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Abstract

A new univariate extension of the Fréchet distribution is proposed and studied. Some of its fundamental statistical
properties such as stochastic properties, ordinary and incomplete moments, moments generating functions, residual
life and reversed residual life functions, order statistics, quantile spread ordering, Rényi, Shannon and g-entropies
are derived. A simple type Copula based construction using Morgenstern family and via Clayton Copula is
employed to derive many bivariate and multivariate extensions of the new model. We assessed the performance of
the maximum likelihood estimators using a simulation study. The importance of the new model is shown by means
of two applications to real data sets.
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1. Introduction and motivation

The extreme value theory (EVT) is very popular in the statistical literature, it is devoted to study stochastic series of
independent and identically distributed (11D) random variables. In EVT, we study the behavior of extreme value even
though these values have a very low chance to occur but can turn out to have a very high impact on the observed
system. The EVT plays an important role in research fields of finance and insurance. The study of EVT started in the
last century as an equivalent to the central limit theory (CLT), which is dedicated to the study of asymptotic
distribution for average of a sequence of random variables (RVs). The CLT states that sum and mean of the RVs from
an arbitrary distribution are normally distributed under the condition that the sample size (n) is sufficiently large.
However, in some other studies we are looking for the limiting distribution of maximum or minimum values rather
than the average. Assume that Z,,Z,,..., Z, is asequence of 11D RV distributed with cumulative distribution function
(CDF) denote by F(z). One of the most interesting statistics in research is the sample maximum S, =

max{Z,Z,,...,Z,}. The EVT study the behavior of S,, as the sample size n increases to co where Pr(S, < z) =
Pr{Z,<z,7,<2z...,2, <2z} =Pr{Z, < z}Pr{Z, < z}...Pr{Z, <z} = F(z)". Suppose there exist two
sequences of constants (C, > 0) and (D,,) such that p, {S"C_—D" < x} - G(z) asn - oo. If G(z) isanon-degenerate

distribution function, it will belong to one of the three following fundamental types of classic extreme value family,
the Gumbel distribution (Type I); the Fréchet distribution (Type I1); the Weibull distribution (Type I11). ARV X is
said to have the Fréchet (Fr) distribution if its probability density function (PDF) and CDF are given by
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The cumulative distribution function (CDF) and probability density function (PDF) of the Generalized Odd
Generalized Exponential G (GOGE-G) family are given, respectively, by

—G,(x) B
Fa,ﬁ(x) = {1 — exp [#{:&C)a]} , (3)
_ aBgy ()G ! [ G, ()" ] { . [ =G ]}ﬁ
fa,ﬁ(x) [1 _ G(p (x)a]z exp 1= Gq)(x)“ 1—exp 1= G(p(x)a ) (4)

where G, (x) is the baseline CDF depending on a parameter vector ¢, g, (x) = %Gq, (x) isthe corresponding PDF
and a, § > 0 are two additional shape parameters. Using (2) and (3) the CDF of the GOGEFr can be derived as

—Evnar \\P
Fy(x) = <1 —exp <—x’a'a' )) ,
- 1- gx;a,a,b (5)
b
where ;.4 0p = €XP [—a (3) ]and the corresponding PDF of (5) can be expressed as

— -1
aﬁabbx (b+1)gx;a,a,b _gx;a,a,b _gx;a_a,b A
f‘i’(x) = > exp 1-— exp | ——— .
- (1 — gx;a,a,b) 1- gx:a.a,b 1- gx;a,a,b

(6)

Henceforth, X ~ GOGEFr (¥ )| ¥ = a,8,a,b denotes a RV with density function in (6). The hazard rate function
(HRF) of X can be derived using the well-known relationship fz(x)/[l — Fz(x)]. Plots of the GOGEFr HRF at

some parameters value are presented in Figure 2 to show the flexibility of the new model. The GOGEFr model can be

simulated and X values are generated using inversion of (5) as
1
I
a

—log (1 - u%) ©)
1—log <1 - u%>

where U ~ u(0,1). Now, we provide a useful representation for (6). Using the series expansion (1 —2z)' =
Z‘” (-D¥Wr@+y)

w=0 WIr(1+Y-w)

GOGEFr density in (6) can be expressed as

Xy, =a{—In

z", which holds for |z| <1 and Y > 0 real non-integer and using the power series, the PDF of the

1)t + 1)) _ alitl
(D™ +1) (3 1) (Evaas) G+1).

— b -(b
f() = apa’bx~®*V - A
i,j=0 J* (1 - gx;a.a,b)

Using the series expansion again we obtain

(oo}

FO) =" &ucha @lar=atiso ®
j,k=0
where h,+(x) is the Fr density with scale parameter a%/a, and shape parameter b and

= aﬁ%(_(’: N eviar (P

i=0
The CDF of the GOGEFr model can also be expressed as a mixture of the Fr density CDFs. By integrating (8), we

obtain the same mixture representation F(x) = % & Hq+(x) Where H,+(x) is the CDF of the Fr density with scale
j k=0

parameter a%/a, and shape parameter b. Figure 1 shows that the new density function can take unimodal, symmetric
and right skewed shapes. Figure 2 shows that the HRF may be “increasing-constant”, “decreasing”, “increasing”,
“upside-down” or “constant” failure rate function. Many useful mathematical tools can be found in Cordeiro and
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Lemonte (2014), MirMostafaee et al. (2015, 2016 and 2017). and Hamedani et al. (2019). The new distribution can
be used for evaluating entrepreneurial opportunities, see Adel Rastkhiz et al (2019). for more information on this

regard.
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Figure 1: PDF plots of the GOGEFr for some parameter’s values.
Some useful extensions of the Fr model can be cited as: transmuted exponentiated generalized Fr (2015) by Yousof
et el. (2015), Kumaraswamy transmuted Marshall-Olkin Fr by Yousof et al. (2016), Weibull Fr by Afify et al.
(2016b), Kumaraswamy Marshall-Olkin Fr by Afify et al. (2016a), Odd Lindley Fr by Korkmaz et al. (2017),
Transmuted Topp Leone Fr by Yousof et al. (2018b), odd log-logistic Fr by Yousof et al. (2018a). Other extension
can be found in Cordeiro and Lemonte (2014), MirMostafaee et al. (2015, 2016 and 2017), Brito et al. (2017),
Hamedani et al. (2017), Cordeiro et al. (2018), Chakraborty et al. (2018), Hamedani et al. (2018), Korkmaz et al.
(2018), Ibrahim (2019) and Korkmaz et al. (2019).

2. Mathematical properties
2.1 Moments and cumulants
The rth ordinary moment of X isgivenby u, = E(X") = f_moof(x) dx. Then, we obtain

r r
trlwsry =a’l (1 - E)Z il (9)
j,k=0

where I'(1 + @) = ! = Hf;g @o—h)= fow t¥ exp(—t) dt is the complete gamma function. Setting = 1 in (9),
we have the mean of X . The last integration can be computed numerically for most parent distributions. The skewness
and kurtosis measures can be calculated from the ordinary moments using the well-known relationships. The skewness
and kurtosis measures can also be calculated from the ordinary moments using the well-known relationships. The
mean, variance, skewness and kurtosis of the GOGEFr distribution are computed numerically for some selected
parameter values using the R software. The numerical values displayed in Table 1 indicate that the skewness of the
GOGEFr distribution is always positive and can range in the interval (0.23,149.38). The spread of its kurtosis is much
larger ranging from 1.085 to 22316.32.
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Figure 2: HRF plots of the GOGEFr for some parameter’s values.
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Table 1: E(X), Var(X), Ske(X) and Ku(X) of the GOGEFr distribution.

a B a b mean variance skewness kurtosis
0.005 0.75 0.5 0.5 9.59x1078 2.05x1071° 149.3827 22316.3
0.01 3.31x107° 6.99x1078 7.972852 69.7448
0.05 0.003072 3.63x107° 6.191395 77.2233
0.1 0.012292 0.000581 6.182813 77.1168
0.5 0.076836 0.022688 6.182308 77.1127
0.75 0.691525 1.837693 6.182282 77.1123
0.95 0.888226 3.031821 6.182283 77.1123
1 1 2 2 2.235140 0.639377 0.791212 3.62208
2 2.678900 0.590066 0.651933 3.48356
5 3.239802 0.491876 0.599869 3.53532
10 3.630946 0.421442 0.617260 3.63095
50 4.429738 0.303323 0.706449 3.87665
100 4.734894 0.268809 0.743785 3.97437
200 5.110491 0.233254 0.786577 4.09045
500 5.377014 0.211949 0.814033 4.16822
1000 5.630711 0.194205 0.837785 4.23801
5000 6.179000 0.162655 0.881684 4.37394
10000 6.400429 0.152049 0.896859 4.42321
3 10 1 2.5 2.494324 0.126232 0.506266 3.41228
5 12.47162 3.155788 0.506266 3.41228
20 49.88648 50.49261 0.506266 3.41228
60 149.6594 454.4335 0.506266 3.41228
100 249.4324 1262.315 0.506267 3.41228
350 873.0130 15463.36 0.506266 3.41228
400 997.7300 20197.05 0.506266 3.41228
3 4 10 1 82.41150 1347.000 1.308852 5.91950
28.05750 36.89070 0.599871 3.53532
3 19.79160 8.081260 0.385470 3.17539
4 16.65430 3.209200 0.280390 3.05748
5 15.02520 1.669670 0.217800 3.00533
2.2 Incomplete moment
The r th incomplete moment, say ¢,.(t) , of X can be expressed, from (8), as
H©0 =] wfwix=a )y Gy (1-2.(3) ) losn,
k=
where y(¢,u) isthe incomplete gamma function.
y(p, )| = fut""l exp(—t)dt = ﬁ{lF ;0 + 1;—ul} = Z (_—un"’”
e T, p T e+

and 1F;[-,-,] is a confluent hypergeometric function. The first incomplete moment can be calculated by setting r =

1 in ¢.(t) as

[oe]

a

=0

¢, (t) = az &ixlfa.r (1 —%,a* (;)b) l(>1)-

j k=0

2.3 The moment generating function (MGF)

The MGF My(t) = E(e**) of X can be derived from equation (4) as Mx(t)|psr) = 2 tr—rlfj,karaff (1 - %)
jkr=0""
An alternative method for deriving the MGF can be introduced by the Wright generalized hypergeometric function

(WHGF) which is defined by
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v [al,Al, ey A ] Z I'(a; +Am) x"
® |b, By, .. b, B, v, I'(bj+Bm)n!’
Then, the MGF of (1) can be defined as

1
Mx() = %0 [(1; _E>; at]. (10)
By combining expressions (8) and (10), we obtain the MGF of GOGEFr as

My(6) = Zw I {(1)% [(1,:9;(11, a*t]}- (1)

j,k=0
Equations (9) and (11) can be easily evaluated by scripts of the Maple, Matlab and Mathematica platforms.

2.4 Residual life and reversed residual life functions
The n th moment of the residual life, say z, (t) = E[(X — t)"] | (x>t and n=12,...) Uniquely determines the CDF F(x).

S xe-t"dF(x)
1-F(t)

Zn (O >n) zl—iF(t)z Aj_ka*l“(l—g,a (?) ))
7 k=0

n
e o _
where A; = &, X . (=T (r),l"(tp. W|x>0) = fu t? Texp(—t)dtand I'(p,u) = I'(w) —y(p,u). The n
r=
th moment of the reversed residual life, say Z,,(t) = E[(t — X)"] |(x<t,t>0 and n=1,2,...) Uniquely determines the CDF

t n
F(x) . We obtain Z,,(t) = f"+z)dp(x)

at n n a\P
Zn(Olp>n) = %Z Bj,k“f)/(l - 5,0(* (?) ),
T k=0

n
n
— . _1\rn-r
where Bj; =& Erjzo D"t (r)
2.5 Entropies
The Rényi entropy of a RV X represents a measure of uncertainty and defined by

1
Ro(X) (>0 and 621) = mlogf f()° dx.

The n th moment of the residual life of X is given by z,(t) = . Therefore,

. Then, the n th moment of the reversed residual life of X becomes

Using the PDF in (6), we obtain

[oe]

F00 = Y o e |-t + k001 (5) )

j k=0

where
(D = (apa? 9<— >“" G+2)S 1y oy (06 D
= (apa’b) V9) 5 C'a+oy (¥ T Y).
=
Then, the Rényi entropy of the GOGEFr model is given by

1 (o]
Ro(X)| (050 and 621) = - 9109 Z (9) [(®)°]

Jj k=0

[ee) b -
where (6)IQ = fo x =0+ oxp {—[a(j +k +0)] (%) }dx. The g-entropy, say Q,(X), can be defined as

[oe]

—log| 14 > ¢ (@I} )

1
Qq(X)l(q>0 and g#1) = q—

j,k=0
where
(_ )]+k . ot
(q) = (aBalh)? ——— ( G+ 2))2 (=D + q)’ (q(ﬁ’ - 1))
k i ’
i=0
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(o) a b - .
and (I = [, x~1®*V exp {—[a(j +k+q)] (;) }dx. The Shannon entropy of a RV X, say SE, is defined by

SE = E{—[log f (X)]}. Where SE is a special case of the Rényi entropy, Rg(X)|(6>0 and g=1) When 6 T 1.

2.6 Order statistics

Let X;,X,,..,X, be a random sample (RS) from the GOGEFr distribution and let X;.,, X5, ..., Xy b€ the
corresponding order statistics. The PDF of the ith order statistic, say X;., , can be written as

fin) =BG 140 =0 Y D (") F@R ), (12
j=0
where B (-,-) is the beta function. Substituting (1) and (2) in (12) and using a power series expansion, we have

FEF@M ="ty hginen (3,

w,k=0
where

D" w2\ BG+)) -1
= -DH+ DY J :
fwk W![a(w+m+1)]( k )Z D+ D" ( l )
Then, the PDF of X;.,, can be expressed as
n—i oo
1y ~(n—1i
fin@ =) Y DB+ =0 (") twshaten 0.
j=0 w, k=0
The density function of the GOGEFr order statistics is a mixture of Fr densities. Based on the previous equation, the
moments of X; . ,, can be expressed as

=0

n—i

N o (-1/B71(G,1+n—0) n—i
E o =ar (1= S Y ("] e
wi=o j=0o law+k+1)]>

2.7 Quantile spread order

The quantile spread (A4.(q)) of the RV X ~ GOGEFr (g) having the in CDF (5) and given by AX(q}l(qe(ll)) =
>

[F~'(@)] — [F7*(1 — )] which implies A, (q) = [S™'(1 = q)] — [S™'(¢q)] where F~*(q) =S™*(1—¢q) and S(:
) =1—F(-) is the survival function. The A.(q) of a distribution describes how the probability mass is placed
symmetrically about its median and hence can be used to formalize concepts such as peakedness and tail weight
traditionally associated with kurtosis. Hence, it allows to separate concepts of kurtosis and peakedness for asymmetric
models. Let X; and X, be two RVs following the GOGEFr model with quantile spreads Ay, and Ay, , respectively.

Then, X, is smaller than X, in quantile spread order and denoted as X; <i4 X, if Ay (q) < Ay, (q)|(qe(%_1)). The

following properties of the QS order can be obtained:

o The order <[4 is “location-free”: X; <5 X, if (X; + {) <[4 X, for any real {.

o Let Fy, and Fy, be symmetric, then X; <[ X, if, and only if Fy.'(q) < Fx,'(q),V q € (; 1).

» The order <,; implies ordering of the mean absolute deviation around the median, say Y(X;)|;=1,, Y(X;) =
E[|X; — Median(X,)|] and Y(X;) = E[|X, — Median(X,)|], where X; <i4 X, implies Y(X;) <[4 Y(X>).
Finally, X; <4 X; if, and only if —X; <;;;— X,.

3. Simple type Copula based construction

3.1 Bivariate GOGEFr (BivGOGEFr) type via Renyi's entropy

Following Pougaza and Djafari (2011), The joint CDF OF THE Renyi's entropy Copula can be expressed as
C(u, V) |ype01) = X2U + X1V — x1x,. Then, the associated bivariate GOGEFr can be derived with setting u =

3.2 BivGOGEFr type via Farlie Gumbel Morgenstern (FGM) Copula

Consider the joint CDF of the FGM family, then C,(u,v) = uv(1 + Auv), where the marginal function u = F; (y,),
v =F,(y,), 4 € [-1,1] is a dependence parameter and for every w,v € (0,1), u=1—-u,v=1—-v, C4(u,0) =
C,(0,v) = 0 which is "grounded minimum™ and C,(u,1) = u and C,(1,v) = v which is "grounded maximum".
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Then, setting @ =1-Fy (x;)and T=1—Fy (x).Then, we have F(x;,x,)=C (F£1 (x1), Fy, (xz)).
The joint PDF can be derived from c,(w,v) =1+ Auv"|=1—2uandv*=1-20) OF from f(x;,x;) =
fu, (x1), fw, (x2)c(Fy, (x1), Fy, (x;)). For more details see Morgenstern (1956), Farlie (1960), Gumbel (1960),
Gumbel (1961), Johnson and Kotz (1975) and Johnson and Kotz (1977).

3.3 BivGOGEFr type via modified FGM Copula

Due to Rodriguez-Lallena and Ubeda-Flores (2004), the modified joint CDF of the bivariate FGM Copula can be
expressed as Cx(u, w) = uv + AO(w)@(w), where O(u) = u0(u), and @(w) = we(w). The functions O(x) and
@(w) are two absolutely continuous functions on the interval (0,1) with the following conditions:

()-The boundary condition: 0(0) = 0(1) = @(0) = @(1) = 0.

(1)-Let

Jd — d
p =inf {a O(u):Ll(u)} <0,q =sup {£O(u):ﬁl(u)} <0,

w= inf{;—vW):Lz(w)} >0,m = sup {:—UW):LZ(W)} > 0.

Then, min(pq, wm) = 1. Where :—u6@') =0(u) + u;—uO(u),
L) ={ue@©1) : =0 exists}and £(w) ={v e (0,1) : =@w) exists}.

3.3.1 BivGOGEFr-FGM (Type 1) model
The BivGOGEFR-FGM (Type 1) can be derived using C,(u, w) = uv + AO(u)@W), where O(uw) = u0(u) =
u[l — le(u)], and e(w) = we(w) = w[l — Fy, (W)].

3.3.2 BivGOGEFr-FGM (Type Il) model:
Consider the following functional form for both O(w) and @(w) which satisfy all the conditions stated earlier where
0(W)|(a,>0) = U1 (1 —w)* ™1 and @(W)|(a,>0) = V42(1 — w)' 752,
The corresponding BivGOGEFr-FGM (Type I1) Copula can be derived from
Canyn, (W w) = uw[l + Autaw?2(1 —u)t 21 (1 — w)42],

3.3.3 BivGOGEFr-FGM (Type I11) model:

Consider the following functional form for both O(w) and @(w) which satisfy all the conditions stated earlier where
O(w) = u[log(1 + u)] and @(w) = wlog(1 + w)].

In this case, one can also derive a closed form expression for the associated CDF of the BivGOGEFr-FGM (Type I11).

3.3.4 BivGOGEFr-FGM (Type 1V) model:
due to Ghosh and Ray (2016) the CDF of the BivGOGEFR-FGM (Type 1V) model can be derived from
Clu,w) =uFt(w) + wFt(w) — FFY(w)F~*(w).

3.4 Bivariate GOGEFr type via Clayton Copula

1
The Clayton Copula can be considered as C(uy,u,) = (uy” + u3” — 1) 77|pe(o,00]- Let US assume that Z ~ GOGEFR
(#) and W ~ GOGEFr (¥,). Then, setting u; = Fy, (z) and u, = Fy,(w). Then, the bivariate GOGEFR type
distribution can be derived easily.

3.5 Multivariate GOGEFr extension via Clayton Copula
A straightforward d-dimensional extension using the Clayton Copula can expressed using
1

d v
Hw;) = [Zu{‘7+1—dl .
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4. Some stochastic properties

Suppose X; ~GOGEFr(a4, 81,a,b) and X, ~GOGEFr (a5, B,,a, b). Then X; is stochastically smaller than X, if
ay > ay and By > B, FOr ay > a3, Exjiay,ab > Exyianap- Tis is true for both integer and fractional values of a,
and a, and then we obtain &, .4, ap > Exyiayap- Then, we have {1 — &, 4 ap} < {1 — Expapanh

= Exarab Exziazab —Exgazab < —Exyiazab
1-&vanap 1= Expapan ’ 1-&apap 1-— gxz;az,a,b‘
—E. . b B1 e , B2
= [1 —exp <&) >|1-exp ( X2;02,a, )] ’
1- Exl;al,a,b 1-— gxz;az.a,b
then
B1 Ba
—&x; ~&,,,
1 - [1 — exp <M) < 1 _ [1 _ exp ( Xg;02,a,b )] )
1-E&xiarap 1-&,apap
5. Estimation

Let x4, ...,x, beaRS from the GOGEFr distribution with parameters «,8,a and b. Let ¥ be the 4 x 1 parameter
vector. For determining the MLE of ¥, the log-likelihood function is

n n
¢ =4(¥) =nloga+nlogp +nlogb+nbloga—(b+1)Zlogxi—ZZlog(l—Sxﬂa,a,b)

i=1 i=1

n n n
+ ) di+ D 10g Exyaap + (B = 1) ) logll = exp(dp)],
i=1 i=1 i=1

_‘gxi;a',a,b

where d; = . The score vector components are easy to be derived, setting the nonlinear system of equations

1_gxi;a',a,b

U, =Uz =U, =0and U, = 0 and solving them simultaneously yields the MLE.

6. Graphical assessment

Graphically, we can perform the simulation experiments to assess of the finite sample behavior of the MLEs. The

assessment was based on the following algorithm:

o Use (7) we generate N = 10000 samples of size n from the GOGEFR distribution;

e  Compute the MLEs for the 1000 samples;

e  Compute the SEs of the MLEs for the 1000 samples;

e Compute the biases and mean squared errors given for ¥ = a, 8, a,, a, . We repeated these steps for n =
50,100, ...,150 with « = 8 =a = b = 1, so computing biases (By(n)) , mean squared errors ( MSEs )
(MSE, (n)) for a,B,a,band n = 50,100, ...,150.

Figure 2 (left panel) shows how the four biases vary with respect to n . Figure 2 (right panel) shows how the four

MSEs vary with respect to m . The broken lines in Figure 2 corresponds to the biases being 0 . From Figure 2, the

biases for each parameter are generally negative and decrease to zero as n — oo , the MSEs for each parameter

decrease to zeroas n — o .
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Figure 4: biases and mean squared errors for the parameter S.
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Figure 6: biases and mean squared errors for the parameter b.

7. Real data modeling

This section presents two applications of the new distribution using real data sets. We compare the fit of the new
distribution with the Weibull Inverse Weibull (W-Fr), exponentiated Fr (E-Fr), Kumaraswamy Fr (Kum-Fr), beta Fr
(B-Fr) transmuted Fr (T-Fr), gamma extended Fr (GE-Fr), Marshall-Olkin Fr (MO-Fr), MOKum-Fr, generalized MO-
Fr(GMO-Fr), KumMO-Fr and Fr distributions. The PDFs of the competitive models are available in statistical
literature. All the unknown parameters of the above PDFs are positive real numbers except for the T-Fr distribution
for which |A] < 1. The 1 data set consists of 100 observations of breaking stress of carbon fibers given by Nichols
and Padgett (2006). The 2™ data set consists of 63 observations of the strengths of 1.5 cm glass fibers (see Smith
and Naylor (1987)). In order to compare the distributions, we consider the AIC (Akaike Information Criterion), CAIC
(Consistent Akaike Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan-Quinn
Information Criterion) for comparing models. Total time test (TTT) plot (see Figure 7) is an important graphical

The Generalized Odd Generalized Exponential Fréchet Model: Univariate, Bivariate and Multivariate Extensions with Properties and Applications to the 539
Univariate Version



Pak.j.stat.oper.res. Vol.16 No. 3 2020 pp 527-544 DOI: http://dx.doi.org/10.18187/pjsor.v16i3.2953

approach to verify whether our data can be applied to a specific model. The TTT plots of the two real data sets are
presented in Figure 7 (first row). These plots indicate that the empirical HRFs of the two data sets are “increasing
HRF”. The box plots of the two real data sets are presented in Figure 7 (second row). The normal Q-Q plots of the
two real data sets are presented in Figure 7 (third row).

Table 3: Statistics of the AIC, BIC, HQIC and CAIC values for breaking stress data.

Model Measures
AIC BIC HQIC CAIC
GOGEFr 118.5 128.9 122.8 118.9
PBX-Fr 122.6 133.1 126.8 123.1
W-Fr 294.5 304.9 298.7 294.9
E-Fr 295.7 303.5 298.9 296.0
Kum-Fr 297.1 307.5 301.3 297.5
B-Fr 311.1 321.6 3154 311.6
GE-Fr 312.0 3324 316.2 312.4
Fr 348.3 3535 350.4 348.4
T-Fr 350.5 358.3 353.6 350.7
MO-Fr 351.3 359.1 354.5 351.6
Table 4: MLEs and their standard errors for breaking stress of carbon fiber data.
Model Estimates
GOGEFr(a,p,a,b) 2.4085 120.55 0.055 0.783
(1.003) (83.85) (0.029) (0.102)
PBX-Fr(\,0,a,) 4.900 3.4523 1.0310 0.742
(1.247) (1.024) (0.193) (0.117)
W-Fr(a,p,a,b) 2.2231 0.355 6.9721 49179
(11.41) (0.411) (113.8) (3.756)
Kum-Fr(a,B,a,b) 2.0556 0.4654 6.2815 224.18
(0.071) (0.007) (0.063) (0.164)
B-Fr(a,pB,a,b) 1.6097 0.4046 22.014 29.762
(2.498) (0.108) (21.43) (17.48)
GE-Fr(a,p,a,b) 1.3692 0.4776 27.645 17.458
(2.017) (0.133) (14.14) (14.82)
E-Fr(a,p,a) 69.149 0.5019 145.33
(57.35) (0.08) (122.9)
T-Fr(a,B,\) 1.9315 1.7435 0.0819
(0.097) (0.076) (0.198)
MO-Fr(a,B,a) 2.3066 1.5796 0.5988
(0.498) (0.16) (0.309)
Fr(o,B) 1.8705 1.7766
(0.112) (0.113)
Table 5: Statistics of the AIC, BIC, HQIC and CAIC values for glass fibre data.
Model Measures
AIC BIC HQIC CAIC
GOGEFr 55.96 64.52 59.33 56.65
B-Fr 68.62 77.24 72.02 69.33
GE-Fr 69.64 78.12 72.92 70.34
Fr 97.73 102.0 99.43 97.93
T-Fr 100.1 106.5 102.6 100.5
MO-Fr 101.7 108.2 104.2 102.1
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Table 6: MLEs and their standard errors for glass fibre data.

Model Estimates
GOGEFr(a,B,a,b) 0.901 32.693 0.4579 1.112
(0.000) (20.60) (0.000) (0.157)
B-Fr(a,B,a,b) 2.0518 0.6466 15.076 36.940
(0.986) (0.163) (12.06) (22.65)
GE-Fr(a,B,a,b) 1.6625 0.7421 32.112 13.269
(0.952) (0.197) (17.397) (9.967)
T-Fr(a,B,a) 1.3068 2.7898 0.1298
(0.034) (0.165) (0.208)
MO-Fr(cB.a) 1.5441 2.3876 0.4816
(0.226) (0.253) (0.252)
Fr(c.B) 1.264 2.888
(0.059) (0.234)
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Figure 10: Kaplan-Meier Survival Plots.

Tables 3 and 5 compare the GOGEFr model with other important competitive Fr distributions. The GOGEFr model
gives the lowest values for the AIC, BIC, HQIC and CAIC statistics (in bold) among all fitted Fr versions to these
data. Hence, it may be considered as the best model among them. Figures 8-10, respectively, display the plots of
estimated CDFs, estimated PDFs and Kaplan-Meier survival plots for the two data sets. These plots reveal that the
proposed distribution gives adequate fit for both data sets.

8. Conclusions

A new extension of the Fréchet model is proposed and studied. Some of its fundamental statistical properties such as,
some stochastic properties, ordinary and incomplete moments, moments generating functions, residual life and
reversed residual life functions, order statistics, quantile spread ordering, Rényi, Shannon and g-entropies are derived.
A simple type Copula based construction via Renyi's entropy Copula Farlie Gumbel Morgenstern Copula, modified
Farlie Gumbel Morgenstern Copula, Clayton Copula is employed to derive many bivariate and multivariate extensions
of the new model. We assessed the performance of the maximum likelihood estimators using a simulation study. The
importance of the new model is shown via two applications of real data sets.

References

1. Adel Rastkhiz, S. E., Mobini Dehkordi, A., Yadollahi Farsi, J. and Azar, A. (2019). A new approach to evaluating
entrepreneurial opportunities, Journal of Small Business and Enterprise Development, 26(1), 67-84.
https://doi.org/10.1108/JSBED-01-2018-0013

2. Afify, A. Z., Yousof, H. M. Cordeiro, G.M. and Ahmad, M. (2016a). The Kumaraswamy Marshall-Olkin Fréchet
distribution: Properties and Applications, Journal of ISOSS, 2(1), 41-58.

3. Afify, A. Z., Yousof, H. M., Cordeiro, G. M., Ortega, E. M. M. and Nofal, Z. M. (2016b). The Weibull Fréchet
distribution and its applications. Journal of Applied Statistics, 43 (14), 2608--2626.

4. Ahmad, F., Ahmad, S.P. and Ahmed, A. (2014). Transmuted inverse Rayleigh distribution: a generalization of
the inverse Rayleigh distribution. Mathematical Theory and Modeling, 4(7), 1-9.

5. Aryal, G. R. and Yousof, H. M. (2017). The exponentiated generalized-G Poisson family of distributions.
Economic Quality Control, 32(1), 1-17.

6. Barreto-Souza, W. M., Cordeiro, G. M. and Simas, A. B. (2011). Some results for beta Fréchet distribution.
Communication in Statistics Theory and Methods, 40, 798-811.

7. Brito, E., Cordeiro, G. M., Yousof, H. M., Alizadeh, M. and Silva, G. O. (2017). Topp-Leone Odd Log-Logistic
Family of Distributions, Journal of Statistical Computation and Simulation, 87(15), 3040--3058.

8. Chakraborty, S., Handique, L., Altun, E. and Yousof, H. M. (2018). A new statistical model for extreme values:
mathematical properties and applications. International Journal of Open Problems in Computer Science and
Mathematics, 12(1), 1-18.

9. Cordeiro, G.M. and Lemonte, A.J. (2014). The exponentiated generalized Birnbaum Saunders distribution.

The Generalized Odd Generalized Exponential Fréchet Model: Univariate, Bivariate and Multivariate Extensions with Properties and Applications to the 543
Univariate Version


https://doi.org/10.1108/JSBED-01-2018-0013

Pak.j.stat.oper.res. Vol.16 No. 3 2020 pp 527-544 DOI: http://dx.doi.org/10.18187/pjsor.v16i3.2953

10.

11.

12.
13.
14,
15.
16.
17.
18.
19.
20.

21.

22.
23.
24,
25.
26.
217.
28.

29.

30.

31

The Generalized Odd Generalized Exponential Fréchet Model: Univariate, Bivariate and Multivariate Extensions with Properties and Applications to the

Applied Mathematics and Computation 247, 762-779.

Dey, S. (2012). Bayesian estimation of the parameter and reliability function of an Inverse Rayleigh distribution.
Malaysian Journal of Mathematical Sciences 6(1), 113-124.

Hamedani G. G., Altun, E, Korkmaz, M. C., Yousof, H. M. and Butt, N. S. (2018). A new extended G family of
continuous distributions with mathematical properties, characterizations and regression modeling. Pak. J. Stat.
Oper. Res., 14 (3), 737-758.

Hamedani G. G. Rasekhi, M., Najibi, S. M., Yousof, H. M. and Alizadeh, M., (2019). Type Il general exponential
class of distributions. Pak. J. Stat. Oper. Res., forthcoming.

Hamedani G. G. Yousof, H. M., Rasekhi, M., Alizadeh, M., Najibi, S. M. (2017). Type | general exponential
class of distributions. Pak. J. Stat. Oper. Res., XIV (1), 39-55.

Ibrahim, M. (2019). A new extended Fréchet distribution: properties and estimation. Pak. J. Stat. Oper. Res.,15
(3), 773-796.

Korkmaz, M. C. Yousof, H. M. and Ali, M. M. (2017). Some theoretical and computational cspects of the odd
Lindley Fréchet distribution. Journal of Statisticians: Statistics and Actuarial Sciences, 2, 129-140.

Korkmaz, M. C., Yousof, H. M., Hamedani G. G. and Ali, M. M. (2018). The Marshall--Olkin generalized G
Poisson family of distributions. Pakistan Journal of Statistics, 34(3), 251-267.

Kundu, D. and Ragab, M. Z. (2009). Estimation of R= P (X < Y) for three-parameter Weibull distribution.
Statistics and Probability Letters, 79, 1839-1846.

Mahmoud, M. R. and Mandouh, R. M. (2013). On the transmuted Fréchet distribution. Journal of Applied
Sciences Research, 9, 5553-5561.

MirMostafaee, S.M.T.K., Mahdizadeh, M., and Nadarajah, S. (2015). The beta Lindley distribution. Journal of
Data Science 13, 603-626.

MirMostafaee, S.M.T.K., Mahdizadeh, M., and Aminzadeh, M. (2016). Bayesian inference for the Topp-Leone
distribution based on lower k-record values. Japan Journal of Industrial and Applied Mathematics 33, 637-669.
MirMostafaee, S.M.T.K., Mahdizadeh, M., and Lemonte, A.J. (2017). The Marshall-Olkin extended generalized
Rayleigh distribution: Properties and applications. Communications in Statistics: Theory and Methods 46, 653-
671.

Nichols, M. D, Padgett, W. J. (2006). A Bootstrap control chart for Weibull percentiles. Quality and Reliability
Engineering International, 22, 141-151.

Ramos, M. W. A. Marinho, P. R. D. Cordeiro, G. M., Silva, R. V. da and Hamedani, G. G. (2015) The
Kumaraswamy-G Poisson family of distributions, J. Stat. Theory Appl. 14, 222--239.

Smith, R. L. and Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the
three-parameter Weibull distribution. Applied Statistics, 36, 358-369.

Soliman, A., Essam A. Amin and Alaa A. Abd-El Aziz. 2010. Estimation and Prediction from Inverse Rayleigh
Distribution Based on Lower Record Values. Applied Mathematical Sciences. 4, 3057-3066.

Voda, V. Gh. (1972). On the Inverse Rayleigh Distributed Random Variable. Rep. Statis. App. Res. JUSE. 19(4),
13-21.

Yousof, H. M., Afify, A. Z., Alizadeh, M., Butt, N. S., Hamedani, G. G. and Ali, M. M. (2015). The transmuted
exponentiated generalized-G family of distributions. Pak. J. Stat. Oper. Res., 11, 441-464.

Yousof, H. M., Afify, A. Z., Ebraheim, A. N., Hamedani, G. G. and Butt, N. S. (2016). On six-parameter Fréchet
distribution: properties and applications, Pak. J. Stat. Oper. Res., 12, 281-299.

Yousof, H. M., Alizadeh, M., Jahanshahiand, S. M. A., Ramires, T. G., Ghosh, I. and Hamedani G. G. (2017).
The transmuted Topp-Leone G family of distributions: theory, characterizations and applications, Journal of Data
Science. 15, 723-740.

Yousof, H. M., Altun, E. and Hamedani, G. G. (2018a). A new extension of Frechet distribution with regression
models, residual analysis and characterizations. Journal of Data Science, 16(4), 743-770.

Yousof, H. M., Jahanshahi, S. M., Ramires, T. G Aryal, G. R. and Hamedani G. G. (2018b). A new distribution
for extreme values: regression model, characterizations and applications. Journal of Data Science, 16(4), 677-
706.

Univariate Version

544



