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Abstract

As is known, many problems of natural science are reduced mainly to the solution of nonlinear
Volterra integral equations. The method of quadratures that was first applied by Volterra to
solving variable boundary integral equations is popular among numerical methods for the solution
of such equations. At present, there are different modifications of the method of quadratures that
have bounded accuracies. Here we suggest a second derivative multistep method for
constructing more exact methods.
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Introduction

As is known, investigations of variable boundary integral equations began with
Abel's known paper published in 1826. Volterra is a founder of the theory of
variable boundary integral equations. He was the first who saw the importance of
this theory and considered it systematically. Therefore, these equations are
related with his name. Many famous scientists were engaged in approximate
solution of Volterra integral equations. They have published several papers. A
part of them were devoted to numerical solution of Volterra integral equations
related with application of computer. The method of quadrature is more popular
among the numerical methods. In this method, the volume of computations works
increases at each integration step while passing from the current point to the next
one. For removing the indicated deficiency the specialists suggested the Runge-
Kutta, Adams and etc. methods together with the quadrature method. Here we
suggest a method that allows to preserve the constant volume of calculations at
each step.
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Consider the following nonlinear Volterra integral equation that sometimes is
called the Volterra-Uryson equation

X
y(x)= f(x)+ fK (x,8,y(s))ds,  x€[x), X]. )

%0
Assume that problem (1) has a unique continuous solution y(x) determined on
the interval [x,, X]. By means of a constant step 0<# divide the interval [x,, X]
into N equal parts with the points x, =x,+ik (i = 0,1,...,N) and denote by y, the
approximate, and by y(x,) exact value of the solution of problem (1) at the points
x, (i=0,1,2,...,N).

For finding numerical solution of linear equation of type (1), Volterra applied the
method of quadratures. Further, this method was revised and modified by many
scientists (Corduneanu, 1991 and Manjirov and Polyanin, 2000). However, in
these papers, the basic deficiency of the method of quadratures was not
eliminated. This deficiency is that the volume of calculations increases while
passing from one point to another one. Indeed, after applying the method of
quadrature to equation (1), we have:

v, =f + hZaiK(x”,xi,yi). 2)
i=0

This method was written for approximate value of the solution of equation (1), i.e.
the quantity y, at the point x,. Obviously, while passing to the next point x,, for
calculating the quantity y, ., it is necessary to calculate the kernel of the integral
of the function K(x,s,y) (n+2) times, and for calculating the quantity y, it is
necessary to calculate the function K(x,s,y) (n+2) times. The method during of

which the volume remains constant was constructed in (Imanova and Ibrahimov,
1998) and has the following form:

iaiyn+i = iaifnﬂ‘ + hiiﬂi(j)K(xmj ’xn+i’yn+i) (I’l = Oala 25) (3)
i=0 i=0

j=0i=0

Also, for defining the coefficients «., B (i,j=0,1,2,...,k) a system of algebraic

equations was found. In the paper (Mehdiyeva and Imanova, 1998), it was shown
that method (3) may be obtained from the following finite-difference method:

iociznﬂ. = hiﬂiz'nﬂ. (n=0,1,2,...). (4)
i=0 i=0

Taking into account that there are many papers (Dahlquist, 1956, 1959, Henrici,
1962, Enright, 1974, Brunner, 1970, Shura-Bura, 1952, Bakhalov, 1955,
Godunov, 1977, Ibrahimov, 2002, Iserles, 1987, Lambert, 1973, Butcher, 1966,
Huta, 1979, Kobza, 1925, Urabe, 1970, Sulitskiy, 1962), of the famous scientists
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devoted to the investigation of method (4) the relation between the methods (3)
and (4) was found.

Notice that the accuracy of method (3) is bounded by the quantity 4£+2
(Mehdiyeva and Imanova, 1998). For increasing the accuracy of a multistep
method of type (3) in § 1 a second derivative multistep method was suggested. In

§ 2 a method for defining its coefficients is stated.

§ 1. A second derivative finite-difference method. It is known that if by p we

denote the degree of finite-difference method (4) the relation between its degree
and order has the following form (the method's order quantity 4 is assumed to be
known):

p<2k.

They say that method (4) has the degree p if it holds:

Zk:(aiy(x+ ih)—hBy(x+ih)) = Oh""), h — 0,

i=0
here p is an integer quantity.

If method (3) is stable, then p<2[k/2]+2. Method (3) is stable if the roots of

k

characteristical polynomial p(/l)EZai/li lie interior to a unit circle on whose
i=0

boundary there are no multiple roots.

Denote by ' ,)" the approximate, by )'(x,),)"(x,) the exact values of
derivatives of the function y(x) at the points x, .
Construct a more exact finite-difference method in the following form:

k k k
Dy, = B A (1.1)
i=0 i=0 i=0

that is usually called a second derivative finite-difference method. Many papers
have been devoted to the application of the suggested method (1.1) to the
numerical solution of ordinary differential equations (Dahlquist, 1959, Ibrahimoyv,
2002 and Sulitskiy, 192).

Assume that method (1.1) has the degree p. Then for sufficiently smooth
function z(x) we can write:

k k
ZOtiz(x +ih)— hZﬂiz'(x +ih)
i=0 i=0

k
BN y,2"(x+ih) = O(h"™"), h—0. (1.2)
i=0

It is known that in method (1.1) the quantity & is an order of the correspondingly
difference equation. Therefore, the accuracy of the finite-difference method is
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defined by means of the values of the degree of the method determined by
asymptotic equalities (1.2).

The relation between the degree p and order k£ for method (1.1) in the general
form is determined as follows:

p<3k+1.

If method (1.1) is stable (definition of stability of method (1.1) coincides with
definition of stability of method (4)), the relation between p and k has the
following form (Henrici 1962, Iserles, 1987, Lambert, 1973, Butcher, 1966, Huta,
1979, Kobza, 1925, Urabe, 1970, Sulitskiy, 1962)

p<2k+2 (1.3)

and for any k there exist stable methods of type (1.1) with degree p=2k+2.

Allowing for relation (1.3) we get that method (1.1) has a wider field of application
than method (3). Therefore, here we consider application of method (1.1) to the
numerical solution of equation (1). To this end, suppose that the function
K(x,s,z) continuous by aggregate of the arguments is defined in domain

G = (x,<s<x<X,
continuous function f(x) is determined on the interval [x,,X] and at the same
place it has continuous derivatives to some p +1, inclusively.

z|<Y), where it has continuous partial derivatives to p+1, the

Since the solution of integral equation (1) the function y(x) is continuous and
defined on the interval [x,,X], where it has continuous derivatives to p+1,
method (1.1) has the degree p, we can write:

Zk:(aiy(x +ih)=hB.y' (x+ih)—h’y,y"(x +ih)) =O(h*"), h—0. (1.4)

Assume that the solution of integral equation (1) was found by any method
subject to which in (1) we get an identity. Then we can find y'(x) and »"(x), and

as the result we have:

X
V(%) = () + K (x, x, y(x)) + JK'X (x,s,y(s))ds, (1.5)

X0

X
ot K (s, v(s))ds. (1.6)

*0

ﬂm=fm+§Kmnﬂm+iKumﬂm
x ox
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Consider the difference y(x,.,)—y(x,.,,). Then we have:

X

VX)) = V(%) = Sk = S + I _ (K (X158, ¥(5))
‘xn+k
Ky $. YN+ [ (K (5,008, 7(9))ds. (17)

Applying the Taylor formula to the difference K(x,,s,y(s))— K(x, ,, s,y(s)) and

m

Xkt g,
defining the integrals I (K'(x,,, »s,y(s))ds and IK'z(§n+kaS>J’(S))dS from (1.5)
X 0 !

and (1.6), respectively, and taking into account (1.7) we get:
VX, ) = V(X)) = Sk = Sria ¥V 0) —H(x,00)

h? h?
—hK (X, 415X, V(X ) 7 V'(&)— Tf"(grwk)

h* dK h? X
—_ -—K + |7 K(x ., ,s,v(s))ds
2 drl., 2 )+ [ Koo, 1(5)
h? ,
o ks (), (18)
2 Ynvk-1 F

Where xiﬁk—l < §n+k < xl

n+k °
Using the Lagrange interpolation polynomial, we can write:

dK L dK
il ~ zbi E

dx | _ - _
etk =0 Y4

k
> Kx (§n+k) ~ Zlin ('xn+i)'
i=0

By means of some formula from theory of finite-difference method we can write
the following one:

k k
hy'(xrﬂk—l) ~ Zdiynﬂ; hzy"(xiwk) ~ Z@ynﬂ"

i=0 i=0

In order to calculate the higher accuracy integral we use the Hermitian formula.
Then we have:

[ K (2,05, 9(5)ds

Fn+k-1

ko, k
= hZﬂiK(xn+k ’ xn+i 2 yn+i) + h2 Zin(anc ’ xn+i ’ yn+i)'

i=0 i=0
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Here
0K (x,s,y(s))

G(x,s,(s)) = 2

=K' (x,5, () + K" (x,5, ()"

Using the formula indicated above in (1.8) and making some transformations in it,
we get the following generalized formula:

k k k_ _k
— ()
Zaiynﬂ' - zaif;lﬂ' + hzm ’ K(xn+_/ s Xptis yn+i)
i=0 i=0

j=0i=0

k k
+hzzzyl‘(j)g(xn+i’xn+[9yn+i)’ (19)

j=0i=0
where «,pB",y(i,j=0,1,..,k) are some real numbers expressed by the
coefficients b,,l,a,,a.,p,,7, i=0,1,...,k):

g(x,s,y(s)) = aK' (x,s,y(s)) + bK' (x,5, y(s)) +cK' (x,5, y(5))y".
Notice that in future we'll consider only the case a=b=c=1.

Having applied method (1.1) to equation (1), we can get method (1.9). Indeed,
assuming x=x,,, in (1.5) and (1.6) and taking into account (1.4) we have:

k k k xn
DX, )= D @ S+ 2 [ K, y(5)ds
i=0 i=0 =0y

k k
+h2ﬂiK(xn+i’ xnﬂ" y(‘xnﬂ' )) + h2 ZyiK'x (xn+i > xnﬂ‘ H y(xnﬂ‘))

i=0 i=0

£gK *
2>y —

n+i

YA [ K s (5)ds
=0

Y Xt

X

n+i

k
0 Y, [ K (%008, 0(9))ds + O(h™™). (1.10)
i=0

X
n

Taking into account equation (1) in equality (1.10), we have:
X X

n+i n+i

iai I K(xnﬂ.,s,y(s))derth‘ﬁi I K (x,;,8,(s))ds
i=0 =0

n+i

Y [ K (s )
i=0

X
n

k k

+h2 Z}/iK'x (xn+i’ xn+i 2 y(xn+i )) = hZﬂtK(’ xnﬂ' s xnﬂ' s y(xnﬂ' ))
i=0 i=0
k
+h227/iK‘x(xn+i’xn+i7y('xn+i))+O(hp+1)' (111)

i=0
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It is easy to prove that it hold the following:

k k
hZﬁiK(xn-H' s xn+i s y(xn+i )) + h2 ZyiK‘x (‘xn+i > xn+i s y(xn-H' ))
i=0 i=0

k. k
- hZZ’BfU)K(x'Hj 4 xn+i 4 ynﬂ') + O(th )

j=0i=0

It is known that the coefficients s (i, j = 0,1,...,k) may be chosen so that it holds
(Mehdiyeva and Imanova, 1998):

Zai V(X = foi)

k k
= hzzﬁ(l)K(anr/ > xn+[ > y(anr[ )) + O(thrl )' (1 . 12)

j=0i=0

In (1.11) taking into account (1.12) and also the formulae suggested above with
using some transformations, as the result we can obtain method (1.9).

Thus, we get that if method (1.1) has the degree p, the coefficients
a,B”,y" (i,j=0,1,..,k) may be chosen so that the method obtained from (1.9)
has the degree p .

Notice that for calculating y,,, by method (1.9), it is required to determine the
values of the function y'(x) at the points x, ,(i=0,1,...,n), as well. For calculating
these values we can use the method suggested by Sulitskiy (1962)

k-1 k
' _ ' -1 '
yn+k - Zﬂiyrﬁ—i + h Zaiylﬁ-i'
i=0 i=0

Here we suggest the following method that is obtained by applying the method by
Mehdiyeva and Imanova (1998) to equation (1.5)

k k_ k
Zaiy'rHi = hzzaz (fn+i + K(xn+i’xn+i’yn+i)
i=0

j=0i=0

k k
+h22ﬂi(j)Kx ('xn+j’xn+i’yn+i)' (114)

7=0i=0

Notice that if K(x,s,y) is independent of x from (1.14) we get that
Y'(x)= f(x)+ K(x,y(x)) and in this case it is not necessary to use method (1.14).
It is clear that the accuracy of method (1.9) depends on the values of its
coefficients «,,8,7"" (i, j=0,1,2,...,k) . Therefore, define them. This method has

some advantage and deficiencies. One of the advantages is constant amount of
calculations of the functions K(x,z,y) and g(x,z,y) at each step. The main

deficiency of the method is calculation of the function g(x,z,y) at each step,
since therewith there arises necessity to calculate the functions K ,X".,K', and
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y' that from the point of view of calculations may be equivalent to the calculation
of the function K(x,z,y). However, taking into account possibility of
contemporary computers, some times we can neglect the indicated deficiency.

2. Finding coefficients in second derivative finite-difference method

Usually, the name of numerical methods agrees with the scheme of finding its
coefficients. In this connection the finite-difference and multistep methods and
also Obreshkov k-step methods are constructed by the same formulae. Here, for
determining the coefficients of method (1.9) we'll use expansion of functions in
Taylor's series and finite-difference equations. Therefore, we call the construction
of the method by the described scheme a finite-difference method. To this end,
we consider a special case and assume that K(x,s,y)= F(x,y) Then equation (1)

is written in the form:
X
Y(x) = () + [F(s,y(s))ds. (2.1)

AppIy method (1.9) to equation (2.1) and have:

Za Voui = ZO! foui +hZZﬁ“)F (xn+l,yn+,)+hzZD(”G (Xsi> Vosi)-

j=0i=0 j=0i=0 (22)
Here G(x,y)=F (x,y)+F,(x,y))".

If we denote

Zﬂl(})’ ¥, = (1) (2.3)
the method (2 2)may be rewrltten in the form:
Za yn+z za f;1+1 + h i n+1 + h i n+z s (24)

where F = F(xm,ym),Gm = G(xm,ym) (m=0,1,2,...) taking into account smoothness
of the function f(x), we can write

k k k
Yo f(x,.)=hY Bfx,.)+h Dy f(x,.)+O0h"), h—0.
i=0 i=0 i=0
After taking into account the obtained one in (2.4) and replacing y,, ', and "

by their exact values y(x,), »y'(x,) and )"(x,), relation (2.4) will have the
following form:

k k k
zaiy(xnﬂ') = hZﬁ, (f(xnﬂ') + F(‘anri > y(xnﬂ' )) + hz Z}/I (f,(xnﬂ') + Fx (xn+i > y('xnﬂ‘ ))
i=0 i=0 i=0
+F (%, V%, DV(X,.)) + O(R™™), h— 0.
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Hence we get:

k k k
Yay(x,.)=hY By(x,. )+ ry(x,,)+0h""), h—0. (2.5)
i=0 i=0 i=0

Consider the following expansion
V(x+ih) = y(x)+ hy(x)+...+ "y (x)/ pl+Oh"™),
Y (x+ih) =y (x)+ " () + .+ AT YD () (p =)+ O (v =1,2).

Take these expansions into account in (2.5) and have:

k p k p-l
}}%(}}ﬂy“kx)Lﬂj—h}Q@(ﬁShﬁ%ﬂ”ug/jg
i=0 j=0 i=0 j=0

—hzfx (ih’y“*”(x)/ﬂ]+0(h”“>, (O!=1). (2.6)

i=0 =0

Taking into account linear independence of the system y(x),ny'(x),..., h’y"”(x),
from (2.6) we get that in order method (2.4) have the degree p, then

k k k
24,=0,2a,=> 4,
i=0 i=0 i=0
k=l k -1-1
La= ) !
i 1! - (l 2)'
is a necessary and sufficient condition.

(2.7)

7,=0 (=23,..p)

Thus, for determining the coefficients «,,f,y,(i=0,1,2,..k) we get a

homogeneous system of linear-algebraic equation in which the amount of
unknowns equals 3k +3, the amount of equation p+1. It is known that in order

the homogeneous system of linear equations have a nontrivial solution (non
zero) there should be p+1<3k+3.

Consequently, between the degree and order of method (2.4) there is the
following relation:

p<3k+1.

For any k there exists a method with degree p =3k+1. We can prove that the
method with degree p =3k +1 of type (2.4) is not unique. This is connected with
the fact that the coefficients B, 7 (i,j=0,1,2,...,k) of method (1.9) are

determined from system (2.3) but not from system (2.7) as the coefficients of
method (2.4). However, it is seen from system (2.3) that the coefficients

,B, ,7/1 (1] 0,1,2,...,k) of method (1.9) are determined by means of the
coefficients g,y (i=0,1,2,....k) of method (2.4). As is known, in solving practical
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problems, the stable methods are more interesting. For establishing the stability
of method (1.9) we'll use the following definition.

Definition. Multistep method (1.9) with constant coefficients is said to be stable if

k

the roots of its characteristically polynomial p(l)=2a[l" lie interior to a unit
i=0

circle on whose boundaries there are no multiple roots.

If method (1.9) is stable and the degree p, then p<2k+2. Indeed, since the
stable method of type (2.4) has the degree p<2k +2, the coefficients in the linear
part of method (2.4) and (1.9) coincide, and stability of these methods depend on
the coefficients ¢,(i=0,1,2,....,k) in the linear part of these methods. Therefore,

maximal values of stable methods obtained from methods (2.4) and (1.9) will
coincide.

Notice that the amount of arithmetic operations during solving algebraic equation
(2.7) are measured by means of the following function:

ao(p+1)3+al(p+l)2 +a,(p+1)+a,.

For decreasing the amount f algebraic operations during solving system (2.7),
here we get suggest a scheme that may be called a generalization of the scheme
by Urabe (1970). Before stating this scheme we remind the conditions to which
the coefficients of finite-difference method (2.4) should satisfy:

A. The coefficients «,, £, 7, (i=0,1,2,...,k) are some real numbers, moreover,
a, #0.
B. The polynomials
D)=k, =Y Bx. y) =Yy,
have no comrr;:((;n muItipIiersl:;J)iffer from colrzostants.
C.9(1) =0, p>1.

By means of the shift operator E (Ey(x)= y(x+h)), re rewrite method (2.4) in the
following form: p(E)y, —h$(E)y', —h*HE)y" =0.

Urabe (1970) invetigated method (2.4) under analyticity of the function y(x) and
k=2. Here we assume that the continuous function y(x) is determined on
[x,,X] and at the same place it ha continuous derivatives to p+1, inclusively.
Then taking into account that method (2.4) has the degree p, we can write:

P(E)y(x,) = hI(E)y(x,) —h*HE)y"(x,)

k
= ey T EN by E +d ), 25

Jj=1
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where &" e(x,,x,.;) (m=1,2,3;j=1,2,...k),
&M e(x,,x,,,) (m=1,2,3; j=1,2,..,k), are some real numbers. By means of the
following linear operator E,iy(x) = y(x+t,h) we can rewrite the right hand side of
equation (2.8) in the form:

BY e E) by ER) T E)

./zlk 1

= h"“jz;(chl}I) +le1§2) +d/‘E/§3) )y((xf;r ), h— 0. (2.9)
Here, the quantities /" satisfy the condition 0</{" < j(m=1,2,3;j=1,2,...k).
Taking into account that y“*’(x) is bounded on [x,,X] and using the
differentiation operator D, we have:

P(E)y(x,)~hS(E)Dy(x,) =’y (E)D* y(x,)

~ C(hD)"" y(x,), h— 0. (2.10)

Using the substitution 7 =exp(2D), we rewrite relation (2.10) in the following

form:

p(t)=9(r)Int—y(r)(In7)’ ~ C(In7)"", r > 1. (2.11)

If we assume that method (2.4) converges, then it follows from (2.11) that
p(1)=0 (2.12)

that usually is called a necessary condition of convergence . Hence it follows that
A =1 is a root of the polynomial p(A1). Therefore, using the substitution &=7-1,

we rewrite relation (2.11) in the form:
p(1+E)In(1+£) " = 9(1+&) - y(1+ &) In(1+&) = O(E"), & -0, (2.13)

where

pI+E=3pE, 8146 =D p%E 114 =2 p)E .

Using the expansion of the function &(In(1+ &))" and In(1+¢)in (2.13) for finding
the coefficients of polynomials ! (j=0,1,2,..;m=1,2,3), we get the following
system of equations:

j B ] PR
D pl+ Y (el (=it ) = pP(j = 0,1,2,.... k" = 0),
i=0 i=0

J , J
Y oaph+ D () PR i=0(=k+1,k+2,..,p-1).
i=j—k+1 ' i=j-k ' (214)
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where

) 1
cy =l' s(s=1)..(s—v+1)ds (v=0,1,2,...).
Vo

Here the coefficients g, y (i=0,1,2,..,k) are calculated by means of the
following recurrent relations:

a,=-p +p" =P+ (Dl + (=D it

k-1
a,= Y (=D)"™MG+D (D (j-i+2)p" /it (i=1,2,...k),

j=i-1

By=p5 = pP+ PP+ (DT P, + (D 2,
k
B=D (1" jG-D..—i+D)pP it (i=1,2,....k). (2.15)

Jj=i

For calculating y,(i=0,1,2,....k), it suffices in (2.15) to substitute g for y, and
p? for p@(i=0,1,2,...,k).

Thus, for finding the coefficients .y, (i=0,1,2,....k) we get the system of linear

algebraic equation (2.14) and the system of recurrent equations (2.15). it is easy
to show that the amount of arithmetical operation while investigating systems
(2.14) and (2.15) will be measured by means of the following function:

a,(p-k) +a,(p-k)’ +a,(p—k)+a,+3k".

For calculating the coefficients cy (v=0,1,2,...) here we suggest the following

recurrent relation: c¢,, = Z(—l)"‘1 ém_i/(i+1) (éo =l,m=1,2,..).

i=1

If we consider the case y,=0(i=0,1,2,...,k), then from (2.5) we get a finite-

difference method of type (3). In this case, the system of equations (2.14)
consists of one equation and therefore the amount of arithmetic operations for
calculating «,, S, (i=0,1,2,...,k) coefficients of method (3) is measured by means

of the function 3k*. Thus, we obtained that for finding the coefficients of method
(3) and (2.5) it is desirable to use system (2.14) and (2.15).

Notice, that for finding solution of nonlinear integral equation one can use the
forward-jumping methods(Imanova et al, 2010).
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