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Abstract 
 

In this work, we focus on some new theoretical and computational aspects of the Odd Lindley-

Lomax model. The maximum likelihood estimation method is used to estimate the model parameters. We 

show empirically the importance and flexibility of the new model in modeling two types of aircraft 

windshield lifetime data. This model is much better than exponentiated Lomax, gamma Lomax, beta 

Lomax and other Lomax models so that the Odd Lindley-Lomax lifetime model is a good alternative to 

these models in modeling aircraft windshield data. A Monte Carlo simulation study is used to assess the 

performance of the maximum likelihood estimators. 

 

Keywords: Lomax model; Odd Lindley-G Family; Estimation. 

 
1. Introduction 

In the statistical literature, the Lomax (Lo) or Pareto II model was originally pioneered 

for modeling business failure data by Lomax (1954), and is related to the four-parameter 

type II generalized beta distribution and the three-parameter Singh-Maddala distribution, 

as well as the beta distribution of the second kind. The Lo distribution has found a wide 

application in many fields such as size of cities, income and wealth inequality, actuarial 

science, engineering, medical and biological sciences, reliability and lifetime modeling. It 

has been applied to model data obtained from income and wealth (see Harris 1968 and 

Atkinson and Harrison 1978), firm size (see Corbellini et al., 2007), reliability and life 

testing (see Hassan Al-Ghamdi 2009), Hirsch-related statistics (see Glanzel 2008), for 

modeling gauge lengths data (see Afify et al., 2015), for modeling bladder cancer patients 

data and remission times data (see Yousof et al., 2016 and Yousof et al., 2018), 

Hamedani et al. (2018) used the type II general exponential Lomax model for modeling 

failure times of aircraft windshield data, Yousof et al., 2019 introduced a new version of 
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the Poisson Lomax distribution, Gad et al., 2019 introduced the Burr XII- Lomax 

distribution and Elsayed and Yousof 2019 proposed a new Lomax distribution for modeling 

survival times and taxes revenue data sets. 

  
A random variable (rv) X  has the Lo distribution with two parameters   and   

if it has cumulative distribution function (cdf) (for > 0x ) given by 

 ( ) ( ); , =1 1 / ,LoG x x


  
−

− +  (1) 

where > 0  and > 0  are the shape and scale parameters, respectively. Then the 

corresponding pdf of (1) is 

 ( ) ( )
( )11; , = 1 / .Log x x


   
− +− +  (2) 

The goal of this article is to study the Odd Lindley-Lomax (OLLo) model first 

introduced by Silva et al. (2017) using the Odd Lindley-G (OL-G) family of distributions. 

The pdf and cdf of  the OL-G family of distribution are respectively given by 

 ( ) ( ) ( ) ( ) ( )
32( ; , ) = / 1 ; ; exp ; / ; ,f x a a a g x G x aG x G x

−
  + −   x x x x x  (3) 

and 

 ( ) ( ) ( )  ( ) ( )( ; , ) =1 ; / 1 ; exp ; / ; ,F x a a G x a G x aG x G x   − + + −   x x x x x  (4) 

where > 0a  is the scale parameter, ( ),G x x  is the baseline cdf, ( ), x =  is the 

parameter vector of the baseline distribution and ( ) ( ), =1 ,G x G x−x x  is the survival 

function of the baseline distribution. To this end, we use equations (1), (2) and (3) to 

obtain the three-parameter OLLo pdf (for > 0x ) 

 ( ) ( ) ( ) 1 2 12( ; , , ) = 1 1 / exp 1 / 1 ,f x a a a x a x
 

     
− −  + + − + −    

 (5) 

From Equation (4), the corresponding cdf of the pdf in (5) is given by 

   ( ) ( ) ( )  ( ) ( ; , ) =1 1 / / 1 1 / exp 1 / 1 .F x a a x a x a x
  

  
− −   − + + + + − + −

   
x (6) 

The hazard rate function (hrf) of the OLLo distribution can be obtained using 

( ; , , )

1 ( ; , , )

f x a

F x a

 

 −
. It should be noted that Silva et al. (2017) derived the argument  

 ( ) ( ) ( ), / 1 , = 1 / 1G x G x x


− + −  x x  

 for the Lomax. We draw the pdf and hrf plots of the OLLo distribution in Figure1 for the 

selected parameters values. We see that its pdf's are unimodal and decreasing shaped. 

Also, its hrf can be decreasing and increasing shaped.  
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 Figure 1: The possible plots for selected OLLo distributions    

 

The OLLo density function can be expressed as an infinite mixture of exponentiated-Lo 

(exp-Lo) density functions  

 ( ), 1, ,

, =0

( ) = ,m k m k

m k

f x x  


+ +  (7) 

where  

 ( ) ( ) ( )( ) ( )2

, = 1 3 / ! ! 1 1 3
k k

m k a m k m k m k k +−  + + + + +  +    

and  

 ( ) ( ) ( )
( )

( )

( )

( )

11

1, , = 1 1 / 1 1 /

; ,
; ,

m k

m k

m kg
Lo

G
Lo

g x m k x x

x
x

 

    

 
 

+
− + −−

+ +

+

 + + + − +
 

 
 

 

 is the exponentiated-Lo (Exp-Lo) density. Similarly, 

 

( ), 1, ,

=0

( ) = ,m k m k

k

F x x 


+ +    (8) 

where  
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 ( ) ( )

( )

1, ,

1

= 1 1 /

; ,

m k

m k

m k

G
Lo

x x

x



  

 

+
−

+ +

+ +

  − +
 

 
 

 

is the Exp-Lo cdf. In this work, we focus on some new theoretical and computational 

aspects of the OLLo model. 

The rest of the paper is outlined as follows. In Section 2, we derive some of its 

statistical properties including moments, generating function, residual life and reversed 

residual life functions and order statistics and their moments are introduced at the end of 

the section. Maximum likelihood estimation of the model parameters is addressed in 

Section 3. In Section 4, simulation results to assess the performance of the proposed 

maximum likelihood estimations, we provide the applications to real data sets to illustrate 

the importance of the new family in Section 5. Finally, we offer some concluding 

remarks in Section 6. 

 

2. Statistical properties 

In this section, we provide some mathematical properties of the OLLo 

distribution. The formulas derived in this section are manageable and simple, and with 

the use of advanced computer resources and their numerical computing capabilities, the 

OLLo model may prove to be a useful addition to those distributions which are used for 

modeling data in reliability, economics, medicine engineering, among others. 

 

2.1 Moments and cumulants 

 

The various types of moments of a rv are important especially in applied areas. 

Many of the most important features and characteristics of a certain distribution can be 

studied through moments, e.g., tendency, dispersion, skewness and kurtosis etc. The thr  

ordinary moment of X  is given by 

 ( ), 1, ,
0

, =0

= ( ) = ,' r r

r m k m k

m k

E X x x dx   
 

+ +   

then we obtain  

( ) ( )( ), 1

, ,

, =0 =0

= 1,1 / , ,
r

r m k'

r m k w

m k w

m k w r r   


+ +
+ + + −   B    (9) 

where  

 ( )
1

11

0

( ; ) = 1
qpp q u u du
−− −B  

is the complete beta function and  

 
( ) ( ) ( ), 1

, , ,= 1 1 .
wr m k r

m k w m k

r
m k

w
  

+ +  
+ + −  

 
 

Setting =1r  in (9), we have the mean of X . The last integration can be 

computed numerically for most parent distributions. The skewness and kurtosis measures 

can be calculated from the ordinary moments using well-known relationships. The thr  

central moment of X , say rM , is  
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1

=0

= ( ) = ( 1) ( ) ,
r

r h ' r '

r r h

h

r
E X

h
    −

 
− −  

 
  

where = ( )E X . The skewness and kurtosis measures also can be calculated from the 

ordinary moments using well-known relationships. For the skewness and kurtosis 

coefficients, we have  

 
2

3 4
1 23 2

2 2

= and = ,
 

 
 

 

respectively. The cumulants ( n ) of X  follow recursively from 

1

=0

1
=

1

n' '

n n r n rr

n

r
   

−

−

− 
−  

− 
  , where 

1 1= '  , 2 3

2 2 1 3 3 2 1 1= , = 3' ' ' ' ' '       − − + , and so 

on. The values for mean, variance, 1  and 2  for selected values of ,a   and   are 

shown in Table1. We can say that the OLLo model can be useful for various data 

modelling in terms of skewness and kurtosis. 

 

Table 1: Mean, variance, coefficients of skewness and kurtosis for different values of 

parameters    

  ( , , )a          ( )Var X    1    2   

 (0.5,0.5,0.5)   12.6666   354.2228   4.2064   35.9142  

(1,0.5,0.5)   3.5000   24.7500   4.0221   33.0892  

(2,0.5,0.5)   1.0833   2.0347   3.6468   27.6014  

(0.5,1,0.5)   1.6666   1.8888   1.5122   6.3425  

(0.5,2,0.5)   0.4945   0.0943   0.6863   3.2650  

(0.5,0.5,1)   25.3333   1416.8910   4.2065   35.9142  

(0.5,0.5,2)   50.6666   5667.5550   4.2064   35.9143  

(0.05,5,1)   1.0072   0.0921   -0.2019   2.9039  

(0.1,5,1)   0.7502   0.0678   -0.1422   2.7800  

(0.2,5,1)   0.5311   0.0476   -0.0216   2.6218  

The mean, variance, skewness and kurtosis of the OLLo distribution are computed 

numerically for different values of parameters using the R software. The numerical 

values displayed in Table 1 indicate that the skewness of the OLLo distribution can range 

in the interval ( 0.023,4.23)− . The spread for its kurtosis is much larger ranging from 2.6  

to 36 . 

 

2.2 Generating function 

The moment generating function (mgf) ( ) ( )= t X

XM t E e  can be derived from equation 

(7) as follows  

( ) ( ) ( )( ), 1

, ,

, , =0 =0

= 1,1 / , ,
!

rr
r m k

X m k w

w k r w

t
M t m k w r r

r
  


+ +

+ + + −    B  

2.3 Incomplete moments and mean deviations 

The main applications of the first incomplete moment refer to the mean deviations and 

the Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, 
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demography, insurance and medicine. The 
ths  incomplete moment, say ( )sI t , of X  can 

be expressed from (7) as  

 ( ) ( ) ( )( ), 1

, ,

, =0 =0

= 1,1 / , .
s

s m k

s m k w t

m k w

I t m k w s s  


+ +
+ + + −   B  

where  

 ( )
11

0

( ; ) = 1

t
qp

t p q u u du
−− −B  

is the incomplete beta function. The mean deviations about the mean 

( )1[ = (| |)]E X E X −  and about the median ( )2 = ( )E X Median X −   of X  are 

given by 1 1 1 1 1= 2 ( ) 2 ( )
' ' 'F I   −  and ( )2 1 1= 2' I M  − , respectively, where 

( ) = (0.5)Median X Q  is the median, 
1( )'F   is easily calculated from (5) and ( )1I t  is the 

first incomplete moment given by the last Equation with = 1s . A general equation for 

( )1I t  can be derived from ( )sI t  as  

 ( ) ( ) ( )( )1, 1

1 , ,

, =0 =0

= 1,1 1 / .
r

m k

m k w t

m k w

I t m k w 


+ +
+ + + − B  

2.4 Moment of residual and reversed residual life 

 

The 
thn  moment of the residual life, say ( ) = [( ) | > ]n

nm t E X t X t− ,  =1,2n ,... , 

uniquely determines ( )F x . The 
thn  moment of the residual life of X  is given by  

  
1

( ) = 1 ( ) ( ) ( ),n

n
t

m t F t x t dF x
−

− −  

therefore, 

   ( ) ( )( )
1 , 1

, ,

, =0 =0

( ) = 1 ( ) 1,1 / , ,
s

n m k

n m k w t

m k w

m t F t m k w n n  


− + +
− + + + −   B  

where  

 
( ) ( ) ( ), 1 , 1

, , , ,

=0

= 1 .
n

nn m k n m k

m k w m k w

d

t 
+ + + +

−  

Another interesting function is the mean residual life (MRL) function or the life 

expectation at age t  defined by  1( ) = ( ) | >m t E X t X t− , which represents the expected 

additional life length for a unit which is alive at age t . The MRL of X  can be obtained 

by setting = 1n  in the previous equation. The 
thn  moment of the reversed residual life, 

say ( ) = ( ) |n

nM t E t X X t −    for > 0t  and =1,2n ,... uniquely determines ( )F x . We 

obtain  

 
1

0
( ) = ( ) ( ) ( ).

t
n

nM t F t t x dF x− −  

Then, the 
thn  moment of the reversed residual life of X  becomes 

 
( ) ( )( ), 11

, ,

, =0 =0

( ) = ( ) 1,1 / , ,
s

n m k

n m k w t

m k w

M t F t m k w n n  


+ +− + + + −   B  

where  
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( ) ( ) ( ), 1 , 1

, , , ,

=0

= 1 .
n

dn m k n m k n d

m k w m k w

d

n
t

d
 

+ + + + − 
−  

 
  

2.5 Order statistics 

Let 1, , nX X  be a random sample from the OLLo model of distributions and let 

1: :, ,n n nX X  be the corresponding order statistics. The pdf of the 
thi  order statistic, say 

:i nX , can be expressed as 

 ( ) ( ) ( ) ( ) ( )
1 1

: = B , 1 1 ,
n ii

i nf x i n i f x F x F x
− −−

− + −        (10) 

where ( , )B    is the beta function. Substituting (5) and (6) in Equation (10), we obtain  

 ( ) ( ): , , , ,

, =0 =0

= ,
k n i

i n m p j j m p

m p j

f x x  
 + −

+ +   

where 

 
( ) ( )

( )

( )

121

, ,

=0

1 11 1
= .

!B( , 1) 1

k m jj mi

m p j

k

j m p k n i

j m j km i n i j m p

 


+ − ++ +− + + + − −− +    
   

+− + + + +    
  

Then, the thq  moment of :i nX  is given by  

( ) ( ) ( )( ), 1

: , , ,

, =0 =0 =0

= 1,1 / , > ,
k n i r

q m kq

i n m k j w

m p j w

E X m k w q q  
 + −

+ +
+ + + −   B    (11) 

where  

( ) ( ) ( ), 1

, , , , ,= 1 .
wq m k q

m k j w m p j

q
j m p

w
  

+ +  
+ + −  

 
 

3. Estimation 

Several approaches for parameter estimation has been proposed in the literature 

but maximum likelihood method is the most commonly employed. The maximum 

likelihood estimators (MLEs) enjoy desirable properties and can be used for constructing 

confidence intervals and regions and also in test statistics. The normal approximation for 

these estimators in large samples can be easily handled either analytically or numerically. 

So, we consider the estimation of the unknown parameters of this family from complete 

samples only by maximum likelihood. Let 1, , nx x  be a random sample from OLLo 

distribution with parameters , ,a   and b . Let =h ( , ,a   )  be the 3 1  parameter 

vector. For determining the MLE of h , we have the log-likelihood function 

( ) ( ) ( )
=1 =1

= ( ) = 2 log log 1 log log 2 1 log 1 ,
n n

i i

i i

n a n a n n s a s  − + + − + − − − h  (12) 

where ( )= 1 / .is x +    

The components of the score vector, Uh = (
𝜕

𝜕𝑎
 ,

𝜕

𝜕𝜆
 ,

𝜕

𝜕𝛽
 )⊺, are 

 ( ) ( )
=1 =1

= 2 / / 1 1 , = / 2 log
n n

a i i

i i

U n a n a s U n s

 − + − − +   

 
=1

= / 2 log ,
n

i

i

U n s  +   

and 
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 ( ) 2 1 2 1

=1 =1

= / 2 1 .
n n

i i i i

i i

U n x s a x s

    − − − −− − − +   

Equation (12) can be maximized either directly by using the R (optim function), Ox 

program (sub-routine MaxBFGS) or SAS (PROC NLMIXED) or by solving the 

nonlinear likelihood equations obtained by differentiating (12). Setting the nonlinear 

system of equations = 0, = 0aU U  and = 0bU  and solving them simultaneously yields 

the MLE = ( , , )a  h . To solve these equations, it is usually more convenient to use 

nonlinear optimization methods such as the quasi-Newton algorithm to numerically 

maximize . For interval estimation of the parameters, we obtain the 3 3  observed 

information matrix 
2

( ) = { }J
r s



 
h  (for , = , ,r s a   ), whose elements can be computed 

numerically. Under standard regularity conditions when n → , the distribution of h  can 

be approximated by a multivariate normal 1

3(0, ( ) )N J −
h  distribution to construct 

approximate confidence intervals for the parameters. Here, ( )J h  is the total observed 

information matrix evaluated at h . Further works could be addressed using different 

methods to estimate the OLLo parameters such as least squares, weighted least squares, 

moments, bootstrap, Jackknife, Anderson-Darling, Cramer-von-Mises, Bayesian analysis, 

among others, and compare the estimators based on these methods. 

 
4. Simulation study 

In this section, we conduct the simulation study to see the performance of the 

MLEs of the OLLo distribution with respect to sample size n. We generated =1000N  

samples of size = 20,30, ,500n  from OLLo distribution with =12a , = 0.5  and 

= 2  by using inverse transform method. The MLEs, say ( )ˆ ˆˆ , ,i i ia    for =1,2,..., N , 

have been obtained by using CG routine in R programme. Further, we calculate emprical 

mean, standard deviations (sd), bias and mean square error of the estimate (MSE) for 

MLEs. The empirical bias and MSE are calculated by (for = , ,h a   )  

 𝐵𝑖𝑎𝑠ℎ(𝑛) =
1

𝑁
∑ (ℎ𝑖 − ℎ̂𝑖)𝑁

𝑖=1  and 𝑀𝑆𝐸ℎ(𝑛) =
1

𝑁
∑ (ℎ𝑖 − ℎ̂𝑖)

2𝑁
𝑖=1 . 

The results are presented in Figure2. From Figure2, we can say that for three 

parameters the emprical means are very close to true parameter values and they are quite 

stable. Moreover, the bias, MSE and sd decrease as sample size increases. These above 

results are as expected. 
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Figure 2: Plots of the emrical mean, sd, biases and MSE of , ,a    versus n    

 
5. Applications 

In this section, we provide two applications to two real data sets to prove the 

importance and flexibility of the OLLo distribution. We compare the fit of the OLLo with 

competitve models namely: exponentiated Lomax (ELo) model (Gupta et al., 1998), 

gamma Lomax (KwLo) model (Cordeiro et al., 2015), beta Lomax (BLo) model 

(Lemonte and Cordeiro, 2013) and Lo model. The cdfs of these distributions are, 

respectively, given by (for > 0x  and , , , > 0a   ):  

 ( ); , , = 1 1 ,ELo

x
F x



  


−  
− +  
   

 

 ( ) ( )1; , , = ; log 1GLo

x
F x      



−   
  +  

  
 

and 

 ( )
( )

1
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where ( )   is the gamma function, ( );    is the incomplete gamma function, ( ),B    is 

the complete beta function and ( )B ; ,    is the incomplete beta function. 

The first real data set represents the data on failure times of 84 aircraft windshield 

given in Murthy et al. (2004). The data are: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 

2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 

3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 

1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 

2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 

3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 

4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663. 

 

The second real data set represents the data on service times of 63 aircraft 

windshield given in Murthy et al. (2004). The data are: 0.046, 1.436, 2.592, 0.140, 1.492, 



M. Masoom Ali, Mustafa Ç. Korkmaz, Haitham M. Yousof, Nadeem Shafique Butt 

Pak.j.stat.oper.res.  Vol.XV  No.2 2019  pp419-430 428 

2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794, 2.819, 0.313, 1.915, 2.820, 

0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900, 2.053, 3.102, 0.952, 

2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 

3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 4.806, 

1.249, 2.464, 4.881, 1.262, 2.543, 5.140. 

These data sets were recently studied by Tahir et al. (2015). The unit for 

measurement is 1000 h for both data sets. 

In order to compare the distributions, the estimated log-likelihood values ˆ , 

Akaike Information Criteria (AIC), Cramer von Mises (W 
) and Anderson-Darling ( A ) 

goodness of-fit statistics were calculated for all models. The statistics W 
 and A  are 

described in detail in Chen and Balakrishnan (1995). In general, it can be chosen as the 

best model which has the smaller values of the AIC, W 
 and A  statistics and the larger 

values of ˆ . The required computations are obtained by using the "maxLik" and "goftest" 

sub-routines in R-software. The analysis results of both these applications are listed in 

Tables 2 and 3. These results show that the OLLo distribution has the lowest AIC, W 
 

and A  values and has the biggest estimated log-likelihood among all the fitted models. 

Hence, it could be chosen as the best model under these criteria.  

 

Table 2: MLEs, standard erros of the estimates (in parentheses), ˆ  and goodness-of-fits 

statistics for the first data 
  Model  

         a        ˆ−    AIC    
*A    

*W   

OLLo      3.9901  

(9.1545) 

 0.2147 

(0.2293)   

 4.1792  

(5.4552) 

128.0370  262.0740 0.5601  0.0793  

BLo   3.6036  

(0.6187) 

118.8374 

(63.7145) 

33.6387 

(9.2382)   

 4.8307  

(429.0000) 

 138.7177   

285.4354 

 

1.4084  

 

0.1680  

ELo   3.6261  

(0.6236) 

26257.6808  

(99.7417) 

   20074.5097 

(2041.8263)   

 141.3997   

288.7994 

 

1.7435  

 

0.2194  

GLo   3.5876 

(0.5133)   

37029  

(81.1644) 

   52001  

(7955) 

 138.4042   

282.8093 

 

1.3667  

 

0.1619  

Lo      131789  

(296.1200) 

    51425  

(5933.49) 

 164.9900   

333.9767 

 

1.3976  

 

0.1665  

 

Table 3: MLEs, standard erros of the estimates (in parentheses), ˆ  and goodness-of-fits 

statistics for the second data 
  

Model  
         a        ˆ−    AIC    

*A    
*W   

OLLo      9.8798  

(4.2235) 

 0.7637  

(0.2303) 

 5.2119  

  (1.7626) 

 98.1289   202.2579  0.2477   0.0351  

BLo   1.9218 

(0.3185)   

 169.5800  

(339.2068) 

 31.2595  

(316.8413) 

 4.9685  

 (50.5279) 

 102.9611   213.9223  1.1336   0.1872  

ELo   1.9145 

(0.3483)   

 32881.9 

(162.2230) 

    22971.2  

(3209.5) 

 103.5468   213.9223  1.2331   0.2037  

GLo   1.9073 

(0.3214)   

 39197.6  

(151.6530) 

    35842.4  

  (6945.0) 

 102.8333   211.6664  1.1121   0.2038  

Lo      207019  

(301.2370) 

    99269  

(11863.5222) 

 109.2988   222.5976  1.1265   0.1861  
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   The plots of the fitted densities, cdfs and and probability-probability (P-P) plot 

of OLLo model are displayed in Figures 3 and 4. We can see that the OLLo distribution 

provides a good fit and can be used as a competitive model to the other considered 

models from these Figures. 

 

 
Figure 3: The fitted pdfs (left), cdfs (middle) and P-P plot (right) for the first data set 

 

Figure 4: The fitted pdfs (left), cdfs (middle) and P-P plot (right) for the second data set 

 

Conclusions 

 

In this work, we focus on some new theoretical and computational aspects of the 

Odd Lindley-Lomax model. A Monte Carlo simulation study is used to assess the 

performance of the proposed maximum likelihood estimations. The maximum likelihood 

estimation method is used to estimate the model parameters. We show empirically the 

importance and flexibility of the new model in modeling two types of aircraft windshield 

lifetime data. We hope that the new model will attract a wider applications in 

engineering, reliability, and other areas of research. As a future work we will consider 

bivariate and multivariate extension of the Odd Lindley-Lomax distribution. In particular 

with the copula based construction method, trivariate reduction etc. 
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