

II. The term "efficiency" refers to the accuracy and dependability of the estimator in determining the true values 

of the parameters being estimated. Simulations offer a method for determining whether or not MLE is effective 

by analyzing the degree to which estimated values vary across a number of different iterations of the simulation. 

Researchers are able to better comprehend the accuracy of the estimations and evaluate the MLE's performance 

under a variety of circumstances as a result of this. 

III. Consistency is a desired quality in an estimator, which indicates that as the sample size rises, the estimated 

values should converge to the true parameter values. In other words, consistency means that an estimator should 

always produce the same results. By producing data sets of varied sizes and determining whether the estimated 

values approach the true values as the sample size expands, simulations can assist in verifying the reliability of 
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MLE. This can be done by determining whether the estimated values approach the true values. The consistency 

of the MLE is a basic characteristic, and simulations are helpful in validating the validity of this property. 

IV. Researchers are able to test the robustness of MLE by subjecting it to breaches of the assumptions that 

underpin the estimation approach by using simulations. Simulations allow for the evaluation of how sensitive 

MLE is to various kinds of violations by purposefully introducing deviations from the anticipated model 

circumstances. Analysis of robustness assists in the identification of potential constraints and directs researchers 

in the selection of acceptable estimating methods or, when necessary, in the modification of the model's 

underlying assumptions. 

V. Simulations offer a foundation upon which MLE can be compared to many other estimating approaches. 

Researchers are able to evaluate the relative effectiveness of various methods of estimate, such as the method of 

moments and Bayesian estimation, by simulating data sets and subjecting them to predetermined conditions 

during the simulation process. When compared to other methods, simulations assist identify the benefits and 

drawbacks of MLE, which in turn makes it easier to choose the technique that is going to be the most useful for 

any specific situation. 

The following main algorithms are performed to assess the performance of the estimation method under the new 

compound G family and the IR baseline model: 

1) Using the inversion method, where  𝓎𝑢 = 𝐹−1
𝕌(𝓎), we generate N=500 samples of size  𝔫  from the GCGR-IR 

distribution; 

2) Compute the MLEs for each sample of the 500 samples 

3) Compute the standard errors of estimations (SErEs) of the MLEs for the 1000 samples. The SErEs were computed 

by the well-known method of inverting our obtained information matrix. 

4) Compute the biases  (𝐵𝕌(𝔫))  and mean squared errors (MSEs) given for all parameters where  𝕌 = 𝛾, 𝜎, 𝔞.  

5) Repeated steps 1-4 for  𝔫 = 50,60,… ,500  with  an initial value for all parameters equal to one, then compute 

biases, mean squared errors  (MSE𝕌(𝔫))  for  𝛾, 𝜎, 𝔞  for all  𝔫 = 50,60,… ,500 . 

 

 
Figure 1: Biases (the left simulation graph) and MSEs (the right simulation graph) for  𝛾  and  𝔫 =

50,60,… ,500  for the GCGR-IR model. 
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Figure 2: Biases (the left simulation graph) and MSEs (the right simulation graph) for  𝜎  and  𝔫 =

50,60,… ,500  for the GCGR-IR model.  

 

 
Figure 3: Biases (the left simulation graph) and MSEs (the right simulation graph) for 𝔞  and  𝔫 =

50,60,… ,500  for the GCGR-IR model. 

 

 

 

The graphs that may be found to the left of Figures 1, 2 and 3 each demonstrate the variation of the three types of bias 

with sample size.  The link between the three MSEs and the sample size is depicted in the graphs located on the right-

hand side of Figures 1, 2 and 3. Figure 1 shows a broken red line where the biases are when they are all equal to zero. 

This line represents the biases. As n increases, the biases for each parameter move closer and closer to zero, as can be 

seen in Figures 1, 2 and 3, and the MSEs for each parameter likewise move closer and closer to zero as n increases. 
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7. Real data modeling for comparing the competing models 

One of the most significant events that takes place within the realm of statistics is something that is referred to as a 

competition of probability distributions. Researchers are able to make inferences about the features of the population 

as a result of this activity, which helps to a better knowledge of the process of data gathering and enables them to do 

so. The selection of the ideal probability distribution, on the other hand, can be a difficult task, especially in 

circumstances in which there are numerous possible distributions that might be applied to a single dataset. The 

importance of using actual data models cannot in any way be understated when it comes to the process of comparing 

various probability distributions applicable to this setting. One of the jobs involved in real-life data modelling is 

comparing the degree to which various probability distributions are a good fit for the actual datasets that are being 

modelled. Using this strategy, researchers are able to identify the optimal distribution for a certain dataset and draw 

inferences about the characteristics of the population. The modelling of real data is vital for a variety of reasons, and 

each of these reasons is unique in its own way.  

 

Real data modelling is a crucial instrument for comparing and studying a variety of probability distributions because 

it is based on actual data. Researchers have the option to select the ideal distribution for the data set at hand, arrive at 

inferences on the parameters of the population, and evaluate the adequacy of the fitted distribution. This opportunity 

is made available to them thanks to the availability of the data. When researchers employ actual data modelling, they 

are able to draw more accurate and reliable conclusions regarding the population parameters and the underlying data 

generating process. This is because actual data modelling takes into account all of the relevant variables. Table 1 

reports some competitive models.  

Table 1: Some competing models with authors and its corresponding abbreviations. 

Model (Author(s)); Abbreviation 

Inverse- Rayleigh; RR 

Kumaraswamy-Inverse- Rayleigh (Mead and Abd-Eltawab (2014)); KUM-IR 

Beta-Inverse- Rayleigh (Barreto-Souza et al. (2011)); Beta-IR 

Generalized-inverse- Rayleigh (Nadarajah and Kotz (2003)); GZ-IR 

Marshal-Olkin-Inverse- Rayleigh (Krishna et al. (2013)); MRO-IR 

McDonald-Inverse- Rayleigh (Shahbaz et al. (2016)); MCD-IR 

Transmuted-Inverse- Rayleigh (Mahmoud and Mandouh (2013)); TR-IR 

odd log-logistic-Inverse Rayleigh; OLOGL-IR 

odd loglogistic generalized-Inverse- Rayleigh; OLLGZ-IR 

odd loglogistic Inverse Rayleigh; OLOGL-IR 

generalized odd loglogistic- Inverse Rayleigh; GOLOGL-IR 

Quantitative analysis, visual inspection, and hybrid methods of both are all viable options for assessing real-world 

datasets. The "nonparametric Kernel PDF estimation (NK-PDFE)" method for investigating the initial density shape, 

the "Quantile-Quartile (QN-QN)" plot for investigating the "normality" of the data, the "total time in test (TTT)"plot 

for investigating the initial shape of the empirical HRFs (for more information, see Aarset (1987)), and the "box plot" 

for investigating the extremes will all be considered. 
 

7.1 Modeling the reliability stress data 

The first raw data set is 100 measurements of carbon fiber breaking stress (in Gba) provided by Nichols and Padgett 

(2006). Figure 4 displays a box plot (right-hand panel), NK-PDFE plot (left-hand panel), TTT plot (right-hand panel), 

and QN-QN plot (left-hand panel). According to the data for carbon fiber breaking stress, shown in the first row of 

the left panel of Figure 4, the distribution is asymmetric bimodal with a right heavy tail. Figure 4's first-row right panel 

shows that the HRF has been rising consistently over the past few years.  The extreme values in this data are readily 
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apparent in the left and right panels of Figure 4's second row. The third panel in the right-hand row of Figure 4 shows 

that the current data cannot be characterized by theoretical distributions such the normal, uniform, exponential, 

logistic, beta, lognormal, and Weibull distributions. Table 2 shows the results of the Kolmogorov-Smirnov test, the 

Cramér-von Mises statistic, the Anderson-Darling statistic, and the P-value for all of the fitted models. The MLEs and 

associated SEs are tabulated in Table 3. Table 2 shows that the GCGR-IR model has the most conservative estimates, 

with CRVM = 0.061251, ANDR = 0.444536, KG-SM = 0.057898, and 𝑃𝜐= 0.888821. Because of this, we can choose 

the GCGR-IR as our preferred model. Figure 5 displays the projected PDF and CDF. The P-P plot and estimated HRF 

for the current data set are displayed in Figure 6. The revised GCGR-IR model provides satisfactory fits to the 

experimental functions, as shown in Figures 6 and 7. 

 

Table 2: CRVM, ANDR, KG-SM and 𝑃𝜐 for the breaking stress of carbon fibers data. 

Criteria→ Goodness of fit criteria 

Distribution↓ CRVM ANDR KG-SM 𝑃𝜐 

GCGR-IR 0.061251 0.444536 0.057898 0.888821 

OLOGL-IR 0.155353 1.212059 0.655329 < 0.0010 

OB-IR 0.066555 0.470644 0.063040 0.822025 

MCD-IR 0.133336 1.060777 0.080748 0.533255 

OLLGZ-IR 0.120335 0.963936 0.556334 < 0.0010 

TR-IR 0.087117 0.620935 0.078216 0.573455 

GOLOGL-IR 0.155039 1.212032 0.655233 < 0.0010 

GZ-IR 0.109436 0.765675 0.08732 0.428665 

RR 0.109044 0.765777 0.0871175 0.428239 

KUM-IR 0.081333 0.621768 0.076017 0.611840 

MRO-IR 0.088650 0.614260 0.076285 0.516771 

Beta-IR 0.081029 0.621314 0.075755 0.614686 

 

Table 3: MLEs and SEs for the breaking stress of carbon fibers data. 

Estimates → 

Distribution↓ 

Estimates 

𝛾 𝜎̂ 𝜗̂ 𝔞̂ 
 

GCGR-IR 221.2132 

(31.5334) 

0.329843 

(0.01759) 

 71.12528 

(68.9222) 

 

GCGR-IR 5.195422 

(0.00346) 

0.599335 

(0.03247) 

 1.077454 

(0.04444) 

 

OLLGZ-IR 0.135942 

(0.00132) 

 3.72056 

(0.00147) 

0.92909 

(0.30332) 

 

GOLOGL-IR 0.494683 

(0.041436) 

 0.067494 

(0.71959) 

1.742613 

(9.30073) 

 

OLOGL-IR 0.494589 

)0.04132   (  

 0.452429 

0.038691 

  

RR    2.396381 

(0.00362) 

 

KUM-IR  0.848944 

(16.08346) 

1.623929 

(0.69791) 

1.634104 

(9.09417) 

 

GZ-IR  0.939474  1.416949 
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(3.54346) (2.56849) 

Beta-IR  0.736632 

(1.52966) 

1.583035 

(0.71324) 

1.668443 

(0.76623) 

 

TR-IR −0.733661 

(0.261692) 

  1.265562 

(0.05799) 

 
 

MRO-IR 1.2419435 

(0.118145) 

0.003327 

(0.00098) 

 6.229612 

(1.01341) 

 

MCD-IR 0.850347 

(0.135376) 

44.42347 

(25.1072) 

19.85939 

(6.70639) 

0.203438 

(0.00638) 

 

 

  

  

Figure 4: Graphical description for the breaking stress of carbon fibers data. 
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Figure 5: Estimated PDF (left application plot) and estimated CDF (right application plot) for the breaking 

stress of carbon fibers data. 

 

  
Figure 6: P-P plot (left application plot) and estimated HRF (right application plot) for the breaking stress of 

carbon fibers data. 

 

7.2 Modeling the reliability glass fibers dataset 

The second group of numbers pertains to the glass fiber strengths as described by Smith and Naylor (1987). Box plot, 

QN-QN plot, NK-PDFE plot, and TTT plot are shown in Figure 7's second row left panel, second row right panel, and 

first row left panel, respectively. In the first left panel of Figure 7, we can see that the data for glass fibers exhibits an 

asymmetric bimodal distribution with a right heavy tail. The HRF of glass fibers exhibits a monotonically increasing 

trend, as shown in the first row, right panel of Figure 7.  As may be seen in the panels labeled "second row left" and 

"second row right" of Figure 7, the statistics for glass fibers include some extreme values. Panel (right third row) of 

Figure 7 demonstrates that the glass fiber data cannot be explained by the normal, uniform, exponential, logistic, beta, 

lognormal, or Weibull distributions. 
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The CRVM, ANDR, KG-SM, and 𝑃𝜐  statistics for all fitted models are shown in Table 4. The MLEs and corresponding 

SEs are shown in Table 5. Table 4 shows that when compared to other models, the CRVM (0.114399), ANDR 

(0.895333), KG-SM (0.003421), and 𝑃𝜐 = (700635) provided by the GCGR-IR model are the lowest. As a result, we 

can choose the GCGR-IR distribution as our preferred model. Figure 8 displays the projected PDF and CDF. Figure 

9 displays the P-P plot and estimated HRF for the glass fiber data. The GCGR-IR model provides a good fit to the 

empirical functions, as seen in Figures 9 and 10. 

 

Table 4: CRVM, ANDR; KG-SM and 𝑃𝜐 for the glass fibers data. 

Criteria→ 

Distribution ↓ 

Goodness of fit criteria 

CRVM ANDR KG-SM 𝑃𝜐 

GCGR-IR 0.114399 0.895333 0.003421 0. 700635 

IR 0.083243 0.695665 0.054245 0. 3422114 

OLLGZ-IR 0.104832 0.83665 0.551954 < 0.00100 

GOLOGL-IR 0.150665 1.146675 0.679111 < 0.00100 

OLOGL-IR 0.151541 1.146119 0.679434 < 0.00100 

 

Table 5: MLEs and SEs for the glass fibers data. 

 

Estimates → 

Distribution ↓ 

Estimates 

𝛾 𝜎̂ 𝜗̂ 𝔞̂ 
 

GCGR-IR 10.34411 

(6.22321) 

0.0056300 

(0.011242) 

 53.55433 

(1.32130) 

 

IR    56.65521  

    (2.00031)  

OLLGZ-IR 0.1449432 

(0.01288)1 

 0.008733 

(0.00048) 

1.299344 

(0.00049) 

 

GOLOGL-IR 0.5025554 

(0.052877) 

 0.071343 

(1.13655) 

1.7048342 

(13.47432) 

 

OLOGL-IR 0.5025122 

0.0529461 

 0.455933 

0.048655 
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Figure 7: Graphical description for the glass fibers data. 
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Figure 8: Estimated PDF (left application plot) and CDF (right application plot) for the glass fibers data. 

 

 
 

Figure 9: P-P plot (left application plot) and estimated HRF (right application plot) for the glass fibers data. 

 

7.3 Modeling the medical relief times data 

The "Wingo data" is the third type of information, and it features the reported alleviation times (in hours) for 50 

arthritis patients during a clinical trial. Figure 10 displays a box plot (second panel from the left), NK-PDFE plot (first 

panel from the left), TTT plot (first panel from the right), and QN-QN plot (second panel from the right). In the first 

panel on the left of Figure 10, the data for the relief times are presented as symmetric data. The HRF for this data is 

continuously increasing, as shown in the right panel of the first row in Figure 10. Figure 1's panels for the second row, 

both left and right, show that the relief times have no outlying values.  As shown in the third panel from the right of 

Figure 10, theoretical distributions including the normal, uniform, exponential, logistic, beta, lognormal, and Weibull 

cannot account for the relief times.  

 

Table 6 displays the CRVM, ANDR, KG-SM, and P_ values for all of the fitted models. Table 7 details the MLEs and 

their corresponding SEs. From Table 6, the minimum values for the GCGR-IR model are: CRVM =0.048111, ANDR 
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=0.401121, KG-SM =0.082471, and 𝑃𝜐=0.900632. Therefore, the GCGR-IR may be selected as the best model. The 

predicted PDF and CDF are shown in Figure 11. For the data collected during the relief periods, the P-P plot and 

estimated HRF are shown in Figure 12. Figures 12 and 13 show that the suggested GCGR-IR model provides a good 

fit to the empirical functions. 

 

Table 6: CRVM, ANDR, KG-SM and 𝑃𝜐 for the relief times data. 

Criteria→ 

Distribution ↓ 

Goodness of fit criteria 

CRVM ANDR KG-SM 𝑃𝜐 

GCGR-IR 0.048111 0.401121 0.082471 0.900632 

OB-IR 0.049436 0.42043 0.091266 0.799986 

GZ-IR 0.323553 2.030133 0.150688 0.206420 

GOLOGL-IR 0.195399 1.349776 0.110001 0.579731 

Beta-IR 0.367871 2.513100 0.143344 0.360133 

IR 0.323343 2.030323 0.150654 0.206621 

OLLGZ-IR 0.157889 1.098854 0.5349543 < 0.0010 

TR-IR 0.282090 1.815288 0.137999 0.3045188 

 

Table 7: MLEs and SEs for the relief times data. 

Estimates → 

Distribution ↓ 

Estimates 

𝛾 𝜎̂ 𝜗̂ 𝔞̂  

GCGR-IR 0.979543 

(0.112198) 

0.044489 

(0.10154) 

 31.066812 

(21.87953) 

 

OB-IR 10.79053 

(0.06675) 

6.115531 

(4.09556) 

 0.126864 

(0.000235) 

 

GOLOGL-IR 1.96135 

(0.23493) 

0.111288 

(0.00166) 

 1.412344 

(0.005466) 

 

OLLGZ-IR 0.066933 

(0.00761) 

 0.221445 

(0.00279) 

0.35554 

(0.00480) 

 

IR    0.485959 

(0.02279) 

 

GZ-IR   0.904841 

(18.78439) 

0.50151 

(3.24447) 

 

Beta-IR  4.0153244 

(0.111866) 

1.3345431 

(0.147803) 

2.002210 

(0.32101) 

 

TR-IR −0.581660 

(0.2787265) 

  0.440030 

(0.929001) 
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Figure 10: Graphical description for the relief times data. 
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Figure 11: Estimated PDF (left application plot) and estimated CDF (right application plot) for the relief 

times data. 

 

 
 

Figure 12: P-P plot (left application plot) and estimated HRF (right application plot) for the relief times data. 

8. Conclusions 

In this work, a compound G distribution with two parameters that is completely new to the family was introduced as 

a member of the compound G distributions. It is possible to deduce essential statistical properties, such as the 

generating function, ordinary moments, and incomplete moments. It is possible to accomplish this.  An inquiry has 

been conducted specifically into the Inverse- Rayleigh model, which serves as the benchmark for comparison with 

other models. When making an estimation of the characteristics of the new family, the approach that has the best 

possibility of producing accurate results is the one that is selected. For the purpose of making it easier to compare the 

many different approaches to estimating, numerical simulations are run through each of them. In order to produce a 

number of distributions that were bivariate as well as multivariate, we relied on the copula method. These brand-new 

distributions have the potential to be of great assistance when it comes to modeling data that has both bivariate and 

multivariate components. In addition to this, three different actual data sets are used in order to assess and compare 

the various estimating approaches. The flexibility and importance of the purposed family of products are demonstrated 

by the use of three separate applications to observable data.  The following examples demonstrate how the new G 

family performs better than some of the G families that have been around for a longer period of time: 
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I. The Cramér-von Mises statistic, the Anderson-Darling statistic, the Kolmogorov-Smirnov test statistic, and the 

accompanying p-value all suggest that the new family performs better than the odd Burr G family, the odd log-

logistic G family, and the odd log-logistic G family. Additionally, all of these statistics indicate that the new 

family performs better than the odd Burr G family. Modeling the breaking stress of carbon fibers requires the 

use of the generalized G family, the odd, transmuted G family, the generalized G family, the McDonald G 

family, the Marshall-Olkin G family, and the Beta G family. This is according to the Cramér-von Mises 

statistic, the Anderson-Darling statistic, and the Kolmogorov-Smirnov test.  

II. When it comes to modeling glass fibers, the purposed family performs better than the odd log-logistic G family 

and the odd log-logistic generalized G family, according to the Cramér-von Mises statistic, the Anderson-

Darling statistic, the Kolmogorov-Smirnov test statistic, and its accompanying p-value. This was determined 

by comparing the purposed family to the Anderson-Darling statistic. The comparison of the purposed family 

to the other two families allowed for the discovery of this result. 

III.  The performance of the new family is superior to that of the odd Burr G family, the generalized odd log-

logistic G family, the odd log-logistic generalized G family, the generalized G family, the Beta G family, and 

the transmuted G family when it comes to modeling the relief timings. The Cramer-von Mises statistic, the 

Anderson-Darling statistic, the Kolmogorov-Smirnov test statistic, and its accompanying p-value all provide 

evidence for this assertion. 

Based on the above applications we conclude that: 

I. Compound G families of continuous probability distributions allow us to model and describe real-world data 

accurately. By identifying the distribution that best fits the data, we gain insights into its underlying behavior 

and characteristics. This can be crucial for understanding the data's central tendency, variability, and potential 

outliers. 

II. Compound families of probability distributions enable us to perform statistical inference and estimate 

parameters. This includes tasks like hypothesis testing, confidence intervals, and maximum likelihood 

estimation. These techniques help us draw conclusions about the population from which the data is sampled. 

III. In many fields like finance, insurance, and engineering, understanding and quantifying risk is essential. 

Compound G families of continuous probability distributions can be used to model risks and estimate 

probabilities of extreme events, which are crucial for risk assessment and management. 

IV. Compound G families of continuous probability distributions can be integrated into decision-making processes. 

They help assess uncertainty and make more informed decisions, particularly in situations where outcomes are 

uncertain, and risks need to be considered. 

V. Probability distributions are fundamental in forecasting and prediction tasks. By fitting historical data to an 

appropriate distribution, we can generate probabilistic forecasts for future events or outcomes. 

VI. In quality control and manufacturing, compound continuous probability distributions are used to monitor and 

control production processes. They help identify deviations and anomalies in the manufacturing process. 

VII. In engineering and reliability studies, compound probability distributions are used to model failure times and 

lifetimes of products or systems. This information is crucial for design improvements and maintenance 

planning. 

Here are some future research points in this area: 

I. Investigate the extension of the novel geometrically generated Rayleigh family to multivariate distributions. 

Develop and explore new multivariate distributions with applications in fields like finance, environmental 

modeling, and engineering. 

II. Apply Bayesian methods for parameter estimation and inference in the context of the new geometric Rayleigh 

family and copula models. Study the advantages of Bayesian techniques in handling uncertainty. 

III. Explore the capabilities of the proposed models in modeling extreme events, such as natural disasters, financial 

crises, or rare diseases. Investigate the tail behavior of the distributions and copulas. 

IV. Apply the new models to time series data. Investigate their ability to capture temporal dependencies and trends. 

Develop time series versions of the proposed distributions and copulas. 

V. Conduct robustness and sensitivity analyses to evaluate how the proposed models perform under different data 

conditions, parameter settings, and model assumptions. 

VI. Extend the models to incorporate covariates or explanatory variables. Analyze how these factors affect the 

distributions and dependence structures in real-life data. 
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VII. Investigate the use of the new distributions and copulas for model-based clustering and classification of data. 

Explore applications in customer segmentation, image analysis, or ecological modeling. 

VIII. Study and develop novel dependence measures within the context of copulas. Explore how these measures can 

provide insights into the relationships between variables in real-life data. 

IX. Apply the models to risk assessment and management in areas like insurance, investment, and environmental 

risk. Evaluate their performance in estimating value at risk (VaR) and conditional value at risk (CVaR). 

X. Investigate the use of non-Gaussian copulas (e.g., Archimedean, t-copulas) in combination with the novel 

geometrically generated Rayleigh family. Assess their performance in modeling data with non-normal 

dependencies. 

XI. Develop user-friendly software tools or R packages that implement the proposed models, making them 

accessible to a broader audience of researchers and practitioners. 

XII. Explore applications of models in emerging fields such as blockchain technology, cybersecurity, and social 

network analysis, where understanding dependencies and modeling real-life data are of increasing importance. 

XIII. Foster collaboration with experts from diverse fields to apply the models to new and unexplored areas, 

providing insights and solutions to real-world problems. 

XIV. Investigate ethical implications related to data modeling and the use of probabilistic models in decision-

making, especially in fields like healthcare, finance, and criminal justice. 

XV. Develop educational resources and outreach programs to disseminate knowledge about the new models and 

their applications, fostering a wider understanding of their benefits and limitations. 

XVI. A Chi-squared type test for distributional censored and uncensored validity with numerical assessments and 

real data applications within the context of the new compounded family. 

XVII. The geometric generated Rayleigh family for the value at risk analysis with insurance applications (see Ibrahim 

et al. (2023), Yousof et al. (2023a-f)). 

XVIII. The bivariate geometric generated Rayleigh family (Mansour et al. (2020a-f), Elgohari and Yousof (2020a), 

Shehata and Yousof (2021, 2022), Shehata et al. (2021, 2022) and Elgohari et al. (2020)). 

XIX. The geometric generated Rayleigh family for modeling bimodal data. 

XX. The geometric generated Rayleigh family for modeling heavy tailed data. 

XXI. Characterizing the geometric generated Rayleigh family (see Bhatti et al. (2018. 2019. 2020 and 2022)). 

XXII. The geometric generated Rayleigh family for modeling the actuarial data. 

XXIII. The geometric generated Rayleigh family under some acceptance sampling plans. (see Ahmed and Yousof 

(2022), Ahmed et al. (2022a,b) and Tashkandy et al. (2023)). 

XXIV. The geometric generated Rayleigh family with censored regression modeling (Altun et al. (2018a-e)). 

XXV. The geometric generated Rayleigh family with application in reliability, insurance, economic and medicine 

(see Elsayed and Yousof (2019a,b), Elsayed and Yousof (2020 and 2021), Korkmaz et al. (2017, 2018, 2019a, 

2019b and 2022)). 

XXVI. The geometric generated Rayleigh family with right censored Bayesian and Non-Bayesian distributional 

validation (see Emam et al. (2023b)). 

XXVII. Validation of geometric generated Rayleigh family via Nikulin-Rao-Robson goodness-of- fit test under 

complete and censored applications (Yadav et al. (2020, 2021, 2022)). 

XXVIII. Generalized stress-strength and generalized multicomponent stress-strength models under the geometric 

generated Rayleigh family (see Rasekhi et al. (2022), Saber and Yousof (2022) and Saber et al. (2022a,b,c)). 

These future research points aim to advance the understanding and application of the novel geometrically generated 

Rayleigh family of distributions and copulas, contributing to a wide range of fields where data modeling is critical. 
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