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Abstract 

There have been various studies in the literature on investigating the relationship between a count response 

and several covariates. Most researchers study count variables and use traditional methods (i.e. generalized 

linear models- GLM). However, GLM is limited when dealing with outliers and nonlinear relationships. 

Generalized Additive Models (GAM) is an extension of GLM, where the assumptions on the link functions 

and components are additive and smooth, respectively. Our aim is to propose a flexible extension of GLM 

and demonstrate the usefulness and performance of GAMs for the analysis of Poisson data set including 

outliers in the response variable through extensive Monte Carlo Simulations and using three applications.  

Keywords:   Poisson, Spline estimation, Deviance, Additive 

Introduction  

The nature of the count data is that they appear positively, never zero, and always discrete 

number or integers within a period of time. There have been various studies in the literature 

on investigating the relationship between a count response and several covariates using 

traditional methods such as generalized linear models. Ordinary regression model can be 

extended to the family of generalized linear models when the conditional mean of the 

counts on a set of variables via a link function. This method, Poisson regression, is often 

lead to biased estimates of parameters due to its properties of equal mean and variance. 

Usually negative binomial regression is used to handle with overdispersion and 

underdispersion, but essentially it is not always the best choice for data.  

 

Camarda et al. (2016) studied the conditional mean in Poisson regression to represent the 

response as a sum of smooth components and motivated their model in two applications 

and demonstrated the versatility of the approach. Currie et al. (2004) showed how p-splines 

can be used to model two-dimensional Poisson data. They introduced a model that 

described the expected values as a sum of components. Guisan et al. (2002) published a 

review paper that includes the application of GLM and GAM for ecological modelling. 

Sapra (2012, 2013) studied GAMs for several economic and business datasets. He 

compared the models in terms of AIC, deviances and R2(adjusted).  

  

In literature, different approaches of GAM estimating methods were proposed. Here, the 

smoothing spline basis approach which is a method incorporated in mgcv package is 

addressed (Wood 2018). One approach to estimate GAM models is by choosing a basis for 

the smoothing function and a wiggliness measure. In this approach, model estimation 
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implies estimation of smoothing parameter as well as model coefficients for a penalized 

likelihood maximization objective. The core point of the study is to build a flexible 

extensio000n of generalized linear models and demonstrate the usefulness of GAMs for 

this analysis of co0unt data set.  

 

This paper is organized as follows: First we shortly introduce GLM and GAM. The 

penalized regression splines used for the estimation of GAMs are presented in the next. 

The first simulation study where the dependent variable suffers from outliers and regresses 

on one variate conducts an estimation scenario for a Poisson distributed response using 

GLM and GAMs fitted by three penalized splines, cubic regression splines, p-splines, thin-

plate splines. Second simulation study is organized in the same manner except regressing 

the dependent variable on two covariates. Application part illustrates the comparisons of 

GLM and GAMs using commonly known datasets. Last section provides some concluding 

remarks.  

 

Generalized Linear Model and Generalized Additive Models 

GAM is an extension of GLM, where the assumptions on the link functions and 

components are additive and smooth, respectively (Hastie et al. 1990, 2001). GLM is 

introduced to relax the assumptions of normality and homoscedasticity in ordinary linear 

regression. In GLM, distribution of response variable has to be one of the exponential 

family distributions such as normal, binomial, exponential, gamma and Poisson (Nelder et 

al. 1972, Montgomery et al.2012). Also, the similarity in considerably several properties 

of the exponential family distributions allows us to use the same technique to estimate 

model coefficients using the likelihood concept of estimation. The general form of GLM 

is given by,  

   𝑔(𝜇𝑖) = 𝜂𝑖 = 𝑿𝑖𝜷 = 𝛽0 + 𝛽1𝐗1 + … + 𝛽𝑝𝑿𝑝   

 (1) 

where 𝑿𝑖 is the ith row of X (data matrix), 𝜷 is the unknown parameter vector. Note that 

the expected response is given by,  

    𝐸(𝑦𝑖) = 𝑔−1(𝜇𝑖) = 𝑔−1(𝜂) = 𝑔−1(𝑿𝜷)   

 (2) 

where 𝑦𝑖∼ Exponential family(𝜇𝑖,φ), 𝑔 is a link function, some known monotonic, which 

connects the systematic component, 𝜂 (linear predictor), and the random component 

(response variable) of the model (Keele 2008). When the response variable follows normal 

distribution and an identity link function is used, the generalized linear model turns out to 

be an ordinary linear regression model.  

This approach extends to additive models to form generalized additive models (GAM). 

When the linear predictor, 𝑿𝜷, in GLM model are replaced with additive predictors 

(explanatory variables), the model is called generalized additive model (GAM), thus, 

GAMs are regarded as extensions of GLMs. In the GAM, the linear predictor becomes: 

    𝛽0 + ∑ 𝑓𝑗(𝑥𝑗)𝑝
𝑗=1      (3) 
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where 𝑥𝑗 is a covariate. The 𝑓𝑗’s in generalized additive models are smoothing functions 

which can be any of kernels, local regression (loess) or smoothing splines which are 

derived from the model. In this study we use cubic regression splines, p-splines and thin-

plate regression splines. The model is obtained by precise characterisation of what is 

meant by a smooth function, in the form of measures of (wiggliness) spline 

penalty∫ 𝑓′′(𝑥)2𝑑𝑥. The 𝑓𝑗’s is linear basis expansion    

𝑓𝑗(𝑥) = ∑ 𝑏𝑗𝑘(𝑥)𝛾𝑘𝐾
𝑘=1    (4) 

where the γk are the coefficients to be estimated and 𝑏𝑗𝑘(𝑥) are the basis functions 

(approximations). The shape of predictor functions is determined by the data. Hence there 

is no assumption on the specific link function for error distribution. The penalties become 

quadratic forms, 𝛽𝑆𝑗𝛽 where the 𝑆𝑗 are the matrices of known coefficients.  

Specifically, for a dependent count variable with observation i, let 𝑌𝑗 represent the number 

of independent events that occur during a fixed time period. 𝑌𝑗∼ Poisson (𝜆𝑗) where 𝜆𝑗 is 

the mean and the variance of this distribution. This parameter is given by  

𝜆𝑖 = exp (𝑿𝒊𝜷 + ∑ 𝑓𝑗(𝑍𝑗)𝐾
𝑗=1 )      (5) 

 

where 𝑋𝑖 are the explanatory variables and 𝑓𝑗(𝑍𝑗) are the smooth terms for 𝑗 = 1, … , 𝐾 and 

𝜷 is the vector of coefficients. Note that the Eq. (5) is the expected response.  

To penalize overfit, estimation is made by penalized maximum likelihood method,  

 𝛽̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽𝐼(𝛽) −
1

2
∑ 𝜆𝑗𝛽𝑇𝑆𝑗𝛽𝑗     (6) 

Assuming the λj, smoothing parameters, are known, estimates of 𝜷, 𝜷̂, can be found by 

maximizing Eq. (6).  

In GAM, while the assumption of standard linear models of the linear dependency of 𝑦 on 

𝑿 is relaxed, the additivity assumption still holds true and it is this additivity property that 

makes GAM easier to interpret than other algorithms such as support vector machines 

(SVM), neural networks, etc. (Keele 2008). The main difference between GLM and GAM 

is that in GAM, linear predictor is the sum of smoothing functions, not limited to being 

linear. GAM can handle non-linear, linear and nonmonotonic relationships between 

response and explanatory variables. Also, GLM emphasizes estimation and inference for 

the parameters of the model, while GAMs focus on exploring data nonparametrically 

(Guisan 2002).  

 

Wood (2003, 2006) employs the approach of penalized regression spline to fit a model. By 

default, the degree of smoothness of the fit is chosen internally by the algorithm. Automatic 

selection of smoothing parameter is an advantage for reason being that it avoids the 

subjectivity and work of choosing it by the user. However, it can fail to obtain the best 

degree of smoothness and human intervention could sometimes be needed (Faraway 2006).  
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Selection of GAM and model parameter estimation  

Model evaluation plays a fundamental role in regression analysis; comparisons can be 

made between models to obtain the better of them. In linear regression, mean square error 

(MSE) is regarded as the building blocks of most model evaluation techniques and it 

measures how far the model estimations from the actual observations are. In GLM and 

GAM, it is necessary to have a quantity which is equivalent in importance and 

interpretation to residual sum of squares for ordinary linear modelling (McCullagh et al. 

1989).  

As minimizing MSE is to least square fits, in models fitted using maximum likelihood 

estimation (MLE), the quantity to be minimized is the deviance. Maximizing the likelihood 

in those models corresponds to minimizing the deviance of the model (Wood 2006). Model 

deviance is defined as twice the difference in log-likelihood between the saturated model 

and the full model (Montgomery et al.2012). Deviance of a model can be regarded as the 

lack of fit between the model and the data points. It is used for model adequacy checking; 

the smaller the deviance the better the model is. It is known that Akaike Information 

Criterion (AIC) and deviance can be used with GLM and GAM (Sakamoto et al. 1988; 

Guisan et al. 2002) 

When large number of knots are used to represent the smoothers, 𝑓𝑗 and the method of 

maximum likelihood is used to estimate 𝜷, the model parameters, then, there is possibility 

of over-fitting. This is the reason why penalized likelihood maximization is preferred over 

the ordinary likelihood maximization to estimate GAMs (Wood 2006).  

Monte Carlo Simulations  

The simulations are performed to explore the performance of the proposed GLM and GAM 

fits in a variety of situations. Furthermore, the effects of the different proportions of outliers 

existing in response variable from Poisson family to the fitted models will be addressed. 

Data generated with different mean functions and proportions of outliers or without 

outliers, using the procedures are discussed in the following sections, respectively. 

Generated data are used to evaluate the performance of the three smoothing splines; cubic 

regression, p-splines, thin plate splines and generalized linear model. The mean of AIC, 

residual deviance and explained deviance obtained for each model are provided for the 

goodness of fit. For the analysis and model building procedures, the mgcv package in R (R 

Development Core Team 2018) statistical software is performed.  

Poisson response with one covariate  

The response variable was simulated from, 𝑌/𝑥~𝑃𝑜𝑖𝑠(𝜆(𝑥)), where 𝜆(𝑥) = 𝑔−1(ℎ(𝑥)) 

and ℎ(𝑥) = 4cos (2𝜋(1 − 𝑥)2). Here, 𝑔 is a log-link function. The covariate follows a 

uniform distribution, 𝑥 ∼ U(0,1). The randomly selected 𝑌 values were multiplied by 𝑦𝑢1
𝑢2

 
where 𝑢1 ∼ U (2, 5) and 𝑢2 ∼ U (−1, 1) and the result was rounded to the nearest integer. 

Five sample sizes of 𝑛 were tested: 25, 50, 100, 250, and 500. For the univariate function, 

Wong et al. (2014) was followed. 

For a specified outlier proportion value given by 𝑝: 0, 0.1, 0.2, a total of 𝑝100% simulated 

data was randomly selected to be changed to outliers. The number of repetitions for each 
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scenario was 500 for all possible combinations of 𝑛 and 𝑝. Each of the three smoothing 

splines were used to fit a GAM model for all the samples.  

Poisson response with two additive functions  

To illustrate the performance of the proposed methods, two covariates are considered by 
(𝑥1, 𝑥2) for 𝑖 = 1, … , 𝑛 and response variable is generated from 𝑌/
(𝑥1, 𝑥2)~𝑃𝑜𝑖𝑠(exp(𝑡1(𝑥1), 𝑡2(𝑥2))), where 𝜆(𝑥) = 𝑡𝑘(𝑥), 𝑘 = 1,2, 𝑡1(𝑥) =

exp (sin (
4𝑥1

60
) + cos (

7𝑥1

120
) + 1) and 𝑡2(𝑥) = sin(180 − 𝑥2

7𝜋)11 + 29exp (sin(12𝑥2
3)) 

where 𝑥1 = 𝑖  and 𝑥2~𝑈(0,1). 

In this case, outliers were included into the response variable by using (Alimadad et al 

2011). Let  (𝑦̃𝑗, 𝑥𝑗)
𝑗=1

𝑛  
be the data and 𝑥𝑗 is ordered where  𝑥(𝑚) is the mth order statistics. 

Next, 𝑦𝑗 = (1 − 𝑧𝑗)𝑦̃𝑗 + 𝑧𝑗𝑤𝑗 where 𝑧𝑗~𝐵(1, 𝑝) and 𝑤𝑗 = 𝑃𝑜𝑖𝑠(30).  The number of 

outliers in each sample is random.  

It is important to note that, in each case, sample sizes of 20, 50, 100, 200, and 500 were 

simulated and a total of 500 repetitions were generated. Each of the three smoothing splines 

were used to fit a GAM model for all the samples. 

Results 

Mean of deviances and AIC of the models using GLM, and GAMs fitted by cubic 

regression spline (cr), p-spline (ps) and thin-plate spline (tp) bases for one covariate are 

presented in Table 1. Additionally, the percentage of explained deviance for each model is 

provided in the same table.  

Table 1: Mean deviance, AIC, (%) of explained deviance with/without outliers-

univariate case 

 Dev AIC Dev.Exp.(%) 

p glm cr ps tp glm cr ps tp glm cr ps tp 

n=25 

0.

0 

367.13 13.06 13.28 12.74 449.85 106.78 106.78 106.31 0.46

4 

0.98

1 

0.98

0 

0.98

1 

0.

1 

461.37 49.95 47.11 47.93 543.82 143.82 141.28 142.76 0.42

7 

0.94

4 

0.94

7 

0.94

6 

0.

2 

600.21 100.52 94.39 95.90 681.91 195.05 189.03 191.03 0.39

3 

0.90

4 

0.90

9 

0.90

8 

n=50 

0.

0 

797.47 33.21 33.01 33.08 958.25 207.08 206.57 207.37 0.42

9 

0.97

6 

0.97

6 

0.97

6 

0.

1 

1096.3 187.22 181.54 183.95 1257.2

7 

361.93 356.33 359.16 0.37

3 

0.90

0 

0.90

3 

0.90

2 

0.

2 

1302.3

8 

325.57 316.41 320.13 1462.0

1 

499.22 490.33 494.44 0.35

6 

0.84

6 

0.85

1 

0.84

9 

n=100 

0.

0 

1654.4

3 

74.63 72.95 74.43 1972.4

8 

407.03 405.29 407.18 0.41

6 

0.97

4 

0.97

4 

0.97

4 

0.

1 

2249.0

9 

456.72 443.83 451.23 2567.0

4 

789.23 776.49 784.26 0.36

8 

0.87

7 

0.88

0 

0.87

8 

0.

2 

2762.5

8 

797.04 777.25 788.55 3078.1

5 

1127.2

6 

1107.7

9 

1119.3

1 

0.33

6 

0.81

3 

0.81

7 

0.81

5 
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n=250 

0.

0 

4224.0

4 

201.86 195.93 201.57 5009.9

7 

1002.8

1 

996.92 1002.9

6 

0.40

8 

0.97

2 

0.97

3 

0.97

2 

0.

1 

5700.7

2 

1233.9

3 

1217.8

6 

1230.1

5 

6485.4

3 

2033.7

8 

2017.8

6 

2030.3

8 

0.35

5 

0.86

3 

0.86

5 

0.86

3 

0.

2 

7052.3

4 

2226.7

8 

2195.7

4 

2218.1

4 

7841.2

9 

3024.9

2 

2994.0

8 

3016.6

7 

0.32

8 

0.79

0 

0.79

3 

0.79

1 

 

n=500 

0.

0 

8484.0

2 

414.72 402.13 414.58 1053.7

7 

1999.8

5 

1987.2

7 

2000.0

5 

0.40

6 

0.97

1 

0.97

2 

0.97

1 

0.

1 

11484.

68 

2609.7

8 

2583.9

7 

2605.9

6 

13051.

81 

4192.3

0 

4166.5

9 

4188.8

2 

0.35

5 

0.85

5 

0.85

6 

0.85

5 

0.

2 

14288.

90 

4690.6

2 

4653.8

7 

4683.4

5 

15853.

74 

6270.9

2 

6234.2

8 

6264.0

4s 

0.32

7 

0.78

0 

0.78

2 

0.78

0 

 

The results in Table 1 show that an increase in the proportion of outliers included in the 

response variable has inflated the mean deviances and AIC of all the models. To illustrate 

this, one sample size (e.g, 𝑛 = 25) can be considered for comparison of the outcomes when 

different number of outliers are included in the data. In cases where an outlier is not 

included, the mean deviances of GLM, cubic, 𝑝-spline and thin plate splines are 

respectively 367.13, 13.06, 13.28, and 12.74, however, when some outliers (% 𝑝 = 0.1) are 

introduced in the response variable their respective mean deviances are 461.37, 49.95, 

47.11, and 47.93 respectively. Similarly, for % 𝑝 = 0.2 as well, the mean deviances are 

seen to be increasing in all models. Similarly, results are obtained using n (=50, 100, 250, 

500) support this argument. This comparison indicates that GAM fitted by p-splines 

outperformed GLM. 

Results from Table 1 demonstrate that for all sample sizes 𝑛, p-splines based models 

produced a smaller mean deviance than others at % 𝑝 (=0.1, 0.2). In addition to this, the 

models with a smaller mean AIC are produced by using p-splines in all combinations of 

outlier proportion (𝑝) and sample sizes except for 𝑛 = 25 and % 𝑝 =0.0. Furthermore, the 

mean of the proportion of explained deviance scored by each method shows that GAMs 

fitted by p-splines outperformed the others.  

Results from scenario 2 given in Table 2, demonstrate that GLM and GAMs fitted by cubic 

splines, p-splines and thin-plane splines for two covariates. 

Table 2: Mean Deviance, AIC, (%) of Explained Deviance with/without outliers- two 

covariates 

 Dev AIC Dev.Exp.(%) 

p glm cr ps tp glm cr ps tp glm cr ps tp 

n=25 

0.

0 

210.38 14.76 13.66 14.04 358.08 181.24 179.26 179.89 0.07

9 

0.93

1 

0.93

8 

0.93

5 

0.

1 

215.72 20.91 21.17 20.90 362.21 190.48 190.20 190.14 0.07

7 

0.90

7 

0.90

6 

0.90

6 

0.

2 

213.36 27.35 29.05 27.73 358.70 198.09 198.71 198.06 0.07

0 

0.88

0 

0.87

0 

0.88

0 

n=50 

0.

0 

491.86 55.99 53.97 51.96 776.44 361.28 359.30 357.03 0.06

0 

0.89

0 

0.89

5 

0.89

9 
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0.

1 

477.83 89.06 88.37 86.73 760.72 395.98 395.02 393.40 0.05

6 

0.81

9 

0.82

2 

0.82

5 

0.

2 

456.20 118.40 119.93 116.63 737.36 425.79 426.53 423.89 0.05

3 

0.74

8 

0.74

6 

0.75

3 

 

n=100 

0.

0 

1063.9

9 

137.54 137.63 130.21 1620.2

8 

717.51 717.19 710.01 0.03

1 

0.87

3 

0.87

4 

0.88

0 

0.

1 

1029.9

4 

222.46 224.77 217.67 1583.5

1 

802.06 803.90 797.38 0.03

1 

0.78

8 

0.78

6 

0.79

3 

0.

2 

970.43 293.19 295.86 289.66 1521.2

2 

871.46 873.33 867.84 0.02

9 

0.70

3 

0.70

1 

0.70

7 

             

n=250 

0.

0 

2775.7

9 

409.48 410.57 396.45 4167.1

4 

1831.5

0 

1831.3

6 

1818.2

5 

0.00

8 

0.85

3 

0.85

3 

0.85

8 

0.

1 

2664.6

5 

678.64 674.64 666.15 4048.6

6 

2093.2

5 

2088.1

8 

2080.6

0 

0.00

8 

0.74

6 

0.74

8 

0.75

1 

0.

2 

 

2536.9

5 

887.22 883.06 877.38 3913.1

0 

2293.9

6 

2288.7

4 

2284.0

0 

0.00

8 

0.65

1 

0.65

3 

0.65

5 

 

n=500 

0.

0 

5625.0

9 

981.79 1049.6

9 

977.08 8388.5

5 

3777.0

8 

3842.6

7 

3773.0

1 

0.00

6 

0.82

6 

0.81

4 

0.82

7 

0.

1 

5338.3

4 

1485.7

1 

1535.6

1 

1480.3

3 

8087.5

4 

4266.6

9 

4314.2

3 

4260.8

7 

0.00

6 

0.72

3 

0.71

3 

0.72

4 

0.

2 

5043.9

3 

1884.7

6 

1922.2

9 

1881.5

4 

7779.0

4 

4651.5

3 

4686.7

5 

4648.0

1 

0.00

5 

0.62

8 

0.62

0 

0.62

8 

 

It shows that for 𝑛 = 25 cubic splines based models produced a smaller mean deviance than 

others at % 𝑝 =0.2. For sample size of 𝑛 =50, 100, 250, 500 however, GAMs fitted by thin-

plate splines performed better in all combinations of outlier proportion (𝑝). In addition to 

this, the models with a smaller mean AIC are produced by using thin-plate splines in all 

combinations of outlier proportion (𝑝) and sample sizes except for 𝑛 = 25. Furthermore, 

the mean of the proportion of explained deviance scored by each method is another 

evidence that GAMs fitted by thin-plate splines outperformed the others. Compared to all 

models, the GAM using thin-plate regression splines produced the highest explained 

deviances than the rest of models. This comparison also indicates that GLM produced poor 

goodness of fit (Dev.Exp. % 0.01-0.08) while GAMs produced more desirable results when 

the response has some proportion of outliers when regressing on two covariates.  

On the contrary, results from the univariate case do not show the same trend as that of the 

case of two covariates, rather, GAMs fitted by p-splines seems to be outperformed by both 

cubic and thin plate splines regardless of the sample sizes and the outlier proportion except 

for 𝑛 = 25 and p% =0.0. The percentage of the explained deviance is almost equal to each 

other for splines base model.  

 

Comparison on Data Sets  

In this section, we apply the provided fitting procedure to several datasets from literature. 

Each data consists of a response from Poisson distribution with/without outliers. The 

description of the data sets is given in Table 3.  
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Table 3: The description of data sets 

 Ships Frisk AIDS 

Number of observations 40 900 570 

Number of predictors 2 2 1 

Number of outliers 5 many many 

 

The Table 4 presents the results of the models from GLM and GAMs. In order to obtain 

the goodness of fits of the models, deviance and AIC are evaluated for each model sand 

summarized in the table. 

The ships data concerning a type of damage caused by waves to the forward section of 

cardio-carrying vessels (McCullagh et al, 1989). The variables are incidents, service, and 

year. This data suffers from outlier problem. To investigate whether the expected number 

of incidents per aggregate months of service makes sense on year and service, using GLM 

and GAM fitted by cubic splines, p-splines and thin- plate splines are compared. Notice 

that AIC (447.75) and deviance (343.88) values obtained by GLM are quite larger which 

is not preferred than any GAMs. Compared to all models, the GAM using cubic regression 

splines produced the highest explained deviance as 92.9% than the rest of models.  

The frisk data is from Gelman and Hill (2006)’ study on police stops in New York City. 

The data give the counts of police stops for past arrests. The data also suffers from outliers. 

The model obtained from GLM produced higher values of AIC and deviance (64820.00, 

63109.70) whereas these values from GAM models show better performance. Among the 

GAMs, the p-splines GAM models produced the smallest AIC (38088.04) and highest 

explained deviance (70%).  

Another data set that includes the reported cases of AIDS diagnosed in 1983 and 1992 (De 

Angelis et al 1994). The data are the time delay in reporting of diagnosis and the number 

of AIDS cases. The data suffers from outlier in the response variable. Considering the GLM 

fit, it performs the data poorly. However, GAMs fitted by p- splines produced the smallest 

AIC (4834.453) and highest explained deviance as (57.6%).  

Table 4: The comparison of GLM and GAM 

Criteria Ships  Frisk AIDS 

GLM 

AIC 447.75 12134.56 5137.492 

Deviance 343.88 37448533 271136.2 

% Deviance 0.529 0.11 0.258 

GAM (cr) 

AIC 159.18 60207.71 4957.391 

Deviance 38.92 54803.79 192311.7 

% Deviance 0.946 0.699 0.474 

  GAM (tp)  

AIC 172.09 60120.81 4956.201 

Deviance 50.47 54716.6 191896.1 

% Deviance 0.917 0.699 0.475 

  GAM (ps)  
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AIC 177.83 59955.86 4834.453 

Deviance 59.18 54555.2 154933.8 

% Deviance 0.918 0.705 0.576 

Conclusion 

In this paper, we compare the performance of the methods GLM and GAM for a Poisson 

response variable with/without outliers when regressing on one variate and two covariates. 

Considering the GAM fits, three penalized regression spline smoothers are evaluated where 

the first is cubic splines, another is the p-splines, and the third is the thin-plate splines. 

Three common datasets have been also used to compare the performance of GLM and 

GAM on the Poisson response including outliers. Using these datasets, the comparison of 

the performance of GLM and GAM which employs a penalized smoothing spline approach 

are investigated. Our simulation studies and the illustrations using three data sets from 

literature reflect the parallel results to each other. The results show that GAMs are more 

resistant to outliers for a response variable from Poisson family. 
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