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Abstract

In this paper, a new generalization of Log-Logistic distribution using Alpha Power transformation is proposed. The
new distribution is named as Alpha Power Log-Logistic distribution. A comprehensive account of some of its statis-
tical properties are derived. The maximum likelihood estimation procedure is used to estimate the parameters. The
importance and utility of the proposed model are proved empirically using two real life data sets.
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1. Introduction

Log-Logistic (LL) distribution also known as Fisk distribution in economics is one of the important continuous prob-
ability distribution having massive application in survival analysis. It also finds application in areas like finance and
insurance. If logarithm of a random variable X follows Logistic distribution then X follows LL distribution. The
properties of LL distribution made it an attractive alternative to distributions which were conventionally used in the
analysis of survival data. Kleiber and Kotz (2003) discussed the application of LL distribution in economics, Collet
(2003) showed its application in medical field, Ashkar and Mahdi (2006) used LL distribution to analyze stream flow
data etc. Some other authors who studied the properties and utility of LL distribution are Singh et al. (1988), Nandram
(1989), Diekmann (1992), Bacon (1993), Little et al. (1994) etc.

The cumulative distribution function (cdf) and probability density function (pdf) of LL distribution are given by Eq.
(1) and Eq. (2) respectively.

F (x) =
xθ

1 + xθ
; x, θ > 0, (1)

f(x) =
θxθ−1

(1 + xθ)2
. (2)

A number of authors extended this distribution to make it more flexible and increase its applicability in diverse fields.
Santana et al. (2012) extended LL distribution using Kumaraswamy-G family and named it Kumaraswamy Log-
Logistic distribution. Aryal (2013) obtained transmuted Log-Logistic distribution using Quadratic rank Transmutation
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Map. Gui (2013) developed a new class of LL distribution using Marshall Olkin transformation. Lemonte (2014)
proposed four parameter Beta Log-Logistic distribution and studied its properties.
Lately, a prominent generalization technique Known as Alpha Power (AP) transformation was suggested by Mahadavi
and Kundu (2015) which has been exploited by various authors to achieve flexibility. The cdf of AP transformation is
given as

FAPT (x) =

{
αF (x)−1
α−1 ;α 6= 1, x > 0

F (x) ;α = 1, x > 0

where F (x) is the cdf of baseline distribution.
The pdf of AP transformation is given as

fAPT (x) =

{
log(α)αF (x)

α−1 f(x) ;α 6= 1

f(x) ;α = 1

In this article, the LL distribution is generalized by using Alpha Power (AP) transformation and the new model so
obtained named as Alpha Power Log-Logistic (APLL) distribution. It is more flexible and exhibits more complex
shapes of density and hazard rate functions. Also, the proposed model outclasses some well-established models in
terms of two real life data sets. The rest of the article is unfolded as: in Section 2, the pdf and cdf of the proposed
model i.e., APLL distribution are defined. Section 3 deals with the reliability measures of the APLL distribution. The
expansion of pdf and cdf is discussed in Section 4. Some of the important statistical properties are explored in Section
5. The parameter estimation is discussed in Section 6. The simulation study and applicability of the model is debated
in Section 7 and 8 respectively. Finally, some conclusions are provided in Section 9.

2. APLL Distribution

A random variable X is said to follow two parameter APLL distributions with scale parameter θ > 0 and shape
parameter α > 0 if its cdf takes the following form:

FAPLL(x) =

 α

(
xθ

1+xθ

)
−1

α−1 α 6= 1
xθ

1+xθ
α = 1

; x > 0, (3)

The corresponding pdf is given as

fAPLL(x) =


log(α)
α−1

θxθ−1

(1+xθ)2
α

(
xθ

1+xθ

)
;α 6= 1

θxθ−1

(1+xθ)2
;α = 1

. (4)

The plots of density function for different parameter combinations are presented in Figure 1.

3. Reliability Analysis

In this section, the reliability measures for APLL distribution are investigated.

3.1. Reliability function

The reliability function denoted by RAPLL(x) is the probability that an item does not fail before time say x and for
APLL distribution, it is given as

RAPLL(x) =

 α

(
xθ

1+xθ

) [
α

(
1

1+xθ

)
−1

α−1

]
;α 6= 1

1
1+xθ

;α = 1
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Figure 1: pdf plots of APLL distribution.

3.2. Hazard rate function

The Hazard rate Function denoted by hAPLL(t) is the probability of instantaneous rate of death and is given as

hAPLL(x) =

 log(α) θxθ−1

(1+xθ)2
1

α

(
1

1+xθ

)
−1

;α 6= 1

θxθ−1

(1+xθ)
;α = 1

3.3. Reverse hazard rate function

The reverse hazard rate function for APLL distribution is denoted by φAPLL(x) and is given as

φAPLL(x) =

 log(α) θxθ−1

(1+xθ)2
α

(
1

1+xθ

)

α

(
1

1+xθ

)
−1

;α 6= 1

θ
x(1+xθ)

;α = 1

The behavior of reliability function and hazard rate function of APLL distribution for different values of the parameters
is illustrated in Figure 2.

4. Mixture representation

Using the power series expansion, ba =
∑∞
j=0

(logb)jaj

j! , the pdf and cdf of APLL distribution can be expressed in
terms of an an alternative representation given by Eq. (5) and (6) respectively.

fAPLL(x) =

∞∑
j=0

(logα)j+1

j!(α− 1)

θxθ(j+1)−1

(1 + xθ)j+2
, (5)

FAPLL(x) =
1

α− 1

 ∞∑
j=0

(logα)j

j!

(
xθ

1 + xθ

)j
− 1

 . (6)

Equations (5) and (6) are quite useful in deriving various properties of APLL distribution.
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Figure 2: Plots of APLL distribution reliability Function and hazard rate function for some parameter value.

5. Statistical properties

In this section, some important statistical properties of APLL distribution are discussed.

5.1. Simulation and quantiles

Upon inverting Eq. (3) , we get

x =

[
logα

log{(α− 1)U + 1}
− 1

]− 1
θ

, (7)

Where U ∼ uniform(0, 1). Using Eq. (7), the APLL distribution can easily be simulated.
Also the pth quantile of APLL distribution is given as

xp =

[
logα

log{(α− 1)p+ 1}
− 1

]− 1
θ

.

5.2. Moments

The rth moment about origin of APLL distribution can be obtained as

µ
′

r =

∫ ∞
0

xrfAPLL(x)dx.

Upon substituting Eq. (5) in the above given equation, we get

µ
′

r =

∫ ∞
0

xr
∞∑
j=0

(logα)j+1

j!(α− 1)

θxθ(j+1)−1

(1 + xθ)j+2
dx,

µ
′

r =

∞∑
j=0

(logα)j+1

j!(α− 1)

∫ ∞
0

θxr+θ(j+1)−1

(1 + xθ)j+2
dx
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Substituting xθ = t and solving, we get

µ
′

r =

∞∑
j=0

(logα)j+1

j!(α− 1)

∫ ∞
0

t
r
θ+j+1−1

(1 + t)(
r
θ+j+1)+(1− rθ )

dt,

µ
′

r =

∞∑
j=0

(logα)j+1

j!(α− 1)
B
(r
θ

+ j + 1, 1− r

θ

)
; r < θ. (8)

Putting r=1 in Eq. (8), we get the mean of APLL distribution

µ
′

1 =

∞∑
j=0

(logα)j+1

j!(α− 1)
B

(
1

θ
+ j + 1, 1− 1

θ

)
; θ > 1. (9)

The variance of APLL distribution is given as

V (X) =


∞∑
j=0

(logα)j+1

j!(α− 1)
B

(
2

θ
+ j + 1, 1− 2

θ

)
−


∞∑
j=0

(logα)j+1

j!(α− 1)
B

(
1

θ
+ j + 1, 1− 1

θ

)
2

; θ > 2.

The uth incomplete moment about origin is defined by ψu =
∫ n
0
xufAPLL(x)dx and for APLL distribution, it can be

obtained as

ψu =

∞∑
j=0

(logα)j+1

j!(α− 1)
B(

nθ

1+nθ

) (u
θ

+ j + 1, 1− u

θ

)
; r < θ, (10)

where Bx(l,m) =
∫ x
0
yl−1(1− y)m−1dy.

5.3. Moment Generating Function

The moment generating function of APLL distribution can be obtained using the relation

MX(t) =

∞∑
r=0

tr

r!
µ
′

r, (11)

using Eq. (8) in Eq. (11), we get the required expression as given by Eq. (12).

MX(t) =

∞∑
j=0

∞∑
r=0

tr(logα)j+1

j!r!(α− 1)
B
(r
θ

+ j + 1, 1− r

θ

)
; r < θ. (12)

5.4. Mean Deviation about Mean and Median

The mean deviation about mean is defined as

D(µ) = 2

∫ µ

0

(µ− x)fAPLL(x)dx, (13)
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using Eq. (5), we get

D(µ) = 2

∫ µ

0

(µ− x)

∞∑
j=0

(logα)j+1

j!(α− 1)

θxθ(j+1)−1

(1 + xθ)j+2
dx,

D(µ) = 2

µ
∞∑
j=0

(logα)j+1

j!(α− 1)
B

1−
(

µθ

1+µθ

) (j + 1, 1)

−
2


∞∑
j=0

(logα)j+1

j!(α− 1)
B

1−
(

µθ

1+µθ

)(1

θ
+ j + 1, 1− 1

θ

) ; θ > 1,

(14)

Also the expression for Mean deviation about medain for APLL distribution takes the following form:

D(M) = µ− 2


∞∑
j=0

(logα)j+1

j!(α− 1)
B

1−
(

Mθ

1+Mθ

)(1

θ
+ j + 1, 1− 1

θ

) ; θ > 1.

5.5. Mean residual life (MRL) and Mean Waiting Time (MWT)

The MRL is defined as

MRL =
E(t)− ψ1(t)

1− FAPLL(t)
− t. (15)

The MWT is defined as

MWT = t− ψ1(t)

FAPLL(t)
. (16)

Upon substituting Eq. (10) for u = 1 and Eq. (5) in Eq. (15) and Eq. (16), we get the required expressions for MRL
and MWT for APLL distribution.

5.6. Renyi Entropy

The Renyi Entropy given by Renyi (1961) as a measure of uncertainty is defined as

Iν =
1

1− ν
log

∫ ∞
0

(fAPLL(x))
ν
dx; ν > 0, ν 6= 1,

using Eq. (3), we get

Iν =
1

1− ν
log

∫ ∞
0

(
log(α)

α− 1

θxθ−1

(1 + xθ)2
α

(
xθ

1+xθ

))ν
dx,

=
1

1− ν
log

{
(θlog(α))ν

(α− 1)ν

∫ ∞
0

xν(θ−1)

(1 + xθ)2ν
α
ν
(

xθ

1+xθ

)
dx

}
. (17)

Using the expansion αs =
∑∞
j=0

(logα)jsj

j! in (17), Iν reduces to

Iν =
1

1− ν
log

 (θlog(α))ν

(α− 1)ν

∫ ∞
0

xν(θ−1)

(1 + xθ)2ν

∞∑
j=0

(logα)
j
νj
(

xθ

1+xθ

)j
j!

 ,

Iν =
1

1− ν
log


∞∑
j=0

θν−1(logα)j+ν

{j!(α− 1)}ν

 νj
Γ(ν + j + 1−ν

θ )Γ(ν + ν−1
θ )

Γ(2ν + j)

 . (18)
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5.7. L-moments

The L-moments of APLL distribution can be obtained as

E(Xr
i:n) =

∫ ∞
0

xrfi:n(x)dx. (19)

We have

fi:n(x) =
n!

(i− 1)!(n− i)!
F i−1APLL(x) [1− FAPLL(x)]

n−i
fAPLL(x)

=
n!

(i− 1)!(n− i)!

α
(

xθ

1+xθ

)
− 1

α− 1


i−11− α

(
xθ

1+xθ

)
− 1

α− 1


n−i

fAPLL(x),

=
n!(−1)i−1αn−i

(i− 1)!(n− i)!(α− 1)n−1

{
1− α

(
xθ

1+xθ

)}i−1
{

1− α
(

xθ

1+xθ

)
−1
}n−i

fAPLL(x),

=
n!(−1)i−1αn−i

(i− 1)!(n− i)!(α− 1)n−1

i−1∑
j=0

(
i− 1

j

)
(−1)jα

j
(

xθ

1+xθ
−1

)

n−i∑
k=0

(
n− i
k

)
(−1)kα

k
(

xθ

1+xθ

)
f(x),

=

i−1∑
j=0

n−i∑
k=0

n!(−1)i+j+k−1αn−i−j

(i− 1)!(n− i)!(α− 1)n−1

(
i− 1

j

)(
n− i
k

)

α
(j+k+1)

(
xθ

1+xθ

)
log(α)

α− 1

θxθ−1

(1 + xθ)2
,

=

i−1∑
j=0

n−i∑
k=0

∞∑
l=0

n!(−1)i+j+k−1αn−i−j

l!(i− 1)!(−cn− i)!(α− 1)n

(
i− 1

j

)(
n− i
k

)
θ(logα)l+1(j + k + 1)lxlθ+θ−1

(1 + xθ)l+2
,

substituting the value of fi:n(x) in Eq. (19) and solving, we get

E(Xr
i:n) =

i−1∑
j=0

n−i∑
k=0

∞∑
l=0

n!(−1)i+j+k−1αn−i−j

l!(i− 1)!(−cn− i)!(α− 1)n

(
i− 1

j

)(
n− i
k

)
(logα)l+1(j + k + 1)lB

(r
θ

+ l + 1, 1− r

θ

)
; r < θ. (20)

5.8. Stress Strength Reliability

Let X1 ∼ APLL distribution(α1, θ) and X2 ∼ APLL distribution(α2, θ) be two independent random variable.
Then, the stress strength reliability (SSR) denoted by R for APLL distribution can computed as:
Case 1

¯
: α1 6= 1 and α2 6= 1, then
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R =

∫ ∞
0

α

(
xθ

1+xθ

)
1 − 1

α1 − 1

log(α2)

α2 − 1

θxθ−1

(1 + xθ)2
α

(
xθ

1+xθ

)
2 dx,

=
θlog(α2)

(α2 − 1)(α1 − 1)

∫ ∞
0

(α

(
xθ

1+xθ

)
1 − 1)xθ−1α

(
xθ

1+xθ

)
2

(1 + xθ)2
dx,

=
log(α2)

(α2 − 1)(α1 − 1)

[
α1α2 − 1

logα1 + logα2
− α2 − 1

logα2

]
.

Case 2
¯

: α1 = 1 and α2 6= 1, then

R =

∫ ∞
0

xθ

1 + xθ
log(α2)

α2 − 1

θxθ−1

(1 + xθ)2
α

(
xθ

1+xθ

)
2 dx,

=
θlog(α2)

α2 − 1

∫ ∞
0

(x2θ − 1)α

(
xθ

1+xθ

)
2

(1 + xθ)(1 + xθ)2
dx,

=
log(α2)

(α2 − 1)

[
α2 − 1

logα2
− α2 − logα2 − 1

log2α2

]
,

Case 3
¯

: α1 6= 1 and α2 = 1, then

R =

∫ ∞
0

α

(
xθ

1+xθ

)
1 − 1

α1 − 1

θxθ−1

(1 + xθ)2
dx,

=
θ

α1 − 1

∫ ∞
0

(α

(
xθ

1+xθ

)
1 − 1)xθ−1

(1 + xθ)2
dx,

=
1

α1 − 1

[
α1 − 1

logα1
− 1

]
.

Case 4
¯

: α1 = 1 and α2 = 1, then

R =

∫ ∞
0

xθ1

1 + xθ1
θ2x

θ2−1

(1 + xθ2)2
dx,

In this case, the model reduces to the SSR of base distribution i.e., LL distribution.

6. Parameter Estimation

Let η = (α, θ)T be the vector of parameters of APLL distribution. The log-likelihood function denoted by l, computed
from a sample of size n drawn from APLL distribution is given as:

l = nlogθ + nlog(logα)− nlog(α− 1)+ (21)
n∑
i=0

(
(θ − 1)log(xi)− 2log(1 + xθi )

)
+

n∑
i=0

xθi
1 + xθi

logα.
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The elements of score matrix U(η) = ∂l
∂η =

(
∂l
∂α ,

∂l
∂θ

)T
are

∂l

∂α
=

n

α log(α)
− n

α− 1
+

1

α

n∑
i=0

xθi
(1 + xθi )

, (22)

∂l

∂θ
=
n

θ
−

n∑
i=0

log xi − 2

n∑
i=0

xθi log xi
(1 + xθi )

+ logα

n∑
i=0

xθi log xi
(1 + xθi )

2
. (23)

Upon equating Eqs. (22) and (23) to zero and solving them simultaneously, we obtain the ML estimates of α and θ.
Methods such as Newton Raphson can be used to solve such non-linear Equations. For fixed θ in (23) we obtain α̂(θ)
as follows

α̂(θ) = exp


∑n
i=0 log xi + 2

∑n
i=0

xθi log xi
(1+xθi )

− n
θ∑n

i=0
xθi log xi
(1+xθi )

2

 , (24)

and then we can obtain θ̂ from (22) by solving the following equation:

1

α̂(θ) log(α̂(θ))
− 1

α̂(θ)− 1
+

1

nα̂(θ)

n∑
i=0

xθi
(1 + xθi )

= 0. (25)

Once θ̂ has been obtained, we can evaluate the value of α̂ as α̂ = α̂(θ̂).
The second order partial derivatives of APLL distribution for l exist. Thus, the asymptotic sampling distribution of η̂
is N2[0, J(η̂)−1] where J(η) is the observed Fisher information matrix given by:

J(η) =

[
V11 V12
V21 V22

]
, (26)

where

V11 =
∂2l

∂α2
= −n(1 + logα)

(αlogα)2
+

n

(α− 1)2
− 1

α2

n∑
i=0

xθi
(1 + xθi )

,

V22 =
∂2l

∂θ2
= − n

θ2
− 2

n∑
i=0

xθi (log xi)
2

(1 + xθi )
2

+ logα

n∑
i=0

xθi (log xi)
2(1− xθi )

(1 + xθi )
3

,

and

V12 = V21 =
∂2l

∂α∂θ
=

∂2l

∂θ∂α
=

1

α

n∑
i=0

xθi logxi
(1 + xθi )

2
.

The 100(1 − φ) confidence interval for α and θ cab be determined as α̂ ± Zφ
2

√
V̂11 and θ̂ ± Zφ

2

√
V̂22 where Zφ

2
is

the upper φ− th percentile of standard Normal distribution.

7. Simulation

In this section, we present the simulation study to illustrate the behavior of MLEs for different sample sizes. Samples
of sizes (n) 50, 100, 300, 500 and 1000 were drawn from APLL distribution for the two parameter combination (α, θ)
i.e., (3, 3) and (0.5, 0.8). The results are reported in Table 1. It can be clearly seen that the estimates are consistent as
the standard deviations of the MLEs show a decreasing trend with increase in the sample size.
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Table 1: Simulation Study of ML estimators of APLL distribution.

(α, θ) n α̂ θ̂
50 5.355 3.244

(2.869) (0.367)
100 4.674 3.451

(1.741) (0.277)
(3,3) 300 3.004 3.384

(0.623) (0.160)
500 3.060 3.146

(0.493) (0.115)
1000 3.035 2.999

(0.345) (0.078)
50 0.743 0.890

(0.365) (0.105)
100 0.590 0.937

(0.206) (0.077)
(0.5, 0.8) 300 0.404 0.896

(0.083) (0.042)
500 0.469 0.837

(0.074) (0.030)
1000 0.504 0.800

(0.0561) (0.021)

8. Application

To access the flexibility and establish the superiority of the APLL distribution, we compare the fits of APLL distri-
bution with three well- established models for two real life data sets. The three models that are used for comparison
are

• Transmuted Log-Logistic (TLL) distribution with pdf

f(x) = (1 + α)

(
xθ

1 + xθ

)
− α

(
xθ

1 + xθ

)2

;−1 6 α 6 1, θ > 0,

where α is the transmuted parameter.

• Exponentiated Log-Logistic (ELL) distribution with pdf

f(x) =
αθxθ(α+1)−2

(1 + xθ)α+1
;α, θ > 0.

• LL distribution with pdf

f(x) =
θxθ−1

(1 + xθ)2
; θ > 0.

The first data set consists of the time between failures for 30 repairable items and was also analyzed by Murthy et al.
(2004). The Ml estimates and values of comparison criterions for APLL distribution and competitive models are
reported in Table 2 and Table 3 respectively.The second data set represents the survival times (in years) after diagnosis
of 43 patients with a certain kind of leukemia extracted from Kleiber and Kotz (2003). The Ml estimates and values of
comparison criterions for APLL distribution and competitive models are reported in Table 4 and Table 5 respectively.
The criterion such as log l, AIC, SIC, AICc and HQIC are used as performance comparing tools. Also, the values of
K-S statistic and associated p-value is computed.

The results obtained in Table 3 and Table 4 reveal that APLL distribution has the least value of all the comparison
criterions, hence APLL distribution can be considered a strong competitor to other distributions compared here for
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Table 2: ML Estimates of APLL Distribution and Competitive Models for First Data Set.

Model α̂ θ̂

APLL distribution 2.48 2.220
TLL distribution -0.417 2.170
ELL distribution 1.239 2.051
LL distribution - 2.157

Table 3: Comparison of APLL Distribution and Other Competitive Models For First Data Set.

Model -l̂ AIC SIC AICc HQIC K-S Statistic p-value

APLL distribution 40 83.85 86 84.30 84 0.075 0.9959
TLL distribution 41 84.95 88 85.39 86 0.299 0.1263
ELL distribution 41 85.66 88 86.29 87 0.108 0.8691
LL distribution 42 85.84 87 85.98 86 0.183 0.2623

Table 4: ML Estimates of APLL Distribution and Competitive Models for Second Data Set.

Model α̂ θ̂

APLL distribution 8.614 1.582
TLL distribution -0.735 1.431
ELL distribution 1.559 1.302
LL distribution - 1.374

Table 5: Comparison of APLL Distribution and Other Competitive Models For Second Data Set.

Model -l̂ AIC SIC AICc HQIC K-S Statistic p-value

APLL distribution 86 176.60 180 176.90 177 0.105 0.7320
TLL distribution 88 179.05 182 179.35 180 0.243 0.0740
ELL distribution 90 182.99 186 183.29 184 0.187 0.0988
LL distribution 93 188.17 189 188.26 188 0.432 0.0649

fitting data. The relative histogram and fitted APLL distribution for first and second data set are presented in Figure
3(a) and3(b) respectively. Also, to compare the empirical distribution of the data with APLL distribution graphically,
the QQ-plot for both the data sets is displayed in Figure 4.

9. Conclusion

In this paper, a new lifetime distribution namely APLL distribution is proposed and studied. The new distribution
is more flexible and its hazard rate function exhibits complex shapes. The new distribution is compared with three
well-established models using two real life data sets. The results showed that APLL distribution provides better fit
than the competitive models. We hope that this distribution attracts wider application in diverse fields.
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Figure 3: The Fitted pdf of APLL distribution and other fitted distribution for (a) first data set and (b) second
data set respectively.
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Figure 4: QQ-Plot for APLL distribution for first and second data set respectively.

An Extension of Log-Logistic Distribution for Analyzing Survival Data 801


	1 Introduction
	2 APLL Distribution
	3 Reliability Analysis
	3.1 Reliability function
	3.2 Hazard rate function
	3.3 Reverse hazard rate function

	4 Mixture representation
	5 Statistical properties
	5.1 Simulation and quantiles
	5.2 Moments
	5.3 Moment Generating Function
	5.4 Mean Deviation about Mean and Median
	5.5 Mean residual life (MRL) and Mean Waiting Time (MWT)
	5.6 Renyi Entropy
	5.7 L-moments
	5.8 Stress Strength Reliability 

	6 Parameter Estimation
	7 Simulation
	8 Application
	9 Conclusion

