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Abstract 
In this paper, new α-order trigonometric and inverse trigonometric fuzzy entropies are proposed and the 

fuzzy entropy axiomatic requirements are satisfied for the new fuzzy entropies. A comparison of the new 

fuzzy entropies is done with several widely used fuzzy entropies in order to find the most fuzziness 

entropy. The results indicate that the new proposed α-order fuzzy entropy provides larger entropy value 

than those other fuzzy entropies which were defined in the paper. 
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Introduction  

The fuzzy sets firstly defined by Zadeh (1965) to use for modeling non-statistical and vague 

information data (Chatterjee et al., 2017; Campion et al., 2018). Recently, the fuzzy sets 

become an interesting research topics in the applied sciences, e.g. engineering, image 

processing, medical sciences and so forth which are involving in using vague information 

(Fan and May, 2002; Hooda and Mishra, 2015; Dos et al., 2016).  

The fuzzy entropy plays an important role in the fuzzy set theory because it is a fuzziness 

measure of the fuzzy sets. Some authors used the fuzzy entropy in statistical inference, e.g. 

estimation and testing hypothesis concepts (Zamanzade and Arghami, 2011; Zamanzade 

and Arghami, 2012; Zamanzade, 2014; Zamanzade and Mahdizadeh, 2016; Zamanzade 

and Mahdizadeh, 2017). Zadeh (1968) proposed a fuzzy entropy based on the probabilistic 

framework. However, the fuzzy entropy based on the concept of the Shannon statistical 

entropy (Shannon, 1948) is defined by De Luca and Termini (1972). They provided an 

axiomatic framework to define new fuzzy entropy measures (FEM). Several studies 

employed these axioms to propose new fuzzy entropy.  

Bhandari and Pal (1993) provided a α-order type of FEM.  There exists some new fuzzy α-

order entropies proposed by Kapur (1997), Fan and Ma (2002) and Al-Talib and Al-Nasser 

(2018). 
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Fuzzy entropies based on the trigonometric functions are also considered by several authors 

e.g., Parkash et al. (2008) and Verma (2015). Hooda and Mishra (2015) defined several 

trigonometric fuzzy entropies based on sinus and cosine functions and along with studying 

their properties. 

In this paper, we generalized some α-order trigonometric fuzzy entropies and studied their 

properties. We found out the measure of the new α-order inverse trigonometric fuzzy 

entropy, based on arcsin function, is larger than that of the α-order fuzzy entropies and α-

order trigonometric entropies for different values of α. 

This paper is organized as follows. In Section 2, some concepts and axioms of the fuzzy 

entropy and some fuzzy entropy measures, which are proposed by authors, are presented. 

We proposed several new α-order trigonometric and inverse trigonometric entropies in 

Section 3. The measurement comparison of the new fuzzy entropies with some widely used 

fuzzy entropies are done in Section 4 and Section 5 includes some conclusions. 

Fuzzy Entropy Axioms 

In this section, some concepts and axioms of the fuzzy entropy are presented. Let 𝜇𝐴 denote 

the fuzzy membership function of the finite set  𝐴 = {𝑥𝑖 ; 𝑖 = 1,2, … , 𝑛} where 𝜇𝐴(𝑥𝑖)  is 

the value of the membership function of the element 𝑥𝑖 form 𝐴 and, the fuzzy entropy of 

𝜇𝐴 is denoted by 𝐻(𝜇𝐴). Using the Shannon probabilistic entropy (1948), De Luca and 

Termini (1972) defined the fuzzy entropy  

𝐻(𝜇𝐴) = −𝐾 ∑[𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))𝑙𝑜𝑔(1 − 𝜇𝐴(𝑥𝑖))]

𝑛

𝑖=1

 

for some constant 𝐾 equal to 1 𝑛⁄ . They also provided following axiomatic requirements 

that are satisfied to propose new fuzzy entropy measure, as well. 

 

Axiom 1. Sharpness: 𝐻(𝜇𝐴) = 0 if and only if 𝐴(𝑥𝑖) is a crisp set for each 𝑖. 𝐴 is crisp if 

𝜇𝐴(𝑥𝑖)=0 or 1 for each 𝑖 = 1,2, … , 𝑛.  

Axiom 2. Maximality: 𝐻(𝜇𝐴) has a unique maximum value at 𝜇𝐴(𝑥𝑖) = 0.5. 

Axiom 3. Resoltions: 𝐻(𝜇𝐴) ≤ 𝐻(𝜇𝐴
∗ ) where 𝜇𝐴(𝑥𝑖) is crisper than 𝜇𝐴(𝑥𝑖)

∗ . 

A fuzzy set 𝐴∗ is called a sharpened version of the fuzzy set 𝐴 (or crisper than 𝐴) if for 

∀ 𝑖,  𝜇𝐴(𝑥𝑖)
∗ ≤ 𝜇𝐴(𝑥𝑖) for 0 ≤ 𝜇𝐴(𝑥𝑖) ≤ 0.5  and  𝜇𝐴(𝑥𝑖) ≤  𝜇𝐴(𝑥𝑖)

∗for 0 ≤ 𝜇𝐴(𝑥𝑖) ≤ 0.5. 

Axiom 4. Symmetry: 𝐻(𝜇𝐴) = 𝐻(1 − 𝜇𝐴) for each𝜇𝐴(𝑥𝑖). 

Several generalized fuzzy entropies were defined by authors e.g., Bhandari and Pal (1993) 

proposed a 𝛼-order fuzzy entropy based on the Rényi's entropy (1961) as follows: 

𝐻𝛼
𝐵𝑃(𝜇𝐴) =  (1 − 𝛼)−1 ∑ 𝑙𝑜𝑔[𝜇𝐴(𝑥𝑖)

𝛼 + (1 − 𝜇𝐴(𝑥𝑖))𝛼

𝑛

𝑖=1

);   𝛼 ≠ 1, 𝛼 > 0. 

Furthermore, Kapur [11] proposed following 𝛼-order FEM 

𝐻𝛼
𝐾(𝜇𝐴) = (1 − 𝛼)−1 ∑ [{𝜇𝐴(𝑥𝑖)

𝛼 + (1 − 𝜇𝐴(𝑥𝑖))
𝛼

} − 1𝑛
𝑖=1 ];   𝛼 ≠ 1, 𝛼 > 0. 

Some fuzzy entropy measures are suggested by authors, e.g., Al-Talib and Al-Nasser 

(2018) defined a 𝛼-order entropy measure  

𝐻𝛼
𝑁𝑇(𝜇𝐴) =  ∑(

𝜇𝐴(𝑥𝑖)

𝛼

2(1 − 𝜇𝐴(𝑥𝑖))
𝛼

2

𝜇𝐴(𝑥𝑖)ⅇ
−𝛼∗(1−𝜇𝐴(𝑥𝑖))

+ (1 − 𝜇𝐴(𝑥𝑖))ⅇ
−𝛼∗𝜇𝐴(𝑥𝑖)

)
1

𝛼

𝑛

𝑖=1

;   𝛼 > 0. 
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Some trigonometric fuzzy entropies are also proposed by Hood and Mishra (2015) as 

follows 

𝐻𝑆(𝜇𝐴) = ∑[𝑆𝑖𝑛 (
𝜋𝜇𝐴(𝑥𝑖)

2
) + 𝑆𝑖𝑛 (

𝜋(1 − 𝜇𝐴(𝑥𝑖))

2
) − 1]

𝑛

𝑖=1

   

𝐻𝐶(𝜇𝐴) = ∑[𝐶𝑜𝑠 (
𝜋𝜇𝐴(𝑥𝑖)

2
) + 𝐶𝑜𝑠 (

𝜋(1 − 𝜇𝐴(𝑥𝑖))

2
) − 1]

𝑛

𝑖=1

   

𝐻𝐶𝑆(𝜇𝐴) = ∑ 𝐶𝑜𝑠(
|2𝜇𝐴(𝑥𝑖) − 1|𝜋

2

𝑛

𝑖=1

) =  ∑
𝑆𝑖𝑛(

2𝜋𝜇𝐴(𝑥𝑖)

2
) + 𝐶𝑜𝑠(

𝜋(1−2𝜇𝐴(𝑥𝑖))

2
)

2

𝑛

𝑖=1

  

 A 𝛼-order inverse trigonometric fuzzy entropy is also defined 

𝐻𝛼
𝐴𝑟𝑐𝑡𝑎𝑛(𝜇𝐴) =  

2

(1 − 𝛼)
∑[𝐴𝑟𝑐𝑡𝑎𝑛[𝜇𝐴(𝑥𝑖)

𝛼 + (1 − 𝜇𝐴(𝑥𝑖))
𝛼

𝑛

𝑖=1

−
𝜋

4
] 

Some authors proposed fuzzy entropy measures to be applicable in special cases, e.g., Hu 

and Yu (2004) and Gupta and Sheoran (2014). 

 

New 𝜶-order Trigonometric FEM  

From mathematical point of views, trigonometric measures have important properties in 

the modeling of geometry applications. In this section, some new 𝛼-order fuzzy entropy 

measures based on trigonometric functions are proposed as follows. 

𝐻𝛼
𝑆(𝜇𝐴) = ∑

𝑆𝑖𝑛𝛼[
𝜋𝜇

𝐴(𝑥𝑖)

2
]+𝑆𝑖𝑛𝛼[

𝜋(1−𝜇
𝐴(𝑥𝑖)

)

2
]−1

−1+2
1−

𝛼
2

𝑖   ;  𝛼 > 0, 𝛼 ≠ 2,                      (1)  

𝐻𝛼
𝐶(𝜇𝐴) = ∑

𝐶𝑜𝑠𝛼[
𝜋𝜇

𝐴(𝑥𝑖)

2
]+𝐶𝑜𝑠𝛼[

𝜋(1−𝜇
𝐴(𝑥𝑖)

)

2
]−1

−1+2
1−

𝛼
2

𝑖   ; 𝛼 >  0, 𝛼 ≠ 2   

𝐻𝛼
𝑆𝐶(𝜇𝐴) = ∑

𝑆𝑖𝑛𝛼[
2𝜋𝜇

𝐴(𝑥𝑖)

2
]+𝐶𝑜𝑠𝛼[

𝜋(1−2𝜇
𝐴(𝑥𝑖)

)

2
]

2𝑖   ;  𝛼 >  0, and                          (2) 

𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) = ∑

−𝐴𝑟𝑐𝑠𝑖𝑛[𝜇𝐴(𝑥𝑖)
𝛼+(1−𝜇𝐴(𝑥𝑖))

𝛼
]+

𝜋

2
𝜋

2
−𝐴𝑟𝑐𝑠𝑖𝑛[21−𝛼]𝑖   ;  𝛼 > 1                              (3) 

where 0 ≤ 𝜇𝐴(𝑥𝑖) ≤ 1, (𝑖 = 1,2, … , 𝑛)  denotes the fuzzy membership function.  

Ultimately, we show that the new proposed fuzzy entropy measures satisfy all the entropy 

properties which are indicated in the preceding section. 

 

Theorem 1. The FEM(1) satisfies four fuzzy entropy axiomatic requirements. 

Proof: We show that required axioms 1-4 for fuzzy entropy measures are satisfied for 

FEM(1) after it is indicated that the FEM(1) is non-negative. 

We have 2
𝛼

2 > 2 for ∀𝛼 > 2 and thus 21−
𝛼

2 < 1. Therefore, the denominator of 𝐻𝛼
𝑆(𝜇𝐴) is 

negative. Moreover, 

 Sup
0≤𝜇𝐴(𝑥𝑖)≤1

(𝑆𝑖𝑛𝛼 [
𝜋𝜇𝐴(𝑥𝑖)

2
] + 𝑆𝑖𝑛𝛼 [

𝜋(1−𝜇𝐴(𝑥𝑖))

2
])=[(0)𝛼 + (1 − 0)𝛼] = 1 for ∀𝛼 > 2. 

Therefore, for ∀𝛼 > 2 we have 𝑆𝑖𝑛𝛼 [
𝜋𝜇𝐴(𝑥𝑖)

2
] + 𝑆𝑖𝑛𝛼 [

𝜋(1−𝜇𝐴(𝑥𝑖))

2
] − 1 ≤ 0 and hence, the 

nominator of 𝐻𝛼
𝑆(𝜇𝐴) is non-negative. Then 𝐻𝛼

𝑆(𝜇𝐴) ≥ 0.  
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However,  2
𝛼

2 < 2 for ∀𝛼 < 2 and then 21−
𝛼

2 < 1 and the 𝐻𝛼
𝑆(𝜇𝐴) denominator is positive. 

 Furthermore, Inf
0≤𝜇𝐴(𝑥𝑖)≤1

(𝑆𝑖𝑛𝛼 [
𝜋𝜇𝐴(𝑥𝑖)

2
] + 𝑆𝑖𝑛𝛼 [

𝜋(1−𝜇𝐴(𝑥𝑖))

2
])=[(0)𝛼 + (1 − 0)𝛼] = 1 for 

∀𝛼 < 2 and therefore,  𝑆𝑖𝑛𝛼 [
𝜋𝜇𝐴(𝑥𝑖)

2
] + 𝑆𝑖𝑛𝛼 [

𝜋(1−𝜇𝐴(𝑥𝑖))

2
] − 1 ≥ 0.  Then, the nominator 

of 𝐻𝛼
𝑆(𝜇𝐴) is non-negative and thus,  𝐻𝛼

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) ≥ 0.  
Sharpness: we have 𝐻𝛼

𝑆(𝜇𝐴) = 0 by replacing the value of 𝜇𝐴(𝑥𝑖) = 0 or 1 in (1). This 

result is a straight forward for every 𝛼 ≥ 1. Conversely, suppose 𝐻𝛼
𝑆(𝜇𝐴) = 0, then 

𝑆𝑖𝑛𝛼 [
𝜋𝜇𝐴(𝑥𝑖)

2
] + 𝑆𝑖𝑛𝛼 [

𝜋(1 − 𝜇𝐴(𝑥𝑖))

2
] − 1 = 0 

and, 𝜇𝐴(𝑥𝑖) should be zero or one. 

Maximality: If differentiate FEM(1) with respect to 𝜇𝐴(𝑥𝑖), then we have 

𝜕𝐻𝛼
𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

=
−

1

2
𝜋𝛼𝐶𝑜𝑠[

1

2
𝜋(1 − 𝜇𝐴(𝑥𝑖))]𝑆𝑖𝑛[

1

2
𝜋(1 − 𝜇𝐴(𝑥𝑖))]−1+𝛼 +

1

2
𝜋𝛼𝐶𝑜𝑠[

𝜋𝜇𝐴(𝑥𝑖)

2
]𝑆𝑖𝑛[

𝜋𝜇𝐴(𝑥𝑖)

2
]−1+𝛼

−1 + 21−
𝛼

2

 

Thus, by solving the equation 
𝜕𝐻𝛼

𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

= 0, it is obtained 𝜇𝐴(𝑥𝑖) = 0.5 and if assume 

0 < 𝜇𝐴(𝑥𝑖) < 0.5, then we get 

𝜕𝐻𝛼
𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

> 0, ∀𝛼 > 0, 𝛼 ≠ 2  and 
𝜕𝐻𝛼

𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

< 0, ∀𝛼 > 0, 𝛼 ≠ 2 

where, 0.5 < 𝜇𝐴(𝑥𝑖) < 1. Furthermore, for 𝜇𝐴(𝑥𝑖) = 0.5, we get  

𝜕𝐻𝛼
𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
= 0, ∀𝛼 > 0, 𝛼 ≠ 2 

 

Therefore, 𝐻𝛼
𝑆(𝜇𝐴) is a concave function of 𝜇𝐴(𝑥𝑖) which has a global maximum at the point 

𝜇𝐴(𝑥𝑖) = 0.5. Thus, 𝐻𝛼
𝑆(𝜇𝐴) attends its maximum if and only if A is the fuzziest set, i.e. 

 𝜇𝐴(𝑥𝑖) = 0.5 ∀ 𝑖 = 1, … 𝑛, which show the uniqueness of the maximum value. 
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Figure 1: Plots of the first (left) and second (right) derivative of 𝐻𝛼
𝑆(𝜇𝐴) at different 

values of 𝛼. 

Now, consider the second derivative of (1) as follows. 

 

𝜕2𝐻𝛼
𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
2

=

1

4
𝜋2(−1 + 𝛼)𝛼𝐶𝑜𝑠[

1

2
𝜋(1 − 𝜇𝐴(𝑥𝑖))]2𝑆𝑖𝑛[

1

2
𝜋(1 − 𝜇𝐴(𝑥𝑖))]−2+𝛼 −

1

4
𝜋2𝛼𝑆𝑖𝑛[

1

2
𝜋(1 − 𝜇𝐴(𝑥𝑖))]𝛼

−1 + 21−
𝛼

2

 

+

1

4
𝜋2(−1 + 𝛼)𝛼𝐶𝑜𝑠[

𝜋𝜇𝐴(𝑥𝑖)

2
]2𝑆𝑖𝑛[

𝜋𝜇𝐴(𝑥𝑖)

2
]−2+𝛼 −

1

4
𝜋2𝛼𝑆𝑖𝑛[

𝜋𝜇𝐴(𝑥𝑖)

2
]𝛼

−1 + 21−
𝛼

2

 

 

Therefore, we get  

𝜕2𝐻𝛼
𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
2 |𝜇𝐴(𝑥𝑖)=0.5 =

−2
−1−

𝛼
2 𝜋2𝛼+2

−2+
2−𝛼

2 𝜋2(−1+𝛼)𝛼

−1+2
1−

𝛼
2

. 

 Where,  
𝜕2𝐻𝛼

𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
2 |𝜇𝐴(𝑥𝑖)=0.5 < 0 , ∀𝛼 > 0, 𝛼 ≠ 2. 

 

Thus, the FEM(1) attends its maximum at 𝜇𝐴(𝑥𝑖) = 0.5. Figure 1 presents the graph of the 

first and second derivative of 𝐻𝛼
𝑆(𝜇𝐴) for different values of 𝛼. As it is noticed from Figure 

1, the second derivative of 𝐻𝛼
𝑆(𝜇𝐴) is negative at 𝜇𝐴(𝑥𝑖) = 0.5. Therefore, the maximum 

value of  𝐻𝛼
𝑆(𝜇𝐴) happens at 𝜇𝐴(𝑥𝑖) = 0.5 which is equal to 1. 

The fuzzy entropy (1) for various values of the membership 𝜇𝐴(𝑥𝑖) for 𝛼 =0.2, 0.5, 1, 4 and 

10 is given in Table 1. By taking a close look in Table 1, the FEM 𝐻𝛼
𝑆(𝜇𝐴) is increasing 

function of 𝜇𝐴(𝑥𝑖) in the interval  [0,0.5] and decreasing function in the interval [0.5,1] for 

diversity values of 𝛼. 

Figure 2 and Table 1 indicate that the fuzzy entropy measure 𝐻𝛼
𝑆(𝜇𝐴)  is a decreasing 

function of 𝛼  for values less than 4.09 and is an increasing function of 𝛼  for values larger 

than 4.09.    

                               Table 1. The value of 𝑯𝜶
𝑺 (𝝁𝑨)  for 𝜶 = 𝟎. 𝟐, 𝟎. 𝟓, 𝟏, 𝟒 𝐚𝐧𝐝𝟏𝟎. 

𝜇𝐴(𝑥𝑖) 𝐻𝛼=0.2
𝑆 (𝜇𝐴) 𝐻𝛼=0.5

𝑆 (𝜇𝐴) 𝐻𝛼=1
𝑆 (𝜇𝐴) 𝐻𝛼=4

𝑆 (𝜇𝐴) 𝐻𝛼=10
𝑆 (𝜇𝐴) 

0.1 0.793881 0.571058 0.347943 0.0954915 0.124282 

0.2 0.901416 0.778997 0.627873 0.345492 0.420867 

0.3 0.959613 0.906022 0.832896 0.654508 0.729884 

0.4 0.990309 0.97702 0.957965 0.904508 0.933299 

0.5 1 1 1 1 1 

0.6 0.990309 0.97702 0.957965 0.904508 0.933299 

0.7 0.959613 0.906022 0.832896 0.654508 0.729884 

0.8 0.901416 0.778997 0.627873 0.345492 0.420867 

0.9 0.793881 0.571058 0.347943 0.0954915 0.124282 

1 0 0 0 0 0 
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Figure 2: Plots of 𝐻𝛼

𝑆(𝜇𝐴) as a function of 𝛼 for different values of 𝜇𝐴(𝑥𝑖) (left) and as a 

function of 𝜇𝐴(𝑥𝑖) for different values of 𝛼 (right).  

  

Resolutions: As it is presented in the maximality axiom, the fuzzy entropy  𝐻𝛼
𝑆(𝜇𝐴) has a 

unique maximum at 𝜇𝐴(𝑥𝑖) = 0.5 and thus,  𝐻𝛼
𝑆(𝜇𝐴) is a continuous concave function. 

Hence, 𝐻𝛼
𝑆(𝜇𝐴) monotonically increases f or 𝜇𝐴(𝑥𝑖) ∈ [0,0.5] and monotonically decreases 

for 𝜇𝐴(𝑥𝑖) ∈ [0.5,1]. Therefore,  𝐻𝛼
𝑆(𝜇𝐴

∗ ) ≤  𝐻𝛼
𝑆(𝜇𝐴) where 𝜇𝐴(𝑥𝑖)

∗  is a sharpened version of 

𝜇𝐴(𝑥𝑖). Figure 2 illustrates the graph of  𝐻𝛼
𝑆(𝜇𝐴) for different values of 𝛼. 

Symmetry: We obtain  𝐻𝛼
𝑆(1 − 𝜇𝐴) = 𝐻𝛼

𝑆(𝜇𝐴) when 1 − 𝜇𝐴(𝑥𝑖) instead of 𝜇𝐴(𝑥𝑖) in the 

FEM(1). 

Therefore, four requirement axioms for the fuzzy entropy are satisfied for FEM(1) and the 

theorem 1 is proven. 

 

Theorem 2. The FEM(2) satisfies all axiomatic requirements of the fuzzy entropy. 

Proof: We verify to show that the axioms 1-4 are satisfied for FEM(2) and the FEM(2) is 

non-negative. 

Since 0 ≤ 𝜇𝐴(𝑥𝑖) ≤ 1, then  0 ≤ 𝜋𝜇𝐴(𝑥𝑖) ≤ 𝜋 and −
𝜋

2
≤

𝜋(1−2𝜇𝐴(𝑥𝑖))

2
≤

𝜋

2
. Therefore, 

𝑆𝑖𝑛 [
2𝜋𝜇𝐴(𝑥𝑖)

2
] ≥ 0 and 𝐶𝑜𝑠 [

𝜋(1−2𝜇𝐴(𝑥𝑖))

2
] ≥ 0. Thus, 

𝑆𝑖𝑛𝛼[
2𝜋𝜇

𝐴(𝑥𝑖)

2
]+𝐶𝑜𝑠𝛼[

𝜋(1−2𝜇
𝐴(𝑥𝑖)

)

2
]

2
 ≥ 0 for 

∀𝛼 > 1 and then, 𝐻𝛼
𝑆𝐶(𝜇𝐴) ≥ 0. 

Sharpness: We can see by replacing the value 𝜇𝐴(𝑥𝑖) = 0  or 1 in the numerator of FEM 

(2), we get 𝐻𝛼
𝐶𝑆(𝜇𝐴) = 0. This result is also satisfied for values 𝛼 > 1. Conversely, assume 

𝐻𝛼
𝑆(𝜇𝐴) = 0, then we obtain 

𝑆𝑖𝑛𝛼 [
𝜋2𝜇𝐴(𝑥𝑖)

2
] + 𝐶𝑜𝑠𝛼 [

𝜋(1−2𝜇𝐴(𝑥𝑖))

2
] = 0. 

Therefore,  𝜇𝐴(𝑥𝑖) should be zero or one. 
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Maximality: The first derivative of FEM(2) with respect to 𝜇𝐴(𝑥𝑖)  is given by 

𝜕𝐻𝛼
𝐶𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
=

1

2
(𝜋𝛼𝐶𝑜𝑠[

1

2
𝜋(1 − 2𝜇𝐴(𝑥𝑖))]−1+𝛼𝑆𝑖𝑛[

1

2
𝜋(1 − 2𝜇𝐴(𝑥𝑖))]

+ 𝜋𝛼𝐶𝑜𝑠[𝜋𝜇𝐴(𝑥𝑖)]𝑆𝑖𝑛[𝜋𝜇𝐴(𝑥𝑖)]−1+𝛼)) 

Then, we obtain 𝜇𝐴(𝑥𝑖) = 0.5 by solving the equation 
𝜕𝐻𝛼

𝐶𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

= 0, ∀𝛼 > 0. 

Now, consider 0 < 𝜇𝐴(𝑥𝑖) < 0.5, then 
𝜕𝐻𝛼

𝐶𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

> 0, ∀𝛼 > 0. It can see if 𝜇𝐴(𝑥𝑖)  belongs 

to the interval (0.5,1),  we have 
𝜕𝐻𝛼

𝐶𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

< 0, ∀𝛼 > 0 and, we get  

𝜕𝐻𝛼
𝐶𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

= 0, ∀𝛼 > 1 for 𝜇𝐴(𝑥𝑖) = 0.5. Thus, 𝐻𝛼
𝐶𝑆(𝜇𝐴) is a concave function which has a 

global maximum at 𝜇𝐴(𝑥𝑖) = 0.5. Therefore, the mesearse 𝐻𝛼
𝐶𝑆(𝜇𝐴) attended its maximum 

value if and only if A is the fuzziest set, i.e. 𝜇𝐴(𝑥𝑖) = 0.5 ∀ 𝑖 = 1, … 𝑛, which results in the 

uniqueness of the maximum value.  
Now consider the second derivative of FEM(2) as follows 

𝜕2𝐻𝛼
𝐶𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
2

=
1

2
(−𝜋2𝛼Cos [

1

2
𝜋(1 − 2𝜇𝐴(𝑥𝑖))]

𝛼

+ 𝜋2(−1

+ 𝛼)𝛼Cos[
1

2
𝜋(1 − 2𝜇𝐴(𝑥𝑖))]−2+𝛼Sin[

1

2
𝜋(1 − 2𝜇𝐴(𝑥𝑖))]2 + 𝜋2(−1

+ 𝛼)𝛼Cos[𝜋𝜇𝐴(𝑥𝑖)]2Sin[𝜋𝜇𝐴(𝑥𝑖)]−2+𝛼 − 𝜋2𝛼Sin[𝜋𝜇𝐴(𝑥𝑖)]𝛼) 

Thus, the equation: 
𝜕2𝐻𝛼

𝐶𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
2 |𝜇𝐴(𝑥𝑖)=0.5 = −𝜋2𝛼 is satisfied where, 

𝜕2𝐻𝛼
𝑆(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
2 |𝜇𝐴(𝑥𝑖)=0.5 < 0, ∀𝛼 > 0. 

 

Therefore, we see that the maximum of FEM(2) will attend at 𝜇𝐴(𝑥𝑖) = 0.5. For different 

values of 𝛼, the graph of the first and second derivative of  𝐻𝛼
𝐶𝑆(𝜇𝐴) are presented in Figure 

3. 
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Figure 3: Plots of the first (left) and second (right) derivative of  𝐻𝛼
𝐶𝑆(𝜇𝐴) for 𝛼=0.2, 0.5, 

1, 4 and 10. 

As Figure 3 indicates, the second derivative of 𝐻𝛼
𝐶𝑆(𝜇𝐴) for values 𝛼=0.2, 0.5, 1, 4 and 10 

is negative. Therefore, the maximum value of  𝐻𝛼
𝐶𝑆(𝜇𝐴) will be attended at 𝜇𝐴(𝑥𝑖) = 0.5 

which is equal to 1. Table 2 presents the numerical results of the measure (2) for different 

membership 𝜇𝐴(𝑥𝑖) values by considering 𝛼=0.2, 0.5, 1, 4 and 10. We can see form Table 

2, the entropy measure (2) rises as a function of 𝛼 for every membership function μA(xi). 

However, FEM Hα
CS(𝜇𝐴) increases for   0 ≤ μA(xi) ≤ 0.5 and declines for 0.5 ≤ μA(xi) ≤

1 for any given α=0.2, 0.5, 1, 4 and 10. 
 

                               Table 2. The values of 𝑯𝜶
𝑪𝑺(𝝁𝑨) for 𝜶 = 𝟎. 𝟐, 𝟎. 𝟓, 𝟏, 𝟒 𝐚𝐧𝐝 𝟏𝟎. 

𝜇𝐴(𝑥𝑖) 𝐻𝛼=0.2
𝐶𝑆 (𝜇𝜇𝐴

) 𝐻𝛼=0.5
𝐶𝑆 (𝜇𝐴) 𝐻𝛼=1

𝐶𝑆 (𝜇𝐴) 𝐻𝛼=4
𝐶𝑆 (𝜇𝐴) 𝐻𝛼=10

𝐶𝑆 (𝜇𝐴) 

0.1 0.790672 0.555893 0.309107 0.0091186 7.94006 × 10−6 

0.2 0.899174 0.766672 0.587785 0.119364 0.00492251 

0.3 0.958499 0.899454 0.809017 0.428381 0.120109 

0.4 0.990014 0.975221 0.951057 0.818136 0.605429 

0.5 1 1 1 1 1 

0.6 0.990014 0.975221 0.951057 0.818136 0.605429 

0.7 0.958499 0.899454 0.809017 0.428381 0.120109 

0.8 0.899174 0.766672 0.587785 0.119364 0.00492251 

0.9 0.790672 0.555892 0.309017 0.0091186 7.94006 × 10−6 

1 0 0 0 0 0 

 

Figure 4 shows that the measure  𝐻𝛼
𝐶𝑆(𝜇𝐴) is a decreasing function of 𝛼 which is greater 

than zero for different values of 𝜇𝐴(𝑥𝑖). 

 
 

Figure 4: Plots of 𝐻𝛼
𝐶𝑆(𝜇𝐴) as a function of 𝛼 for different values of 𝜇𝐴(𝑥𝑖) (left) and as a 

function of 𝜇𝐴(𝑥𝑖) for 𝛼=0.2, 0.5, 1, 4 and 10 (right).  

Resolutions: As discussed in the preceding axiom, the measure 𝐻𝛼
𝐶𝑆(𝜇𝐴) has a unique 

maximum in 𝜇𝐴(𝑥𝑖) = 0.5 and furthermore, FEM 𝐻𝛼
𝐶𝑆(𝜇𝐴) is a continuous concave 

function. Hence, FEM 𝐻𝛼
𝐶𝑆(𝜇𝐴) is monotonically increasing for values: 0 ≤ 𝜇𝐴(𝑥𝑖) ≤ 0.5 

and is monotonically decreasing for values: 0.5 ≤ 𝜇𝐴(𝑥𝑖) ≤ 1. Therefore,               
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 𝐻𝛼
𝐶𝑆(𝜇𝐴

∗ ) ≤  𝐻𝛼
𝐶𝑆(𝜇𝐴) where 𝜇𝐴(𝑥𝑖)

∗  denotes the sharpened version of 𝜇𝐴(𝑥𝑖). Figure 4 

presents the graph of  𝐻𝛼
𝐶𝑆(𝜇𝐴) for different values of 𝜇𝐴(𝑥𝑖). 

Symmetry:  By substituting 1 − 𝜇𝐴(𝑥𝑖)instead of 𝜇𝐴(𝑥𝑖)in Equation (2), we get  

𝐻𝛼
𝐶𝑆(1 − 𝜇𝐴) = 𝐻𝛼

𝐶𝑆(𝜇𝐴). 

 

Therefore, four requirement axioms are satisfied for FEM(2) and theorem 3.2 is proven. 

Now, the four measurement requirement axioms are to be investigated for FEM(3). 

 

Theorem 3. The FEM(3) satisfies all axiomatic requirements of the fuzzy entropy 

measures. 

Proof: First, we show that the FEM(3) is nonnegative and secondly it will proved that 

the axioms 1-4 for fuzzy entropy measures are also satisfied for FEM(3). 

We have 1 > 2𝛼−1 for ∀𝛼 > 1 because,  2𝛼 > 2 then,  𝐴𝑟𝑐𝑠𝑖𝑛[1] > 𝐴𝑟𝑐𝑠𝑖𝑛[2𝛼−1]. 

Hence 
𝜋

2
− 𝐴𝑟𝑐𝑠𝑖𝑛[21−𝛼] > 0 and the 𝐻𝛼

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇
𝐴

) denominator is positive. 

Furthermore, Sup
0<𝜇𝐴(𝑥𝑖)<1

[𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
] = [(

1

2
)𝛼 + (1 −

1

2
)

𝛼

] < 1, for 

∀𝛼 > 1. Therefore, 𝐴𝑟𝑐𝑠𝑖𝑛[𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
] < 𝐴𝑟𝑐𝑠𝑖𝑛[1] =

𝜋

2
 and the 

nominator of 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇

𝐴
) is non-negative. Thus, FEM(3) is non-negative.  

Sharpness: We obtain 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) = 0 when it is replaced by the values: 𝜇𝐴(𝑥𝑖) = 0  or 1 

in the numerator of FEM(3). This result is straight forward for each value of 𝛼 > 1. 
Conversely, assume 𝐻𝛼

𝑆(𝜇𝐴) = 0, therefore, 

𝐴𝑟𝑐𝑠𝑖𝑛[𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
] +

𝜋

2
= 0 

thus, 𝜇𝐴(𝑥𝑖) = 0  or 1. 

Maximality: Getting differentiate form (3) with respect to 𝜇𝐴(𝑥𝑖)we obtain 

 

𝜕𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

=  −
−(1−𝜇𝐴(𝑥𝑖))−1+𝛼𝛼+𝜇𝐴(𝑥𝑖)

−1+𝛼𝛼

√1−((1−𝜇𝐴(𝑥𝑖))𝛼+𝜇𝐴(𝑥𝑖)
𝛼)2(

𝜋

2
−𝐴𝑟𝑐𝑆𝑖𝑛[21−𝛼])

. 

By solving the equation  
𝜕𝐻𝛼

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

= 0, ∀𝛼 > 1, we find that 𝜇𝐴(𝑥𝑖) = 0.5. Now, suppose 

𝜇𝐴(𝑥𝑖) ∈ (0,0.5), then we have 

𝜕𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

> 0, ∀𝛼 > 1. 

We get 

𝜕𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
< 0, ∀𝛼 > 1 

where, 𝜇𝐴(𝑥𝑖) ∈ (0.5,1), and furthermore, for 𝜇𝐴(𝑥𝑖) = 0.5, we have 

𝜕𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
= 0, ∀𝛼 > 1 

Thus, 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) is a concave function of 𝜇𝐴(𝑥𝑖) with a global maximum at 𝜇𝐴(𝑥𝑖) = 0.5. 

Therefore, 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) get its maximum if and only if A is the fuzziest set, i.e.  𝜇𝐴(𝑥𝑖) =
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0.5, ∀ 𝑖 = 1, … 𝑛 and this proofs the uniqueness of the maximum value of 𝐻𝛼
𝐶𝑆(𝜇𝐴). The 

graph of 
𝜕𝐻𝛼

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)

  for different values of 𝛼 is presented in Figure 5. 

Furthermore, the second derivative of (3.3) is given by  

𝜕2𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
2

= −
((1 − 𝜇𝐴(𝑥𝑖))𝛼 + 𝜇𝐴(𝑥𝑖))(−(1 − 𝜇𝐴(𝑥𝑖))−1+𝛼𝛼 + 𝜇𝐴(𝑥𝑖)

−1+𝛼𝛼)2

(1 − ((1 − 𝜇𝐴(𝑥𝑖))𝛼 + 𝜇𝐴(𝑥𝑖)
𝛼)2)3 2⁄ (

𝜋

2
− 𝐴𝑟𝑐𝑆𝑖𝑛[21−𝛼])

−
(1 − 𝜇𝐴(𝑥𝑖))−2+𝛼(−1 + 𝛼)𝛼 + 𝜇𝐴(𝑥𝑖)

−2+𝛼(−1 + 𝛼)𝛼

√1 − ((1 − 𝜇𝐴(𝑥𝑖))𝛼 + 𝜇𝐴(𝑥𝑖)
𝛼)2(

𝜋

2
− 𝐴𝑟𝑐𝑆𝑖𝑛[21−𝛼])

 

Therefore,  
𝜕2𝐻𝛼

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
2 |𝜇𝐴(𝑥𝑖)=0.5 =−

23−𝛼(−1+𝛼)𝛼

√1−22−2𝛼(
𝜋

2
−𝐴𝑟𝑐𝑆𝑖𝑛[21−𝛼])

, where 

𝜕2𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴)

𝜕𝜇𝐴(𝑥𝑖)
2

|𝜇𝐴(𝑥𝑖)=0.5 < 0, ∀𝛼 > 0. 

Thus, we can see the maximum value of the fuzzy entropy (3) is attended in 𝜇𝐴(𝑥𝑖) = 0.5. 

Figure 5 indicates that the derivative of 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) with respect to 𝜇𝐴(𝑥𝑖) at value μA(xi) =

0.5 is negative for different values of 𝛼. The maximum value of  𝐻𝛼
𝐶𝑆(𝜇𝐴) at 𝜇𝐴(𝑥𝑖) = 0.5 

is equal to 1.  

 

  
Figure 5: Plots of the first (left) and second (right) derivative of  𝐻𝛼

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) for 𝛼=0.2, 

0.5, 1, 4 and 10. 

From Table 3 we found that the value of entropy 𝐻𝛼=1.5
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) is increasing as 𝛼 increasing 

for 2.5 to 10 for the same membership value. However, the proposed entropy measure 

𝐻𝛼=1.5
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴)  as function of 𝜇𝐴(𝑥𝑖) increases in the interval  [0,0.5] and declines in the 

interval [0.5,1] at any given 𝛼. 
 

Table 3.  The values of 𝑯𝜶=𝟏.𝟓
𝑨𝒓𝒄𝒔𝒊𝒏(𝝁𝑨) for 𝜶 = 𝟏. 𝟓, 𝟐. 𝟓, 𝟒 𝐚𝐧𝐝 𝟏𝟎. 

𝜇𝐴(𝑥𝑖) 𝐻𝛼=1.5
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 𝐻𝛼=2.5

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 𝐻𝛼=4
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 𝐻𝛼=10

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 

0.1 0.615435 0.570063 0.591521 0.774224 

0.2 0.808694 0.776679 0.793532 0.932671 

0.3 0.920225 0.904258 0.913181 0.983233 

0.4 0.980706 0.976451 0.978898 0.997324 

0.5 1 1 1 1 
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0.6 0.980706 0.976451 0.978898 0.997324 

0.7 0.920225 0.904258 0.913181 0.983233 

0.8 0.808694 0.776679 0.793532 0.932671 

0.9 0.615435 0.570063 0.581521 0.774224 

1 0 0 0 0 
 

As Figure 6 indicates, as a function of 𝛼, the fuzzy entropy 𝐻𝛼=1.5
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) has a unique 

minimum at 𝛼 = 3 for different values of the member function 𝜇𝐴(𝑥𝑖). 

Resolutions: The measure 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) is a continuous concave function of 𝜇𝐴(𝑥𝑖) with a 

unique maximum at 𝜇𝐴(𝑥𝑖) = 0.5. Hence, 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) is a monotone increasing function 

for values 0 ≤ 𝜇𝐴(𝑥𝑖) ≤ 0.5 and monotone decreasing function for values 0.5 ≤ 𝜇𝐴(𝑥𝑖) ≤

1. Therefore,  𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴

∗ ) ≤  𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) where  𝜇𝐴(𝑥𝑖)

∗  denotes the sharpened version of 

𝜇𝐴(𝑥𝑖). Figure 6 presents the graph of  𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) for different values: 1.5, 2.5, 4 and 10 

of 𝛼. 

  
Figure 6: Plots of  𝐻𝛼

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) as a function of 𝛼 for different values of 𝜇𝐴(𝑥𝑖) (left) and 

as a function of 𝜇𝐴(𝑥𝑖) for 𝛼=0.2, 0.5, 1, 4 and 10 (right).  

 

Symmetry: If we substitute 1 − 𝜇𝐴(𝑥𝑖)instead of 𝜇𝐴(𝑥𝑖) in FEM(3), we have 

𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(1 − 𝜇𝐴) = 𝐻𝛼

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴). 

Therefore, the proof of theorem 3 is achieved. 

 

A comparative measure of FEMs  

In this section, the performance of the proposed fuzzy entropy measures is studied by a 

numerical comparison between the proposed fuzzy entropy measures and several defined 

measures which are defined by authors. Firstly, this comparison is done through the 

trigonometry fuzzy entropy.   In the second step, the comparison is done with other fuzzy 

entropies which are defined by De Luca and Termini (1972), Bhandari and Pal (1993), 

Kapur (1997) and Al-Talib and Al-Naseer (2018). The results of the comparisons are given 

in Tables 4 and 5, respectively.  

Table 4 indicates that 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) produces the greatest entropy measure through other 

trigonometry fuzzy entropies for 𝛼 values 1.5, 2.5, 4 and 10. Therefore, 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) is 

most informative than that other trigonometry fuzzy entropies for different 𝛼 values. The 

results in Table 4 also indicate the following relationship  
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𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) > 𝐻𝛼

𝐴𝑟𝑐𝑡𝑎𝑛(𝜇𝐴) > 𝐻𝛼
𝑆(𝜇𝐴) > 𝐻𝛼

𝐶𝑆(𝜇𝐴) 
for all values of the membership function  𝜇𝐴(𝑥𝑖), where 𝛼 takes values: 1.5, 2.5, 4 and 10. 

It is obvious from Table 5, the values of FEM  𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) are greater than the fuzzy 

entropy measures of other fuzzy entropies for 𝛼 = 1.5, 2.5, 4 and 10. Thus, 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 

provides the most informative fuzzy entropy compare with other fuzzy entropies that are 

presented in Table 5 for values of 𝛼 equal to 1.5, 2.5, 4 and 10. Table 5 indicates the 

following relationships 

  𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) > 𝐻𝐷𝑇(𝜇𝐴) > 𝐻𝛼

𝑁𝑇(𝜇𝐴), 

𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) > 𝐻𝛼

𝐵𝑃(𝜇𝐴) and 

𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) > 𝐻𝛼

𝐾(𝜇𝐴) 

are satisfied for values 𝛼 =1.5, 2.5, 4, 10  when different values of the membership 

function  𝜇𝐴(𝑥𝑖) are applied. 

Table 4: Comparison of the trigonometry fuzzy entropies (maximum values are 

bolded). 

𝜇𝐴(𝑥𝑖) 𝐻𝛼=1.5
𝑆 (𝜇𝐴) 𝐻𝛼=1.5

𝐶𝑆 (𝜇𝐴) 𝐻𝛼=1.5
𝐴𝑟𝑐𝑡𝑎𝑛(𝜇𝐴) 𝐻𝛼=1.5

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 

0 0 0 0 0 

0.1 0.229707 0.17178 0.357154 0.615435 

0.2 0.524668 0.450638 0.633394 0.808694 

0.3 0.776622 0.727673 0.835169 0.920255 

0.4 0.942415 0.927491 0.958489 0.980706 

0.5 1 1 1 1 

𝜇𝐴(𝑥𝑖) 𝐻𝛼=2.5
𝑆 (𝜇𝐴) 𝐻𝛼=2.5

𝐶𝑆 (𝜇𝐴) 𝐻𝛼=2.5
𝐴𝑟𝑐𝑡𝑎𝑛(𝜇𝐴) 𝐻𝛼=2.5

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 

0 0 0 0 0 

0.1 0.130836 0.0530831 0.287768 0.570063 

0.2 0.407414 0.264879 0.565860 0.776679 

0.3 0.702354 0.588700 0.796460 0.904528 

0.4 0.92029 0.882096 0.94759 0.976451 

0.5 1 1 1 1 

𝜇𝐴(𝑥𝑖) 𝐻𝛼=4
𝑆 (𝜇𝐴) 𝐻𝛼=4

𝐶𝑆 (𝜇𝐴) 𝐻𝛼=4
𝐴𝑟𝑐𝑡𝑎𝑛(𝜇𝐴) 𝐻𝛼=4

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 

0 0 0 0 0 

0.1 0.0954915 0.00911863 0.30962 0.591521 

0.2 0.345492 0.119364 0.597955 0.793532 

0.3 0.654508 0.428381 0.820089 0.913181 

0.4 0.904508 0.818136 0.955197 0.978898 

0.5 1 1 1 1 

𝜇𝐴(𝑥𝑖) 𝐻𝛼=10
𝑆 (𝜇𝐴) 𝐻𝛼=10

𝐶𝑆 (𝜇𝐴) 𝐻𝛼=10
𝐴𝑟𝑐𝑡𝑎𝑛(𝜇𝐴) 𝐻𝛼=10

𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 

0 0 0 0 0 

0.1 0.124282 7.94006 × 10−6 0.57426 0.774224 

0.2 0.420867 0.00492251 0.865962 0.932671 

0.3 0.729884 0.120109 0.96644 0.983233 

0.4 0.933299 0.605429 0.994641 0.997324 

0.5 1 1 1 1 
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Conclusions 

In this paper, three new trigonometric fuzzy entropies of order α are proposed. We found 

that the four axiomatic requirements properties are satisfied with the new fuzzy entropies. 

The results of the preceding sections confirm that the FEM 𝐻𝛼
𝐴𝑟𝑐𝑠𝑖𝑛, α > 1 produces the 

greatest entropy value not only through some proposed α-order trigonometric fuzzy 

entropies but also, it produces the highest entropy value through some non-trigonometric 

fuzzy entropies which were suggested in previous studies. Another possible topic for future 

research is to use entropy of order 𝛼 in the fuzzy setting for multi criteria decision making 

problems (Adel Rastkhiz, 2019) which has an application in evaluating entrepreneurial 

opportunities. 

Table 5: Comparison of the 𝑯𝜶
𝑨𝒓𝒄𝒔𝒊𝒏(𝝁𝑨) fuzzy entropy with non- trigonometry fuzzy 

entropies (maximum values are bolded). 

𝜇𝐴(𝑥𝑖)  𝐻𝛼=1.5
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 𝐻𝐷𝑃(𝜇𝐴) 𝐻𝛼=1.5

𝑁𝑇 (𝜇𝐴) 𝐻𝛼=1.5
𝐵𝑃 (𝜇𝐴) 𝐻𝛼=1.5

𝐾 (𝜇𝐴) 

0         0         0        0        0       0 

0.1 0.615435 0.468996 0.419271 0.351074 0.39114 

0.2 0.808694 0.721928 0.638987 0.625934 0.665825 

0.3 0.920255 0.881291 0.821277 0.830157 0.853626 

0.4 0.980706 0.970951 0.951512 0.956933 0.963695 

0.5       1         1        1        1        1 

𝜇𝐴(𝑥𝑖) 𝐻𝛼=2.5
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 𝐻𝐷𝑇(𝜇𝐴) 𝐻𝛼=2.5

𝑁𝑇 (𝜇𝐴) 𝐻𝛼=2.5
𝐵𝑃 (𝜇𝐴) 𝐻𝛼=2.5

𝐾 (𝜇𝐴) 

0       0        - 0 0 0 

0.1 0.570063 0.468996 0.417007 0.249389 0.353323 

0.2 0.776679 0.721928 0.634068 0.506951 0.633738 

0.3 0.904528 0.881291 0.816223 0.748415 0.836483 

0.4 0.976451 0.970951 0.949413 0.930498 0.959015 

0.5        1       1        1        1        1 

𝜇𝐴(𝑥𝑖) 𝐻𝛼=4
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 𝐻𝐷𝑇(𝜇𝐴) 𝐻𝛼=4

𝑁𝑇 (𝜇𝐴) 𝐻𝛼=4
𝐵𝑃 (𝜇𝐴) 𝐻𝛼=4

𝐾 (𝜇𝐴) 

0       0        -       0       0       0 

0.1 0.591521 0.468996 0.41246 0.202598 0.202598 

0.2 0.793532 0.721928 0.623152 0.427363 0.427363 

0.3 0.913181 0.881291 0.803519 0.670142 0.671042 

0.4 0.978898 0.970951 0.943452 0.895933 0.895933 

0.5        1        1        1        1          1 

𝜇𝐴(𝑥𝑖) 𝐻𝛼=10
𝐴𝑟𝑐𝑠𝑖𝑛(𝜇𝐴) 𝐻𝐷𝑇(𝜇𝐴) 𝐻𝛼=10

𝑁𝑇 (𝜇𝐴) 𝐻𝛼=10
𝐵𝑃 (𝜇𝐴) 𝐻𝛼=10

𝐾 (𝜇𝐴) 

0        0        -       0        0       0 

0.1 0.774224 0.468996 0.40645 0.168892 0.652596 

0.2 0.932671 0.721928 0.60559 0.357698 0.894373 

0.3 0.983233 0.881291 0.777019 0.571714 0.973648 

0.4 0.997324 0.970951 0.924995 0.816095 0.995793 

0.5       1       1        1        1        1 
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