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Abstract 

This paper is devoted to study a new four- parameter additive model. The newly suggested model is referred to as 

the flexible Weibull extension-Burr XII distribution. It is derived by considering a serial system with one 

component following a flexible Weibull extension distribution and another following a Burr XII distribution. The 

usefulness of the model stems from the flexibility of its failure rate which accommodates bathtub and modified 

bathtub among other risk patterns. These two patterns have been widely accepted in several fields, especially 

reliability and engineering fields. In addition, the importance of the new distribution is that it includes new sub-

models which are not known in the literature. Some statistical properties of the proposed distribution such as 

quantile function, the mode, the rth moment, the moment generating function and the order statistics are discussed. 

Moreover, the method of maximum likelihood is used to estimate the parameters of the model. Also, to evaluate 

the performance of the estimators, a simulation study is carried out. Finally, the performance of the proposed 

distribution is compared through a real data set to some well-known distributions including the new modified 

Weibull, the additive Burr and the additive Weibull distributions. It is shown that the proposed model provides the 

best fit for the used real data set.    

 

Key Words: Additive models; Flexible Weibull Extension Distribution; Burr XII Distribution; Moments; 

Maximum Likelihood Estimation. 
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1. Introduction 

Usually, in life-testing experiments there are different failure modes affecting the experimental unit in a different way. 

These failure modes compete simultaneously to cause the failure of this experimental unit. This is known in the 

statistical literature as competing risks. Also, competing risks occur when the tested item consists of several 

components connected in series. Each one of these components has a certain distribution with certain parameters and 

affects the tested item in a different way. Then, the lifetime of this series system is determined by the minimum lifetime 

of the components and the parameters of the distribution of each component can be estimated by applying a competing 

risks model. Competing risks data are found in many branches of statistical applications such as reliability engineering, 

econometrics, demography and biological sciences, etc.  

Among the lifetime models, the Weibull distribution is perhaps the most commonly used distributions for lifetime 

data analysis. It plays a crucial role in reliability theory and life-testing experiments. However, its major weakness is 

its inability to fit data with non-monotone failure rates. Thus, in the last few years many researchers have proposed 

various modified forms of the Weibull distribution to achieve non-monotonic shapes. For example, (Mudholkar and 

Srivastava, (1993)) presented an exponentiated Weibull distribution. (Xie and Lai, (1996)) introduced the additive 
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Weibull distribution. Another distribution was proposed (by Xie et al., (2002)) called modified Weibull extension 

distribution. (Lai et al., (2003)) presented a modified Weibull distribution. In addition, (Bebbington et al., (2007)) 

introduced the flexible Weibull extension distribution. This distribution has a simple and flexible failure function, 

which can be increasing and modified bathtub shaped. It has gained more attention in the last decade due to the 

capability of using it in different applications including engineering, reliability, biology, demography and actuarial 

sciences. On the other hand, in many practical studies, it has been observed that Burr XII distribution can be used 

quite effectively, in place of other lifetime distributions. Due to its flexibility in modeling many types of data, Burr 

XII distribution has found important applications in a wide variety of fields. It has been used in many applications 

such as actuarial science, biology, economics, forestry, life testing and reliability.  

In this paper, we propose a new lifetime distribution with four parameters, referred to as the flexible Weibull 

extension-Burr XII distribution. This new distribution is obtained from the sum of the failure rate functions of the 

flexible Weibull extension and Burr XII distributions via the use of competing risks to produce a very flexible failure 

rate function which can be used in many real life situations. Thus, this model can be applied to a component which is 

mainly affected by two failure modes acting simultaneously on it. One of the modes follows the flexible Weibull 

distribution and the other follows Burr XII distribution and either one of these two failure modes can cause the 

component's failure. This new model can also be interpreted as the lifetime of a serial system with two independent 

components, the lifetime of component 1 follows the flexible Weibull extension distribution and the lifetime of 

component 2 follows Burr XII distribution and the system's lifetime is the minimum of the lifetimes of the two 

components. Recently, in the literature, many distributions have been constructed based on the idea of adding the 

hazard rates of two distributions. For example, (Almalki and Yuan, (2013)) proposed the new modified Weibull 

distribution. (He et al., (2016)) introduced the additive modified Weibull distribution. In addition, the additive Perks–

Weibull distribution which was presented by (Singh, (2016)). More recently, (Tarvirdizade and Ahmadpour, (2019)) 

proposed the Weibull–Chen distribution. The importance of our proposed model lies in the flexibility of its failure 

rate to represent several ageing patterns including bathtub and modified bathtub shapes. The usefulness of bathtub-

shaped failure rate is well-known in the literature. Several distributions that can model a bathtub pattern are given in 

(Xie et al., (2003)). On the other hand, components’ failure rate may exhibit a more complex failure rate pattern 

referred to as the modified bathtub shape. In this pattern, the failure rate is initially increasing for a short period perhaps 

due to defects in the manufacturing process then this is followed by a bathtub shape. (Kuo and Kuo, (1983)) showed 

the importance of this pattern in reliability and engineering fields based on analyzing different failure data. Thus, our 

new model allows considerable flexibility in modelling the pre-useful period in the lifetime of a component compared 

to other existing models which exhibit the bathtub pattern only.  

The rest of this paper is organized as follows. The definition of the new distribution, its new sub-models and the failure 

rate function are presented in Section 2. Section 3 is devoted to studying some of the statistical properties of the new 

distribution including, quantile function, median, mode, rth moments, the moment generating function (mgf) and the 

order statistics. Maximum likelihood estimation of the parameters is obtained in Section 4. In Section 5, Monte Carlo 

simulation results are presented. The importance and flexibility of the new distribution is further emphasized in Section 

6 by comparing our distribution to some other existing distributions through a real data set. Finally, Section 7 ends 

with some conclusions. 

 

2. The Model 

2.1. Definition 

The failure rate function of a random variable X following the flexible Weibull extension-Burr XII (denoted by 

FWBXII or FWB) lifetime model with four parameters Θ = (�, �, �, 	)  is derived by the sum of the failure rates of 

flexible Weibull extension and Burr XII distributions as follows                                                                  ℎ(�; Θ) = ℎ�(�; �, �) + ℎ�(�; 	, �),                                             (1) 

where the failure rate function of the first component (flexible Weibull extension) of (Bebbington et al., (2007))  is 

given by ℎ�(�; �, �) = �� + ���� ������ , � > 0;  �, � > 0, 
and the failure rate function of the second component (Burr XII) of (Burr, (1942)) is given by ℎ�(�; 	, �) = �	 ����[1 + ��]��, � > 0; �, 	 > 0. 
So, the probability density function (pdf) of this distribution is given by 

�(�; Θ) = ℎ(�; Θ) exp #− % ℎ(&; Θ)�
' (&), 
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                    �(�; Θ) =  *�� + ���� ������ + �	 ����[1 + ��]��+ ��, *−������  + [1 + ��]�- .              (2) 

It can be written as                  �(�; Θ) =  [ℎ�(�; α , β ) + ℎ�(�; �, 	)]1�(�; α , β )1�(�; �, 	),                 
where 1� and 1� are the reliability functions of flexible Weibull extension and Burr XII distributions, respectively. 

Evidently, the corresponding cdf F(x; Θ) and reliability function R(x; Θ) of this additive model are given by                                                   2(�; Θ) = 1 − ��, *−������  + [1 + ��]�-,                                                     (3) 

                                                     1(�; Θ) = ��, *−������  + [1 + ��]�- .                                                          (4) 

Figure 1 display plots of the pdf for selected values of the model parameters. The plots suggest that the pdf can be 

unimodal or bimodal among other shapes for the selected values of the model parameters. In addition, plots of the 

failure rate function of FWBXII distribution are given in Figure 2. This figure exhibits increasing, bathtub, modified 

bathtub and bi-bathtub shapes for the selected values of the model parameters. Hence, the FWBXII failure rate function 

is very flexible and suitable for non-monotonic empirical failure rate behaviors which are more likely to be 

encountered in practice. 

 
Figure 1:  Plots of  FWBXII pdf 

 

 
Figure 2:  Plots of  FWBXII faliure rate function 

 

2.2. Interpretation of the Failure Rate Curves 

The shape of a failure rate function can be characterized by studying the limiting behavior of the failure rate function 

and its derivative. From Equation (1), differentiating the ℎ(�; Θ) with respect to x gives: ℎ5 (�; Θ) = ((�  ℎ(�; Θ) = ℎ5 �(�; α , β) + ℎ5 �(�; �, 	), 
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where  

ℎ5 �(�; α , β) = (��� + �)� − 2���6  ������ , 
ℎ5 �(�; �, 	) = �(� − 1)	����[1 + ��] − ��	�����[1 + ��]� . 

The shapes of the failure rate function of the FWBXII distribution can be explained as follows: 

 

Case (1):  For c>1 and αβ < 27/64: lim�→' ℎ(�; Θ) = 0 and   lim   �→; ℎ(�; Θ) = ∞. In this case, ℎ�(�; α , β ) is modified bathtub whereas ℎ�(�; �, 	) is unimodal. 

Let  �'∗ and �'∗∗ define maximum and minimum values of ℎ(�; Θ) respectively. Initially for � < �'∗, both ℎ5 �(�; α , β) and ℎ5 �(�; �, 	) take positive values, so ℎ5 (�; Θ) > 0. For �'∗ < � < �'∗∗, ℎ5 (�; Θ) will become negative 

either because both ℎ5 �(�; α , β) and ℎ5 �(�; �, 	) are negative or one of them becomes negative but dominates the other 

positive term. Eventually, at � > �'∗∗,  ℎ5 (�; Θ) will become positive again because the positive term ℎ5 �(�; α , β) will 

dominate the negative term ℎ5 �(�; �, 	). Summarizing, the failure rate of the FWBXII model increases from 0 to a 

maximum value �'∗,  on (0, �'∗), decreases on ( �'∗, �'∗∗), and increases again on (�'∗∗, ∞), exhibiting a modified 

bathtub shape.  

 

Case (2): For c>1 and αβ ≥ 27/64: 

 lim�→' ℎ(�; Θ) = 0 and   lim   �→; ℎ(�; Θ) = ∞. In this case, ℎ�(�; α , β ) is strictly increasing whereas ℎ�(�; �, 	) is 

unimodal. So, we have two possibilities either ℎ(�; Θ) is strictly increasing or  ℎ(�; Θ) is modified bathtub. The first 

possibility occurs if ℎ�(�; α , β ) always dominates ℎ�(�; �, 	). The second possibility happens if ℎ(�; Θ) has three 

stages. In the first stage ℎ5 �(�; α , β) and ℎ5 �(�; �, 	) are both positive; in the second stage ℎ5 �(�; �, 	) is negative and 

dominates the positive term ℎ5 �(�; α , β). Finally in the third stage, the positive term ℎ5 �(�; α , β) dominates the negative 

term ℎ5 �(�; �, 	). 

 

Case (3):  For c ≤ 1 and αβ ≥ 27/64 lim�→' ℎ(�; Θ) = ∞ and   lim   �→; ℎ(�; Θ) = ∞. Here, ℎ5 �(�; α , β) > 0 and ℎ5 �(�; �, 	) < 0. So, for � < �', �'  is the value 

of x at which ℎ5 (�; Θ) = 0, ℎ5 �(�; �, 	) dominates ℎ5 �(�; α , β) hence ℎ5 (�; Θ) < 0. The situation is reversed for � > �'.  

So, ℎ(�; Θ) initially decreases and then increases, exhibiting a bathtub shape. 

 

Case (4): For c ≤ 1 and αβ < 27/64 lim�→' ℎ(�; Θ) = ∞ and   lim   �→; ℎ(�; Θ) = ∞. In this case, ℎ5 (�; Θ) < 0 for the range (0, �� ) in which  ℎ�(�; �, 	)dominates ℎ�(�; α , β), then ℎ�(�; α , β) dominates  ℎ�(�; �, 	) for the range ( �� , ∞). Hence, the failure 

rate of the FWBXII model decreases to a minimum value  ��  on (0,  �� ), increases on ( �� , �∗ ), then decreases to a 

minimum value  ��  on (�∗,  �� ), and increases again on (�' , ∞), exhibiting a bi-bathtub shape. 

 

2.3. Sub-models 

Three new distributions obtained from the FWBXII distribution as follows 

1- Flexible Weibull extension-compound exponential (FWCE) when c=1. 

2- Flexible Weibull extension-compound Rayleigh (FWCR) when c=2. 

3- Flexible Weibull extension-log logistic (FWLogL) when k=1. 

3. Some Statistical Properties 

In this Section, some of the statistical properties including, quantile function, the mode, the median, rth moments, the 

moment generating function (mgf) and the order statistics are presented as follows.  

 

3.1. Mode and Quantile  

In this sub-section, the mode(s) and the quantile function of the FWBXII distribution are presented. The mode of a 

distribution is the value of x corresponding to the maximum value of the probability density function. For a unimodal 

distribution, x has only one value representing one mode, while for a bimodal distribution x has two values representing 

two modes. The mode(s) of the FWBXII distribution can be obtained by differentiating the pdf in Equation (2) with 

respect to x and equating it to zero.  
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                                                                           �5(�; Θ) = 0.                                                                       (5) 

Since �(�; Θ) = ℎ(�; Θ)��@(�;A),   
where H(x; Θ) is the cumulative hazard rate function which is defined as 

B(�; Θ) = % ℎ(&; Θ)�
' (&. 

Equation (5) can be written as   

      Cℎ5 (�; Θ) − ℎ�(�; Θ)D��@(�;A) = 0. 
Since  1(�; Θ) = ��@(�;A), 
 

then                                                         Cℎ5 (�; Θ) − ℎ�(�; Θ)D1(�; Θ) = 0.                                                   (6) 

So the mode(s) of the FWBXII distribution is (are) the solution of the following Equation −2	� �� + ���� ������  ��, *−������  + ����(1 + ��)�-��

+ (1 + ��)�- F�− 2��G � ������  ��, *−������  + + �� + ����� ������   ��, *−������  +
+ �� + ����� ���������  ��, *−������  +H
+ ��, *−������  + [��	(−	 − 1)�����(1 + ��)�-�� + 	�(� − 1)����(1 + ��)�-��]= 0.                                                                                                                                                   (7) 

It is difficult to get an explicit solution of Equation (7), therefore, it can be solved numerically. 

Let X be a random variable with distribution function F as defined in Equation (3), and let J ∈ (0, 1). Then, the quantile �L  of the FWBXII distribution is obtained as a numerical solution of the following nonlinear Equation with respect 

to �L:  

                                      2M�L; ΘN = 1 − ��, O−���P� ��P  Q C1 + �L�D�- = J.                                      (8) 

It is difficult to get an explicit solution of Equation (8), hence, it can be solved numerically. Special quantiles can be 

obtained using Equation (8). For example, the median which is the 0.5 quantile can be obtained by setting q = 0.5 in 

Equation (8).  

Some values of median and mode(s) for various values of the parameters (α, β, c, k) are calculated in Table 1. From 

Table 1, we note two cases of modes; unimodal and bimodal. 

Table 1: The mode(s) and median of the FWBXII distribution 

α β c k Mode(s) Median 

0.6 0.3 0.8 1 0.1161  0.2721 

3 2 0.8 0.8 0.7475  0.6285 

1 0.3 2 0.5 0.1478  0.3639 

2 2 3 1 0.7475  0.7601 

0.6 0.3 10 2 0.1412 0.8823 0.4642 

0.1 0.5 5 1.5 0.2330 0.7818 0.6680 

 

3.2. The Moments  

Moments of a distribution can be used to study many important characteristics. So, in this subsection we will present 

the moments of the FWBXII distribution. The rth moment of the FWBXII random variable X is given by 

                   STU = V V V (−1)WXY (Z)[XY �[ �Y  Z!   ]!    ℎ!
;

Y^'
;

[^'
;

W^' *_�   ` �_ + ] − ℎ� , 	 − _ + ] − ℎ� �+.            (9) 
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under the condition 0 <  UX[�Y� < k. 
 

Proof:  STU = %   �U (2(�; Θ);
' . 

STU = − %   �U (1(�; Θ);
' . 

Using integration by parts STU = %  _ �U����, *−������  + [1 + ��]�-(�;
' . 

Using series expansion of ��, *−����cd  +, we get 

STU = V (−1)W  Z!
;

W^' % _ �U�� �W(�����) [1 + ��]�-  (�;
'  

                   = V (−1)W  Z!
;

W^' O% _ �U�� �W(��) ��W(��)  [1 + ��]�- (�;
' Q. 

Using series expansion of of �(W)(��) and ��(W)(cd) , we get 

STU = V V V (−1)WXY (Z)[XY �[ �Y Z!   ]!    ℎ!  O% _ �UX[�Y�� [1 + ��]�-  (�;
' Q;

Y^'
;

[^'
;

W^' . 
Let e = f� 

Hence  

STU = V V V (−1)WXY (Z)[XY  �[ �Y Z!   ]!    ℎ!  O_ % &UX[�Y���  [1 + &]�-  1� &����  (&;
' Q;

Y^'
;

[^'
;

W^' . 
Thus; 

STU = V V V (−1)WXY (Z)[XY �[ �Y Z!   ]!    ℎ!
;

Y^'
;

[^'
;

W^' *_�   ` �_ + ] − ℎ� , 	 − _ + ] − ℎ� �+. 
Some of the most important features and characteristics of a distribution can be studied through moments (e.g., 

tendency, dispersion, skewness and kurtosis). The variance (σ2), coefficient of variation (CV), coefficient of skewness 

(CS) and coefficient of kurtosis (CK) are given by g� = ST� −  S�, 
hi = jST�S� − 1, 

hk = STG − 3SST� + 2SG(ST� − S�)G/� , 
and 

hm = ST6 − 4SSTG + 6S�ST� − 3S6(ST� − S�)� . 
The rth moment of the FWBXII can be alternatively obtained using numerical integration. The following table displays 

the first four moments and the corresponding g�, CV, CS and CK values for various choices of the parameters (α, β, 

c, k). It is observed from this table that by choosing different values of the parameters the distribution can cover both 

cases of positive and negative skewness.   

 

Table 2: Moments of the FWBXII distribution for various choices of the parameters (α, β, c, k) 

α β c k nTo nTp nTq nTr sp CV CS CK 

0.6 0.3 0.8 1 0.4615 0.4662 0.7037 1.3185 0.2532 1.0904 1.9998 7.4726 

3 2 0.8 0.8 0.5669 0.4103 0.3229 0.2674 0.0889 0.5260 -0.3967 2.0876 
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1 0.3 2 0.5 0.4695 0.3445 0.3340 0.3858 0.1241 0.7502 1.2758 4.4441 

2 2 3 1 0.7648 0.6490 0.5958 0.5826 0.0641 0.3310 0.0879 2.7305 

0.6 0.3 10 2 0.5177 0.3706 0.3066 0.2725 0.1026 0.6187 0.2594 1.7155 

0.1 0.5 5 1.5 0.6769 0.5864 0.5969 0.6944 0.1282 0.5290 0.5751 3.6818 

 

 

 

3.3. The Moment Generating Function 

If X has FWBXII distribution (Θ) distribution, its moment generating function can be written in the form 

     tu(v) = V V V V vU_! (−1)WXY  (Z)[XY �[ �Y  Z!   ]!    ℎ!
;

Y^'
;

[^'
;

W^' *_�   ` �_ + ] − ℎ� , 	 − _ + ] − ℎ� �+;
U^' .      (10) 

 

under the condition 0 <  UX[�Y� < k. 
 

Proof:  tu(v) = % �w��(�)(�;
' .  

Using the expression of �w� 

�w� = V vU �U_!
;

U^' . 
So; 

tu(v) = V vU _!
;

U^' % �U�(�)(�;
' . 

                                                                 tu(v) = V vU _!  STU
;

U^' .                                                           (11) 

 

Substituting from (9) into (11); (10) is obtained. 

 

3.4. The Order Statistics 

Order statistics play an important role in probability and statistics. In this subsection, we present the distribution of 

the ith order statistic from the FWBXII distribution. Let f(�) ≤  f(�) ≤ ⋯ ≤  f(z) denote the order statistics obtained 

from a random sample f1, f2, · · ·, f{ which is taken from the FWBXII distribution with f (x; Θ) and F(x; Θ) given by 

Equation (2) and Equation (3) respectively. Then the pdf �u(|)(�) of the ith order statistics, say f(W), can be derived as 

             �u(|)(�) = 1`(Z, { − Z + 1) [2(�; Θ)]W�� [1 − 2(�; Θ)]z�W  �(�; Θ).                                 (12) 

Since 0 < 2(�)<1 for x>0, by using the binomial expansion theorem for [1 − 2(�; Θ)]z�W  we obtain 

                          [1 − 2(�; Θ)]z�W = V �{ − Z] � (−1)[ [2(�; Θ)][z�W
[^' .                                                (13) 

Substituting  [1 − 2(�; Θ)]z�W  into �u(|)(�) gives 

                  �u(|)(�) = V (−1)[ {!]!  (Z − 1)!   ({ − Z − ])!  [2(�; Θ)][XW��z�W
[^'  �(�; Θ).                               (14) 

Substituting the pdf and cdf given by (2) and (3) in (14), the pdf  �u(|)(�) of the FWBXII distribution is given by  

�u(|)(�) = V (−1)[ {!]!   (Z − 1)!   ({ − Z − ])! *1 − ��, *−������  + [1 + ��]�-+[XW��z�W
[^'   *�� + ���� ������

+ �	 ����[1 + ��]��+ ��, *−������  + [1 + ��]�- .                      (15) 



Pak.j.stat.oper.res.  Vol.16  No.3 2020 pp 447-460  DOI: http://dx.doi.org/10.18187/pjsor.v16i3.2957 

 

The Flexible Weibull Extension-Burr XII Distribution: Model, Properties and Applications 454 

 

4. Maximum Likelihood Estimation 

In this section, we discuss the estimation of the 4-dimensional parameter vector } = (�, �, �, 	) of the FWBXII 

distribution by using the method of maximum likelihood. Let f�,  f�, … , fz be a random sample of complete data 

from the FWBXII distribution defined by (2) and suppose that we are interested in estimating the unknown parameters. 

The Likelihood function of this sample for Θ = (�, �, �, 	)  takes the form 

                                                                  � = � �(�W; Θ)z
W^� .                                                                    (16) 

Substituting �(�W; Θ) defined by (2) into (16), the above can be written as  

  � = � O�� + ��W�� ���|� ��| + �	 �W ���[1 + �W �]��Q ��, O−���|� ��|  Q [1 + �W�]�-z
W^� .               (17) 

The corresponding log-likelihood function in this case is then given by 

ℒ =  V ln O�� + ��W �� ���|� ��| + �	 �W ���[1 + �W �]��Q − V ���|� ��|
z

W^�
z

W^�
− 	 V ln(1 + �W�)z

W^� .                                                                                                      (18) 

By differentiating the log-likelihood function with respect to the parameters (α, β, c, k) and setting the result to zero, 

we obtain the following system of nonlinear Equations. 

                                          �ℒ�� = V ℎ�(�W; Θ)ℎ(�W ; Θ)
z

W^� − V �W���|� ��|
z

W^� = 0,                                                  (19) 

                                      �ℒ�� = V ℎ�(�W ; Θ) ℎ(�W; Θ)
z

W^� + V 1�W ���|� ��|
z

W^� = 0,                                                     (20) 

                                       �ℒ�� = V ℎ�(�W; Θ)ℎ(�W; Θ)
z

W^� − 	 V �W� ln(�W)(1 + �W�)
z

W^� = 0,                                                  (21) 

                                       �ℒ�	 = V ℎ-(�W; Θ)ℎ(�W ; Θ)
z

W^� − V ln(1 + �W�)z
W^� = 0,                                                  (22) 

where 

ℎ�(�W; Θ) = �ℎ(�W ; Θ)�� = �� + ��W �� ���|� ��|   �W + ���|� ��| , 
ℎ�(�W ; Θ) = �ℎ(�W; Θ)�� = 1�W� ���|� ��| − 1�W �� + ��W�� ���|� ��|  , 

ℎ�(�W; Θ) = �ℎ(�W; Θ)�� = �	 �W���[1 + �W�]�� #1� + ln(�W) − �W � ln(�W)(1 + �W�)), 
ℎ-(�W ; Θ) = �ℎ(�W; Θ)�	 = � �W���[1 + �W�]��, 

and ℎ(�W ; Θ) is defined in Equation (1). 

It is clear that there is no explicit solution for the above system of nonlinear Equations. Therefore we can use a 

numerical method such as the Newton-Raphson method to solve these nonlinear Equations and obtain the maximum 

likelihood estimates of the four parameters, which will be referred to as ��, ��, �̂ and 	�. This technique required obtaining 

the second partial derivatives of the log-likelihood function with respect to the parameters. These derivatives are given 

in the Appendix.  

 

5. Simulation Study 

In this section, a Monte Carlo simulation study is carried out using different sample sizes (n= 30, 50, 100, 200, 400) 

in order to examine the performance of the FWBXII distribution via the R package. We simulate 1000 samples for 

the true parameters values (α=1, β=0.3, c=2, k=0.5) and (α=0.05, β=0.02, c=0.5, k=2). Comparison between different 

estimators is made with respect to their estimated mean square errors (MSEs) and estimated absolute bias (Abs. Bias).  
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Table (3) displays the average estimates of the four model parameters along with their corresponding MSE and Abs. 

Bias. From the results of this table we can conclude that the MSE for the estimates of the four parameters always 

deceases when the sample size increase and in most cases, the Abs. Bias tends to decrease as the sample size increases. 

 

Table (3): Monte Carlo simulation results 

n Parameter 
(α=1, β=0.3, c=2, k=0.5) (α=0.05, β=0.02, c=0.5, k=2) 

Est. MSE Abs. Bias Est. MSE Abs. Bias 

30 

� 1.0026 0.5606 0.2083 0.1097 0.4705 0.0713 � 0.3385 0.6408 0.0676 0.1528 0.4932 0.1348 � 2.2115 2.9077 0.7326 0.4673 0.1078 0.1603 	 0.3585 0.5348 0.6014 0.9801 1.2697 1.0466 

50 

� 0.9576 0.0807 0.1809 0.0585 0.0023 0.0236 � 0.3090 0.0085 0.0337 0.0580 0.0272 0.0388 � 2.1311 2.3237 0.7013 0.4525 0.0382 0.1127 	 0.3890 0.4846 0.5793 1.0244 1.0685 0.9810 

100 

� 0.9675 0.0547 0.1451 0.0439 0.0002 0.0117 � 0.3057 0.0063 0.0261 0.0361 0.0013 0.0163 � 2.0957 1.6520 0.7786 0.4372 0.0082 0.0771 	 0.3009 0.3383 0.4865 1.0752 0.9142 0.9270 

200 

� 0.9895 0.0224 0.1062 0.0399 0.0001 0.0106 � 0.3028 0.0007 0.0179 0.0332 0.0002 0.0132 � 1.9871 1.0901 0.7333 0.4353 0.0061 0.0690 	 0.2133 0.2139 0.4168 1.0860 0.8635 0.9153 

400 

� 0.9932 0.0137 0.0829 0.0388 0.0001 0.0111 � 0.3019 0.0004 0.0136 0.0328 0.0002 0.0128 � 1.9140 1.0769 0.7383 0.4337 0.0053 0.0668 	 0.1569 0.1897 0.3998 1.0815 0.8543 0.9185 

 

6. Data Analysis  

In this section, we analyze a real data set to illustrate the applicability and flexibility of the FWBXII distribution for 

data modeling compared with many known distributions such as additive Weibull (AddW) presented (by Xie and Lai, 

(1996)), additive Burr XII (AddBXII) presented (by Wang, (2000)), new modified Weibull (NMW) presented (by 

Almalki and Yuan, (2013)), exponential Flexible Weibull extension (EFW) presented (by El-Desouky et al., (2017)), 

Flexible Weibull extension (FW) and Burr XII (BXII) distribution. The NMW and EFW pdfs are given by ����(�) = M������ + �(η + ��)�������N�����������d , � > 0;  �, �, �, η, � > 0. 
and 

����(�) =  � �� + ���� ������  ���d�cd ��, O−� ���d�cd  Q , � > 0; �, �, � > 0, 
respectively. We have fitted all selected distributions using the method of maximum likelihood for each data set.  In 

order to compare the aforementioned distributions with the proposed distribution, we applied formal goodness-of-fit 

tests to verify which distribution fits better to the real data set. Here, we calculated the Kolmogorov Smirnov (K-S) 

distance test statistic and its corresponding p-value, the log-likelihood (ℒ), Akaike information criterion (AIC), Akaike 

information criterion with correction (AICc) and Bayesian information criterion (BIC) values, where ��h = 2� − 2ln (�), ��h� = ��h + 2 �(� + 1){ − � − 1,  `�h = � ln({) − 2 ln(�), � = �M}�N is the value of the likelihood function evaluated at the parameter estimates, n is the number of observations, 

and m is the number of estimated parameters. In general, the distribution which has the smallest values of these 

statistics is the better fit for the data. 

 

6.1. Data Set   
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The data corresponds to the time in months to first failure of any kind of small electric cars used for internal 

transportation and delivery in a large manufacturing facility that were taken from (Nelson, (1982)). The MLEs of the 

parameters (standard error in parenthesis), log-likelihood, the K-S test statistic with its corresponding p-value, AIC, 

AICc  and BIC are presented in Table 4. The results of this Table indicate that the FWBXII distribution has the lowest 

K-S value and the highest p-value, which means that the new distribution fits the data better than the other distributions. 

In addition, our new model has the smallest values of the (AIC, AICc  and BIC) statistics. Thus, we can say that the 

FWBXII is the best among the other fitted models used here. 

More information is provided by a visual comparison of the histogram of the data with the fitted density functions 

when the distribution is assumed to be AddW, AddBXII, NMW, EFW, FW and BXII in Figure 3(a). In addition, the 

comparison of the empirical curve of the reliability function by using the Kaplan-Meier method and the fitted 

reliability functions is displayed in Figure 3(b). From Figure 3, we can conclude that the FWBXII distribution provides 

a very good fit for these data compared to all other distributions considered here. 

Table 4: The MLEs, corresponding standard errors in brackets, K-S, p-values, Log-likelihood, AIC, AICc and BIC of 

the fitted models 

Model 
MLE 

K-S P-value log L AIC AICc BIC 
Parameter Estimate (S.E.) 

FWBXII α 

β 

c 

k 

0.0175 (0.0062) 

9.4183 (3.8101) 

1.2671 (0.6115) 

0.1737 (0.0957) 

0.1355 0.9781 -67.246 142.493 145.351 146.271 

AddW  a 

b 

c 

d 

1.778e-5(2.73e-4) 

0.2030 (0.0466) 

0.0902 (0.0209) 

0.1038 (0.0236) 

0.7284 0.0000 

 

-108.450 224.903 227.760 228.680 

AddBXII c1 

k1 

c2 

k2 

0.9097 (0.1582) 

4.238e-6 (0.0045) 

1.1920 (0.2707) 

0.2861 (0.0763) 

0.2388 0.5379 -73.203 154.399 157.256 158.176 

NMW  θ 

α 

β 

λ 

η 

0.0907 (0.0476) 

0.0007 (0.0012) 

0.2033 (0.1210) 

0.0496 (0.0099) 

0.1025 (0.0633) 

0.3671 0.1532 

 

-83.027 176.029 180.644 180.751 

EFW α 

β 

λ 

0.0144 (0.0021) 

0.9283 (0.3395) 

0.2829 (0.0798) 

0.2667 0.5379 -77.484 160.969 162.569 163.803 

FW α 

β 

0.0213 (0.0040) 

1.3689 (0.4233) 

0.2666 0.5379 -71.556 147.114 147.864 149.003 

BXII c 

k 

1.7379 (0.5980) 

0.2936 (0.1157) 

0.2225 0.8081 -71.448 146.896 147.646 148.785 
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Figure 3:  (a) Fitted densities, (b) The Kaplan-Meier estimate and the fitted reliability functions 

 

 

6.2. Sub-Models of FWBXII 

For the sake of simplicity, we will compare the new three distributions, FWCE, FWCR and FWLogL, with the 

FWBXII distribution to see if any of these three distributions can perform as well as the FWBXII distribution, since 

it is better to reduce the number of parameters of any distribution. The MLEs of the parameters (standard error in 

parenthesis), log-likelihood, the K-S test statistic with its corresponding p-value, AIC, AICc  and BIC of FWBXII, 

FWCE, FWCR and FWLogL are presented in Tables 5. It is clear that the FWBXII, FWCE and FWCR distributions 

fit the data well. All of them have very small K-S values and high p-value. The FWBXII distribution has the larger 

log-likelihood value. However, the FWCE distribution has the smaller values for AIC, AICc and BIC. Also, Figure 4 

show that the FWCE distribution is nearly as good as the FWBXII distribution. In addition, the likelihood ratio test 

(LRT) is used to test the reduced model B': � = 1 against the original model B�: � ≠ 1. The LRT statistic is 0.220 (p-

value=0.6390), with one degrees of freedom. So there is no significant evidence to reject B'. Therefore, we can 

conclude that reducing the number of parameters to three by fixing one of them still provides a better fit for the used 

data set. 

 

Table 5: Results of sub-models of FWBXII 

Model 
MLE 

K-S P-value log L AIC AICc BIC 
Parameter Estimate (S.E.) 

FWBXII α 

β 

c 

0.0175 (0.0062) 

9.4183 (3.8101) 

1.2671 (0.6115) 

0.1355 0.9781 -67.246 142.493 145.351 146.271 
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k 0.1737 (0.0957) 

FWCE α 

β 

k 

0.0177 (0.0060) 

8.7830 (4.1932) 

0.1961 (0.0985) 

0.1297 0.9781 -67.356 140.713 142.313 143.546 

FWCR α 

β 

k 

0.0171 (0.0063) 

10.4970 (4.0612) 

0.1265 (0.1265) 

0.1421 0.9781 -67.736 141.472 143.072 144.306 

FWLogL α 

β 

c 

0.0163 (0.0068) 

11.3857 (5.4749) 

0.4244 (0.1597) 

0.4210 0.1532 -75.455 156.909 158.509 159.743 

 

 

 
Figure 4:  (a) Fitted densities, (b) The Kaplan-Meier estimate and the fitted reliability functions of full model vs. sub-

models 

 

7. Conclusion 

In this paper, we propose a new distribution called FWBXII distribution. Its definition, the behavior of its failure rate 

function and some of its statistical properties including the mode, quantile function, moments, moment generating 

function and order statistics are studied. We use the maximum likelihood method for estimating parameters. 

Furthermore, the importance of the new distribution is that it includes FWCE, FWCR and FWLogL, which are not 

known in the literature. In addition, in order to illustrate the usefulness, flexibility and applicability of the distribution, 

one real data set is  analyzed using the new distribution and it is compared with AddW, AddBXII, NMW, EFW, FW 

and BXII distributions. It is evident from the comparisons that the new distribution is the best distribution for fitting 

this data set compared to other distributions considered here.  
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Appendix 

Fisher Information Matrix  

The likelihood function of Θ= (�, �, �, 	) based on the FWBXII distribution is given by 

� = � �(�W; Θ)z
W^� . 

By differentiating the log-likelihood function ℒ with respect to the parameters, we obtain the first order derivatives of ℒ as given in (19) to (22). Upon differentiating these expressions once again with respect to the parameters, we obtain 

the partial derivatives of second order as follows: ��ℒ��� =  V  ℎ(�W; Θ) ℎ��(�W; Θ) − Mℎ�(�W; Θ)N�
(ℎ(�W; Θ))� − �W ����|� ��|¡z

W^� , 
��ℒ��� = V ¢ℎ(�W; Θ) ℎ��(�W; Θ) − £ℎ�(�W ; Θ)¤�

(ℎ(�W ; Θ))� − 1�W� ���|� ��|¥z
W^� , 

��ℒ��� =  V  ℎ(�W; Θ) ℎ��(�W ; Θ) − Mℎ�(�W ; Θ)N�
(ℎ(�W; Θ))� − 	 ln(�W) �W � ln(�W) (1 + �W �) − �W �� ln(�W)(1 + �W �)� ¡z

W^� , 
��ℒ�	� = − V  Mℎ-(�W ; Θ)N�

Mℎ(�W; Θ)N� ¡z
W^� , 

��ℒ���� = V #ℎ(�W; Θ) ℎ��(�W; Θ) − ℎ�(�W ; Θ)ℎ�(�W ; Θ)(ℎ(�W; Θ))� + ���|� ��|)z
W^� , 
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��ℒ���� = − V  ℎ�(�W ; Θ)ℎ�(�W; Θ)Mℎ(�W ; Θ)N� ¡z
W^� , 

��ℒ���	 = − V  ℎ�(�W; Θ)ℎ-(�W; Θ)Mℎ(�W; Θ)N� ¡z
W^� , 

��ℒ���� = − V  ℎ�(�W; Θ)ℎ�(�W; Θ)Mℎ(�W ; Θ)N� ¡z
W^� , 

��ℒ���	 = − V  ℎ�(�W; Θ)ℎ-(�W ; Θ)Mℎ(�W ; Θ)N� ¡z
W^� , 

��ℒ���	 = V #ℎ(�W; Θ) ℎ�-(�W ; Θ) − ℎ�(�W; Θ)ℎ-(�W ; Θ)(ℎ(�W ; Θ))� − �W� ln(�W)(1 + �W �))z
W^� , 

where 

ℎ��(�W ; Θ) = ��ℎ(�W; Θ)��� = �� + ��W�� ���|� ��|   �W� + 2�W���|� ��| , 
ℎ��(�W; Θ) = ��ℎ(�W; Θ)��� = − 2�W G ���|� ��| + 1�W� �� + ��W�� ���|� ��| , 

ℎ��(�W ; Θ) = ��ℎ(�W; Θ)���
= −�	 �W ���[1 + �W �]�� # 1�� + (1 + �W�)�W�(ln(�W))� − �W ��(ln(�W))�(1 + �W�)� )
− 	 �W���[1 + �W�]�� #1� + ln(�W) − �W � ln(�W)(1 + �W�)) (��W �[1 + �W�]�� ln(�W) − � ln(�W) − 1), 

ℎ��(�W; Θ) = ��ℎ(�W ; Θ)���� = − �� + ��W �� ���|� ��| , 
ℎ�-(�W; Θ) = ��ℎ(�W; Θ)���	 = � �W ���[1 + �W �]�� #1� + ln(�W) − �W � ln(�W)(1 + �W�)). 

 


