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Abstract 

  

In this article, we introduce a new distribution called the McDonald Erlang-truncated exponential distribution. 

Various structural properties including explicit expressions for the moments, moment generating function, mean 

deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum 

likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is 

much better than other important competitive models in modeling relief times and survival times data sets. 
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1. Introduction and motivation 

The Erlang-truncated exponential distribution (ETEx) is widely used in the field of queuing system and stochastic 

processes. El-Alosey (2007) introduced Erlang-truncated exponential (ETEx) distribution by mixing the Erlang 

distribution with left truncated one parameter exponential distribution. The ETEx distribution, like the exponential 

distribution, has a constant failure rate which makes it practically impossible for the model to provide a reasonable 

parametric fit to data sets with decreasing failure rate, increasing failure rate and non-monotonic failure rate such as 

the bathtub and unimodal failure rates which are common in reliability studies and other related fields of studies. The 

cumulative distribution function (CDF) of this distribution is given by 

𝐺ETEx

(𝛼,𝜃)
(𝑥) = 1 − 𝑒−𝛼(1−𝑒−𝜃)𝑥  | (𝑥≥0), (1) 

where  𝜃 > 0  is the scale parameter and  𝛼 > 0  is the shape parameter. When  𝜃 → ∞ , we have the standard 

exponential model. The corresponding probability density function (PDF) and hazard rate function (HRF) are given 

by 

𝑔ETEx

(𝛼,𝜃)
(𝑥) = 𝛼(1 − 𝑒−𝜃)𝑒−𝛼(1−𝑒−𝜃)𝑥 | (𝑥≥0), (2) 

and 

ℎETEx

(𝛼,𝜃)
(𝑥) = 𝛼(1 − 𝑒−𝜃) (3) 

 

respectively. As illustrated in (3), the HRF of the ETEx distribution is constant and this which makes it inadequate for 

modelling many complex lifetime data sets that have nonconstant failure rates. So, the main aim of this paper is to 

extend the ETEx distribution by adding three extra shape parameters to define a new flexible model referred to as the 

Mc-Donald Erlang-truncated exponential (McETEx) distribution. The role of the three additional parameters is to 

introduce skewness and to vary tail weights and provide greater flexibility in the shape of the generalized distribution 

and consequently in modeling observed data. It may be mentioned that although several skewed distribution functions 

exist on the positive real axis not many skewed distributions are available on the whole real line which are easy to use 
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for data analysis purpose. The main idea is to introduce three shape parameters, so that the McETEx distribution can 

be used to model skewed data, a feature which is very common in practice. 

 

 The PDF of the Mc-Donald G family (Mc-G) is defined by 

𝑓Mc-G

(𝑎,𝑏,𝑐)
(𝑥; 𝜑) =

𝑐

𝐵(𝑎, 𝑏)
𝑔(𝑥; 𝜑)𝐺𝑎𝑐−1(𝑥; 𝜑)[1 − 𝐺𝑐(𝑥; 𝜑)]𝑏−1, (4) 

 

where  𝑎 > 0 ,  𝑏 > 0  and  𝑐 > 0  are additional shape parameters. Note that  𝑔(𝑥; 𝜑)  is the PDF of baseline 

distribution,  𝑔(𝑥; 𝜑) = 𝑑𝐺(𝑥; 𝜑)/𝑑𝑥  and  𝜑  is the paramrt vector. The class of distributions (1.4) includes as special 

sub-models the beta generalized (B-G) family of distributions for  𝑐 = 1  (see Eugene et al. (2002)) and Kumaraswamy 

generalized (K-G) family of distributions (see Cordeiro and Castro (2011)) for 𝑎 = 1. The corresponding CDF OF (4) 

is given by 

𝐹Mc-G

(𝑎,𝑏,𝑐)
(𝑥; 𝜑) = 𝐼𝐺𝑐(𝑥;𝜑)(𝑎, 𝑏) =

1

𝐵(𝑎, 𝑏)
∫ 𝜔𝑎−1

𝐺(𝑥;𝜑)𝑐

0

(1 − 𝜔)𝑏−1𝑑𝜔, 
 

(5) 

where  

𝐼𝜁(𝑎, 𝑏) =
1

𝐵(𝑎, 𝑏)
∫ 𝜔𝑎−1

𝜁

0

(1 − 𝜔)𝑏−1𝑑𝜔, 

denotes the incomplete beta function ratio (Gradshteyn and Ryzhik, (2000)). Equation (5) can also be rewritten as 

follows 

𝐹Mc-G

(𝑎,𝑏,𝑐)
(𝑥; 𝜑) =

𝐺(𝑥; 𝜑)𝑎𝑐

𝑎𝐵(𝑎, 𝑏)
 2𝐹1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝐺(𝑥; 𝜑)𝑐), 

(6) 

 

where 

2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) = 𝐵(𝑏, 𝑐 − 𝑏)−1 ∫
1

0

𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1

(1 − 𝑡𝑥)𝑎
𝑑𝑡, 

is the well-known “hypergeometric function” which are well established in the literature (see Gradshteyn and Ryzhik 

(2000)). The HRF and reverse hazard functions (RHF) of the Mc-G distribution are given by 

ℎMc-G

(𝑎,𝑏,𝑐)
(𝑥; 𝜑) =

𝑐𝑔(𝑥; 𝜑)𝐺𝑎𝑐−1(𝑥; 𝜑)[1 − 𝐺𝑐(𝑥; 𝜑)]𝑏−1

𝐵(𝑎, 𝑏)[1 − 𝐼𝐺𝑐(𝑥;𝜑)(𝑎, 𝑏)]
, 

(7) 

 

and 

𝜏Mc-G

(𝑎,𝑏,𝑐)
(𝑥; 𝜑) =

𝑐𝑔(𝑥; 𝜑)𝐺𝑎𝑐−1(𝑥; 𝜑)[1 − 𝐺𝑐(𝑥; 𝜑)]𝑏−1

𝐵(𝑎, 𝑏)[𝐼𝐺𝑐(𝑥;𝜑)(𝑎, 𝑏)]
, 

respectively. Recently, many authors used the Mc-G family to expand some existing models such as the McDonald 

gamma distribution by Marciano et al. (2012), the McDonald Normal distribution by Cordeiro et al. (2012), McDonald 

half-logistic distribution by Oliveira et al. (2013), McDonald Dagum by Oluyede and Rajasooriya (2013), the 

McDonald Gompertz distribution by Roozegar et al. (2017). 

The rest of the article is organized as follows. In Section 2, we define the McETEx distribution. The expansion for the 

cumulative and density functions of the (McETEx) distribution and some special cases are proposed in Section 2. 

Moments, moment generating function and conditional moment. Mean deviation, Lorenz and Bonferroni curves are 

discussed in Section 3. In Section 4 Residual life and Reversed Failure Rate Function of (McETEx) distribution. 

Maximum likelihood estimation is performed in Section 5. In Section 6, we provide application to real data set to 

illustrate the importance of the new distribution. 

2. The new distribution 

Using (1) and (5) the CDF of (McETEx) can be written as 

𝐹McETEx

(𝜙)
(𝑥) = 𝐼𝐺𝑐(𝑥;𝜑)(𝑎, 𝑏) = 𝐼

[1−𝑒−𝛼(1−𝑒−𝜃)𝑥]
𝑐(𝑎, 𝑏) | (𝑥≥0), (8) 

 

the corresponding PDF is given by 
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𝑓McETEx

(𝜙)
(𝑥) =

𝑐𝛼(1 − 𝑒−𝜃)

𝐵(𝑎, 𝑏)
𝑒−𝛼(1−𝑒−𝜃)𝑥 [1 − 𝑒−𝛼(1−𝑒−𝜃)𝑥]

𝑎𝑐−1

{1 − [1 − 𝑒−𝛼(1−𝑒−𝜃)𝑥]
𝑐

}
𝑏−1

 | (𝑥≥0). 
 

(9) 

The new distribution will attract wider applications in reliability as well as in other areas of research and it can be used 

in a variety of problems in modeling survival data (see Section 7). Figure 1 represents some plots of the probability 

density function of the McETEx distribution for some different parameter values. Table 1 gives some sub models from 

the McETEx model. 

 

Figure 1: Plots of the PDF of McETEx for some different parameter values. 

Table 1: Some sub models from the McETEx model. 

𝑎 𝑏 𝑐 𝛼 𝜃 Reduced model 

𝑎 𝑏 𝑐 𝛼 → ∞ McEx 

𝑎 𝑏 1 𝛼 𝜃 BETEx 

𝑎 𝑏 1 𝛼 → ∞ BEx 

1 𝑏 𝑐 𝛼 𝜃 KETEx 

1 𝑏 𝑐 𝛼 → ∞ KEx 

A random variable 𝑋 with the PDF (9) is said to have a McETEx distribution and will be denoted by 𝑋 ∼ McETEx 

(𝜙) where 𝜙 = (𝑎, 𝑏, 𝑐, 𝛼, 𝜃).  The HRFcan be defined as 

ℎ𝑀𝑐𝐸𝑇𝐸𝑥(𝑥, 𝜙) =
𝑐𝛼(1 − 𝑒−𝜃)𝑒−𝛼(1−𝑒−𝜃)𝑥 [1 − (1 − 𝑒−𝛼(1−𝑒−𝜃)𝑥)

𝑐

]
𝑏−1

𝐵(𝑎, 𝑏) [1 − 𝐼
(1−𝑒

−𝛼(1−𝑒−𝜃)𝑥
)𝑐

(𝑎, 𝑏)] [1 − 𝑒−𝛼(1−𝑒−𝜃)𝑥]
−𝑎𝑐+1

. 

 

 

(10) 

 

Many extension of the ETEx model can be cited such as Okorie et al. (2016) introduced the transmuted Erlang-

truncated exponential distribution, Nasiru et al. (2016) investigated the generalized Erlang-truncated exponential 

distribution and Okorie et al. (2017) proposed and studied the Marshall-Olkin generalized Erlang-truncated 

exponential distribution, among others. Many other useful extensions can found in Alizadeh et al. (2018), Hamedani 

et al. (2018), Elbiely and Yousof (2019), Alizadeh et al. (2020),  Ibrahim et al. (2020),  Karamikabir et al. (2020),  

Yousof et al. (2018a,b,c, 2019 and 2020), Korkmaz et al. (2018, 2019a,b,c and 2020) and Ibrahim et al. (2020). 

 

3. Useful Expansions 

In this Section, we present some representations of PDF of McETEx distribution. The mathematical relation given 

below will be useful in this subsection. The series representation given below will be useful in this subsection. If  𝜁  

is a positive real non- integer and  |𝜏| < 1  then  

(1 − 𝜏)𝜁 = ∑(−𝜏)𝑘

∞

𝑘=0

(
𝜁
𝑘

). 
(11) 

 

Substituting from (11) into (9), we get 
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𝑓McETEx

(𝜙)
(𝑥) =

𝑐𝛼(1 − 𝑒−𝜃)

𝐵(𝑎, 𝑏)
∑

∞

𝑖=0

(−1)𝑖 (
𝑏 − 1

𝑖
) 𝑒−𝛼(1−𝑒−𝜃)𝑥 [1 − 𝑒−𝛼(1−𝑒−𝜃)𝑥]

𝑐(𝑎+𝑖)−1

, 
(12) 

again, using the binomial series expansion in (12) we get 

𝑓McETEx

(𝜙)
(𝑥) = ∑ 𝜉𝑖,𝑗

∞

𝑖,𝑗=0

𝑒−𝜗𝑥, 
(13) 

 

where  

𝜉𝑖,𝑗 = 𝑐𝛼(1 − 𝑒−𝜃)
(−1)𝑖+𝑗

𝐵(𝑎, 𝑏)
(

𝑏 − 1
𝑖

) (
𝑐(𝑎 + 𝑖) − 1

𝑗
), 

and 

𝜗 = 𝛼(𝑗 + 1)(1 − 𝑒−𝜃). 

4. Statistical Properties 

Moments 

The following theorems give the r𝑡ℎ moment (𝜇𝑟) and moment generating function 𝑀𝑋(𝑡) of the distribution 

McETEx.  
Theorem (4.1): If 𝑋 has the McETEx, then the r𝑡ℎ  moment of 𝑋 is given by the following 

𝜇𝑟
′ = 𝛤(1 + 𝑟) ∑ 𝜉𝑖,𝑗

(1+𝑟,𝜗)

∞

𝑖,𝑗=0

, 
(14) 

where 

𝜉𝑖,𝑗
(1+𝑟,𝜗)

=
1

𝜗1+𝑟
𝜉𝑖,𝑗 , 

Further, the central moments 𝜇𝑟 and cumulants  𝜅𝑟  of the McETEx distribution can be determined by  

𝜇𝑟 = ∑

𝑟

𝑚=0

(
𝑟
𝑚

) (−1)𝑚𝜇1
/𝑚

𝜇𝑟−𝑚
/

, 

and  

𝜅𝑟 = 𝜇𝑟
/

− ∑ 𝜅𝑚

𝑟−1

𝑚=1

(
𝑟 − 1
𝑚 − 1

) 𝜇𝑟−𝑚
/

, 

respectively, where 

𝜅1 = 𝜇1
/
, 𝜅2 = 𝜇2

/
− 𝜇1

/2
, 𝜅3 = 𝜇3

/
− 3𝜇2

/
𝜇1

/
+ 2𝜇1

/3
, 

and 

𝜅4 = 𝜇4
/

− 4𝜇1
/
𝜇3

/
− 3𝜇2

/2
+ 12𝜇2

/
𝜇1

/2
− 6𝜇1

/4
. 

The coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) can be obtained 

according to the following relation  

𝐶𝑉 = √
𝜇2

/

𝜇2

− 1, 𝐶𝑆 =
𝜅3

√𝜅2
3

, 

 and  

𝐶𝐾 =
𝜅4

𝜅2
2, 

respectively. 

 

Theorem (4.2): If  𝑋  has the McETEx (𝜙), then the the moment generating function (MGF) of  𝑋   is given as follows 

𝑀𝑋(𝑡) = 𝛤(1 + 𝑟) ∑

∞

𝑖,𝑗=0

𝜉𝑖,𝑗

𝜗 − 𝑡
. 

Conditional moments 

For lifetime models, it is of interest to know the rth lower and upper incomplete moments of 𝑋 defined by  
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𝑣𝑠(𝑡) = 𝐸(𝑋𝑠 |(𝑋<𝑡)) = ∫
𝑡

0

𝑥𝑠𝑓(𝑥)𝑑𝑥, 

 and  

𝜂𝑠(𝑡) = 𝐸(𝑋𝑠 |(𝑋>𝑡)) = ∫
∞

𝑡

𝑥𝑠𝑓(𝑥)𝑑𝑥, 

respectively, for any real  𝑠 > 0.  The r 𝑡ℎ  lower incomplete moment of McETEx distribution is 

𝑣𝑠(𝑡) = ∫ 𝑥𝑠
𝑡

0

𝑓(𝑥)𝑑𝑥 = ∑ 𝜉𝑖,𝑗

∞

𝑖,𝑗=0

 ∫
𝑡

0

𝑥𝑠𝑒−𝜗𝑥𝑑𝑥 = ∑ 𝜉𝑖,𝑗
(1+𝑠,𝜗𝑡)

∞

𝑖,𝑗=0

𝛾(1 + 𝑠, 𝜗𝑡), 

where 

𝜉𝑖,𝑗
(1+𝑠,𝜗𝑡)

=
1

(𝜗𝑡)1+𝑠
𝜉𝑖,𝑗 , 

and  

𝛾(𝜏, 𝑞)|(𝜏≠0,−1,−2,...) = ∫
𝑞

0

𝑡𝜏−1𝑒−𝑡𝑑𝑡 =
𝑞𝜏

𝜏
{1𝐹1[𝜏; 𝜏𝑎 + 1; −𝑞]} = ∑

∞

𝑘=0

(−1)𝑘

𝑘! (𝜏 + 𝑘)
𝑞𝜏+𝑘 , 

is the lower incomplete gamma function. Similarly, the r 𝑡ℎ  upper incomplete moment of McETEx distribution is 

𝜂𝑠(𝑡) = ∫
∞

𝑡

𝑥𝑠𝑓(𝑥)𝑑𝑥 = ∑

∞

𝑖,𝑗=0

𝜉𝑖,𝑗 ∫
∞

𝑡

𝑥𝑠𝑒−𝜗𝑥𝑑𝑥 = ∑

∞

𝑖,𝑗=0

𝜉𝑖,𝑗
(1+𝑠,𝜗𝑡)

𝛤(1 + 𝑠, 𝜗𝑡), 

where  

𝛤(𝜏, 𝑞)|(𝑧>0) = ∫ 𝑡𝜏−1
𝑞

0

𝑒−𝑡𝑑𝑡 ∼
𝑞𝜏−1

𝑒𝑞
[1 +

𝜏 − 1

𝑞
+

(𝜏 − 1)(𝜏 − 2)

𝑞2
+. . . ], 

is the upper incomplete gamma function,  1𝐹1[⋅,⋅,⋅]  is a confluent hypergeometric function and  

𝛤(𝜏, 𝑞) + 𝛾(𝜏, 𝑞) = 𝛤(𝜏), 
The MRL has many applications in biomedical sciences, life insurance, maintenance and product quality control, 

economics and social studies, demography and product technology (see Lai and Xie, 2006). Guess and Proschan 

(1988) gave an extensive coverage of possible applications of the mean residual life. The MRL (or the life expectancy 

at age  𝑡 ) represents the expected additional life length for a unit, which is alive at age  𝑡 . The MRL is given by 

𝑚𝑋(𝑡) = 𝐸(𝑋 |(𝑋>𝑡)) =
𝜂1(𝑡)

𝐹(𝑡)
− 𝑡, 

where  𝜂1(𝑡)  is the first incomplete moment of  𝑋  and by setting  𝑠 = 1  in equation (4.4), we get 

𝑚𝑋(𝑡) = ∑
1

𝐹(𝑡)

∞

𝑖,𝑗=0

𝜉𝑖,𝑗
(2,𝜗𝑡)

𝛤(2, 𝜗𝑡) − 𝑡. 

Also, the mean inactivity time (MIT) represents the waiting time elapsed since the failure of an item on condition that 

this failure had occurred in  (0; 𝑡) . The MIT of  𝑋  is defined (for  𝑡 > 0 ) by  

𝜏𝑋(𝑡) = 𝐸(𝑋 |(𝑋<𝑡)) = 𝑡 −
𝑣1(𝑡)

𝐹(𝑡)
= 𝑡 −

1

𝐹(𝑡)
𝜉𝑖,𝑗

(2,𝜗𝑡)
𝛾(2, 𝜗𝑡) 

 

Mean deviation, Lorenz and Bonferroni curves 

If  𝑋  has the McETEx distribution, then we can derive the mean deviations about the mean  𝜇 = 𝐸(𝑋)  and the mean 

deviations about the median  𝑀  are defined by  

𝛿1(𝑥) = ∫  𝑓(𝑥)
∞

0

 | 𝑥 − 𝜇 |𝑑𝑥 = 2[𝜇𝐹(𝜇) − 𝐽(𝜇)] 

and 

𝛿2(𝑥) = ∫ 𝑓(𝑥)
∞

0

 | 𝑥 − 𝑀 | 𝑑𝑥 = 𝜇 − 2𝐽(𝑀) 

respectively. The measures  𝛿1(𝑥)  and  𝛿2(𝑥)  can be calculated using the relationships 

𝐽(𝑑) = ∫ 𝑓(𝑥)
𝑑

0

𝑥𝑑𝑥 = ∑ 𝜉𝑖,𝑗
(2,𝜗𝑡)

∞

𝑖,𝑗=0

𝛾(2, 𝜗𝑑). 

 

Bonferroni and Lorenz Curves 
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The Lorenz curve for a positive random variable  𝑋  is defined as 

𝐿(𝑝) =
1

𝜇
∫ 𝑓(𝑥)

𝑞

0

𝑥𝑑𝑥 =
1

𝜇
𝐽(𝑞) = ∑

1

𝜇

∞

𝑖,𝑗=0

𝜉𝑖,𝑗
(2,𝜗𝑡)

𝛾(2, 𝜗𝑑), 

where  𝑞   =   𝐺−1(𝑝).  If  𝑋  represents annual income,  𝐿(𝑝)  is the proportion of total income that accrues to 

individuals having the 100p% lowest incomes. If all individuals earn the same income, then  𝐿(𝑝) = 𝑝  for all  𝑝 . The 

area between the line  𝐿(𝑝) = 𝑝  and the Lorenz curve may be regarded as a measure of inequality of income. Also 

Bonferroni curve is defined by 

𝐵(𝑝) =
1

𝜇𝑝
∫ 𝑓(𝑥)

𝑞

0

𝑥𝑑𝑥 =
1

𝜇𝑝
𝐽(𝑞) 

= ∑
1

𝜇

∞

𝑖,𝑗=0

𝜉𝑖,𝑗
(2,𝜗𝑡)

𝛾(2, 𝜗𝑑), 

where the Bonferroni curve has many applications not only in economics to study income and poverty, but also in 

other fields like reliability, medicine and insurance. 

 

Residual life and reversed failure rate function 

Suppose that a component survives up to time  𝑡 ≥ 0 , the residual life is the period beyond  𝑡  until the time of failure 

and defined by the conditional random variable 𝑋 − 𝑡 | (𝑋 > 𝑡). Therefore, we obtain the 𝑟𝑡ℎ order moment of the 

residual life via the general formula 

𝑧𝑟(𝑡) = 𝐸((𝑋 − 𝑡)𝑟 | 𝑋 > 𝑡) =
1

𝐹(𝑡)
∫ 𝑓(𝑥)

∞

𝑡

(𝑥 − 𝑡)𝑟𝑑𝑥 | (𝑟≥1). 

Applying the binomial expansion of  (𝑥 − 𝑡)𝑟   and substituting  𝑓McETEx

(𝜙)
(𝑥)  given by (2.2) into the above formula 

gives 

𝑧𝑟(𝑡) = ∑
𝜉𝑖,𝑗

𝐹(𝑡)

∞

𝑖,𝑗=0

∑ (−𝑡)𝑚

𝑟

𝑚=0

(
𝑟
𝑚

) ∫ 𝑒−𝜗𝑥
∞

𝑡

 𝑥𝑟−𝑚𝑑𝑥 = ∑ ∑
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𝑟
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∞
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𝛤(1 + 𝑟 − 𝑚, 𝜗𝑡) 

where  

𝛤(𝑠, 𝑡) = ∫ 𝑒−𝑥
∞

𝑡

𝑥𝑠−1𝑑𝑥 

and  

𝜉𝑖,𝑗,𝑚
(1+𝑟−𝑚,𝜗𝑡)

= 𝜉𝑖,𝑗
(1+𝑟−𝑚,𝜗𝑡)

(−𝑡)𝑚 (
𝑟
𝑚

) 

is the upper incomplete gamma function. The mean residual life (MRL) of the McETEx distribution is given by 

𝑧(𝑡) = ∑
𝜉𝑖,𝑗

(2,𝜗𝑡)

𝐹(𝑡)

∞

𝑖,𝑗=0

𝛤(2, 𝜗𝑡) − 𝑡 

The variance of the residual life of the McETEx distribution can be obtained easily by using  𝜇2(𝑡)  and  𝜇(𝑡) . 

 

Also, we analogously discuss the reversed residual life and some of its properties. The reversed residual life can be 

defined as the conditional random variable  𝑡 − 𝑋|𝑋 ≤ 𝑡  which denotes the time elapsed from the failure of a 

component given that its life is less than or equal to  𝑡 . This random variable may also be called the inactivity time 

(or time since failure); for more details you may (see Kundu and Nanda, ( 2010)). Also, in reliability, the mean reversed 

residual life and ratio of two consecutive moments of reversed residual life characterize the distribution uniquely. The  

𝑟   𝑡ℎ order moment of the reversed residual life can be obtained by the well-known formula 

𝑍𝑟(𝑡) = 𝐸((𝑡 − 𝑋)𝑟 |(𝑋≤𝑡)) =
1

𝐹(𝑡)
∫ 𝑓(𝑥)

𝑡

0

(𝑡 − 𝑥)𝑟𝑑𝑥, 𝑟 ≥ 1. 

Applying the binomial expansion of (𝑡 − 𝑥)𝑟 and substituting 𝑓McETEx

(𝜙)
(𝑥)  given by (4) into the above formula gives 

𝑍𝑟(𝑡) = ∑ (
𝑟
𝑚

)

𝑟

𝑚=0

(−𝑡)𝑚 ∫ 𝑒−𝜗𝑥
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0
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1
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𝑟
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) 𝛾(1 + 𝑟 − 𝑚, 𝜗𝑡) 

where  
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𝛾(𝑠, 𝑡) = ∫ 𝑒−𝑥
𝑡

0

𝑥𝑠−1𝑑𝑥 

is the lower incomplete gamma function. Thus, the mean reversed residual life (or mean waiting time) of the McETEx 

distribution is given by 

𝑍(𝑡) = 𝑡 − ∑
1

𝐹(𝑡)

∞

𝑖,𝑗=0

𝜉𝑖,𝑗
(2,𝜗𝑡)

𝛾(2, 𝜗𝑡). 

Using  𝑍(𝑡)  and  𝑍2(𝑡)  one can obtain the variance and the coefficient of variation of the reversed residual life of the 

McETEx distribution. 

 

5. Estimtion 

In this section, we determine the maximum likelihood estimates (MLEs) of the parameters of the McETEx distribution 

from complete samples only. Let  𝑋1, 𝑋2, . . . , 𝑋𝑛  be a random sample of size 𝑛 from McETEx  where  𝐕 =
(𝛼, 𝜃, 𝑎, 𝑏, 𝑐)𝑇  is the parameter vector. The log likelihood function for the vector of parameters 𝐕 can be written easily 

derived and the components of the score vector as well.  

6. Application 

In this Section, we provide two applications to a real data sets to assess the flexibility of the McETEx model. Figure 

2 gives the total time test (TTT) plots (see Aarset (1987)), box plots and Quantile-Quantile (Q-Q) plots for the two 

real data sets. Based on Figure 2 we note that the HRF of the two data are "increasing", the first data contains an 

extreme value, the second data contains four extreme values. The kernel density estimation (KDE) is a non-parametric 

way to estimate the probability density function of a random variable. KDE is a fundamental data smoothing problem 

where inferences about the population are made based on a finite data sample. Let ( 𝑤1 , 𝑤1, … , 𝑤𝑛 ) be a univariate 

independent and identically distributed sample drawn from some distribution with an unknown density function. Then, 

kernel density estimator is 

 

𝑓ℎ(𝑤) =
1

𝑛
∑ 𝐾ℎ(𝑤 − 𝑤𝑖)

𝑛

𝑖=1

=
1

𝑛ℎ
∑ 𝐾 (

𝑤 − 𝑤𝑖

ℎ
)

𝑛

𝑖=1

, 

where 𝐾 is the non-negative kernel function, and ℎ > 0 is a smoothing parameter called the bandwidth. Figure 3 gives 

the KDE plots (see Rosenblat (1956) and Parzen (1962)). In order to compare the McETEx model with other fitted 

distributions, we compare the fits of the McETEx distribution with the Exponential (Ex(𝜃)), Odd Lindley Exponential  

(OLiEx), Marshall-Olkin Exponential (MOEx (𝛼, 𝜃)), Moment Exponential (MomEx (𝜃) ), The Logarithmic Burr-

Hatke Exponential (Log BrHEx(𝜃)), Generalized Marshall-Olkin Exponential (GMOEx (𝜆, 𝛼, 𝜃)), Beta Exponential 

(BEx (𝑎, 𝑏, 𝜃) ), Burr X Ex (𝑎, 𝜃), Marshall-Olkin Kumaraswamy Exponential (MOKEx (𝛼, 𝑎, 𝑏, 𝜃) ), Kumaraswamy 

Exponential (KEx (𝑎, 𝑏, 𝜃)) and Kumaraswamy Marshall-Olkin Exponential (KMOEx (𝛼, 𝑎, 𝑏, 𝜃)) models. The first 

data set {1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2} called the failure time 

data: The data represents the lifetime data relating to relief times (in minutes) of patients receiving an analgesic (see 

Gross and Clark (1975) ). The second data set {0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 

1.05, 1.07, 07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 

1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 

2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55} called the survival times (in days) 

of 72 guinea pigs infected with virulent tubercle bacilli, observed and reported by Bjerkedal (1960).  
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First data set Second data set

 

Figure 2: TTT plots, box plots and Q-Q plots. 
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First data set Second data set

 

Figure 3: Kernel density estimation 

 

We consider the Cramér-Von Mises and the Anderson-Darling (𝐴∗, 𝑊∗) and the Kolmogorov-Smirnov (KS) statistic. 

Moreover, we consider some other goodness-of-fit measures including the Akaike Information Criterion, Consistent 

Akaike Information Criterion, Hannan-Quinn Information Criterion and Bayesian Information Criterion (C₁, C₂, C₃ 

and C₄). Tables 2 and 4 gives the MLEs and SEsvalues for the two data sets. Table 3 and 5 gives the C₁, C₂, C₃, 

C₄, 𝐴∗, 𝑊∗ , K.S. and (p-value) for the two data sets. Figures 4 and 5 gives the estimated PDF (ECDF), EHRF, P-P 

plot and Kaplan-Meier Survival Plot for the two data sets.  

 

 

Figure 4: EPDF, EHRF, P-P plot and Kaplan-Meier Survival Plot for the 1𝑠𝑡  data. 
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Figure 5: EPDF, EHRF, P-P plot and Kaplan-Meier Survival Plot for the 2𝑛𝑑 data. 

 

Table 2: MLEs and SEs values for the relief times data. 

Models  Estimates 

Ex(𝜃) MLE 0.526 

 SE (0.117) 

OLEx(𝜃) MLE 0.6044 

 SE (0.0535) 

MEx(𝜃) MLE 0.950 

 SE (0.150) 

LBHEx(𝜃) MLE 0.5263 

 SE (0.118) 

MOEx(α, 𝜃) MLE 54.474, 2.316 

 SE (35.582), (0.374) 

GMOEx(λ,α, 𝜃) MLE 0.519, 89.462, 3.169 

 SE (0.256), (66.278), (0.772) 

KwEx(α,β, 𝜃) MLE 83.756, 0.568, 3.330 

 SE (42.361), (0.326), (1.188) 

BEx(α,β, 𝜃) MLE 81.633, 0.542, 3.514 

 SE (120.41), (0.327), (1.410) 

MOKwEx(α,β,λ, 𝜃) MLE 0.133, 33.232, 0.571, 1.669 

 SE (0.332), (57.837), (0.721), (1.814) 

KwMOEx(α,β,λ, 𝜃) MLE 8.868, 34.826, 0.299, 4.899 

 SE (9.146), (22.312), (0.239), (3.176) 

BrXEx(a, 𝜃) MLE 1.1635, 0.3207 

 SE (0.33), (0.03) 

McETEx (a,b,c, α, 𝜽) MLE 5.307, 0.866, 6.052, 188.66, 0.012 

 SE (2.201), (0.515), (0.266), (7.458), (0.118) 
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Table 3: C₁, C₂, C₃, C₄, 𝐴∗, 𝐶∗, K.S. and (p-value) for the relief times data. 

Models C₁, C₂, C₃, C₄ 𝐴∗, 𝐶∗ K.S.  

(p-value) 

McETEx 42.46, 38.96, 46.74, 43.43 0.32, 0.05 0.11(0.96) 

BEx 43.48, 46.45, 44.98, 44.02 0.70, 0.12 0.16(0.80) 

Ex 67.67, 68.67, 67.89, 67.87 4.60, 0.96 0.44(0.004) 

BrXEx 48.13, 50.51, 48.83, 48.54 1.39, 0.24 0.3(0.171) 

OLEx 49.14, 50.13, 49.34, 49.35 1.35, 0.22 0.9(<0.001) 

KwEx 41.78, 44.75, 43.28, 42.32 0.45, 0.07 0.14(0.86) 

MOKEx 41.58, 45.54, 44.25, 42.30 0.60, 0.11 0.14(0.87) 

LBHEx 67.67, 68.67, 67.89, 67.87 0.62, 0.11 0.5(<0.001) 

MEx 54.32, 55.31, 54.54, 54.50 2.76, 0.53 0.32(0.07) 

MOEx 43.51, 45.51, 44.22, 43.90 0.82, 0.14 0.18(0.55) 

GMOEx 42.75, 45.74, 44.25, 43.34 0.51, 0.08 0.15(0.78) 

KMOEx 42.82, 46.84, 45.55, 43.60 1.08, 0.19 0.15(0.86) 

 

 

 

Table 4: MLEs and SEs values for the survival times data. 

Models  Estimates 

Ex(𝜃) MLE 0.540 

 SE (0.063) 

OLEx(𝜃) MLE 0.38145 

 SE (0.0209) 

MEx(𝜃) MLE 0.925 

 SE (0.077) 

LBHEx(𝜃) MLE 0.54 

 SE (0.064) 

MOEx(α, 𝜃) MLE 8.778, 1.379 

 SE (3.555), (0.193) 

GMOEx(λ,α, 𝜃) MLE 0.179, 47.635, 4.465 

 SE (0.070), (44.901), (1.327) 

KwEx(a,β, 𝜃) MLE 3.304, 1.100, 1.037 

 SE (1.106), (0.764), (0.614) 

BEx(a,β, 𝜃) MLE 0.807, 3.461, 1.331 

 SE (0.696), (1.003), (0.855) 

MOKEx(α,β,λ, 𝜃) MLE 0.008, 2.716, 1.986, 0.099 

 SE (0.002), 1.316), (0.784), (0.048) 

KwMOEx(α,β,λ, 𝜃) MLE 0.373, 3.478, 3.306, 0.299 

 SE (0.136), (0.861), (0.779), (1.112) 

BrXEx(a, 𝜃) MLE 0.475, 0.2055 

 SE (0.06), (0.012) 

McETEx (a,b,c, α, 𝜽) MLE 1.88, 3.311, 0.909, 19.415, 3.87 

 SE (0.918), (0.905), (4.801), (2.092), (1.948) 
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Table 5: C₁, C₂, C₃, C₄, 𝐴∗, 𝐶∗, K.S. and (p-value) for the survival times data. 

Models C₁, C₂, C₃, C₄ 𝐴∗, 𝐶∗ K.S.  

 (p-value) 

McETEx 205.81, 212.62, 205.11, 207.88 0.58, 0.09 0.09(0.59) 

Ex 234.63, 236.91, 234.68, 235.54 6.53, 1.25 0.27(0.06) 

BEx 207.38, 214.22, 207.73, 210.08 0.98, 0.15 0.11(0.34) 

BrXEx 235.30, 239.90, 235.50, 237.11 2.91, 0.52 0.22(0.002) 

MEx 210.40, 212.68, 210.45, 211.30 1.52, 0.25 0.14(0.13) 

LBHEx 234.63, 236.92, 234.73, 235.55 0.71, 0.12 0.28(<0.001) 

KMOEx 207.82, 216.94, 208.42, 211.42 0.61, 0.11 0.09(0.53) 

OLEx 229.31, 231.43, 229.25, 230.00 1.94, 0.33 0.5(<0.001) 

GMOEx 210.54, 217.38, 210.89, 213.24 1.02, 0.16 0.09(0.51) 

MOKEx 209.44, 218.56, 210.04, 213.04 0.79, 0.12 0.10(0.44) 

MOEx 210.36, 214.92, 210.53, 212.16 1.18, 0.17 0.10(0.43) 

KwEx 209.42, 216.24, 209.77, 212.12 0.74, 0.11 0.09(0.50) 

 

From Table 3 and 5 we conclude that the proposed lifetime McETEx model is much better than the Ex, MomEx, 

MOEx, GMOEx, KEx, BEx, MOKEx and KMOEx models so the new lifetime model is a good alternative to these 

models in modeling relief times and survival times data sets. 

 

7. Conclusions 

In this article, we introduced a new distribution called the McDonald Erlang-truncated exponential (McETEx) 

distribution. Various structural properties including explicit expressions for the moments, moment generating 

function, mean deviation of the McETEx distribution are derived. The estimation of the model parameters is performed 

by maximum likelihood method. The usefulness of the McETEx distribution is illustrated by two real data sets. The 

McETEx model is much better than the Exponential, Odd Lindley Exponential, Marshall-Olkin Exponential, Moment 

Exponential, The Logarithmic Burr-Hatke Exponential, Generalized Marshall-Olkin Exponential, Beta Exponential, 

Burr X Exponential, Marshall-Olkin Kumaraswamy Exponential, Kumaraswamy Exponential and Kumaraswamy 

Marshall-Olkin Exponential models. in modeling relief times and survival times data sets according to Cramér-Von 

Mises, the Anderson-Darling, Akaike Information Criterion, Consistent Akaike Information Criterion, Hannan-Quinn 

Information Criterion, Bayesian Information Criterion. 
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