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Abstract

In this paper, a new four parameter lifetime model with increasing, decreasing, increasing-
decreasing, decreasing-increasing-decreasing, modified bathtub, bathtub and inverted bathtub hazard rate
function called Burr Il1-Pareto (Blll-Pareto) is developed on the basis of the T-X family technique. The
Blll-Pareto density function is arc, J-shape, reverse J-shape, positively, negatively skewed and
symmetrical. Some structural and mathematical properties including moments, moments of order statistics,
inequality measures and reliability measures are theoretically established. The Blll-Pareto distribution is
characterized via different techniques. Parameters of the BllI-Pareto distribution are estimated using
maximum likelihood method. The simulation study for performance of the maximum likelihood estimates
(MLEs) of parameters for the Blll-Pareto distribution is carried out. The potentiality of the Blll-Pareto
distribution is demonstrated by its application to real data sets. Goodness of fit of this distribution through
different methods is studied. The BllI-Pareto distribution is empirically better for lifetime applications.

Keywords: Moments, Reliability, Characterizations, Maximum Likelihood Estimation.

1. Introduction

The Pareto model (Pareto; 1896) was introduced for unequal income distribution. The
Pareto distribution is suitable for different areas of research such as insurance, finance,
reliability and extreme weather.

During recent decades, many continuous univariate distributions have been developed but
various data sets from reliability, engineering, environmental, financial, biomedical
sciences, among other areas, do not follow these distributions. Therefore, modified,
extended and generalized distributions and their applications to problems in these areas is
a clear need of day.
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The modified, extended and generalized distributions are obtained by the introduction of
some transformation or addition of one or more parameters to the baseline distribution.
These new developed distributions provide better fit to data than their sub-models.

Many modified, extended and generalized forms of the Pareto distribution are available
in the literature such as generalized Pareto (Pickands;1975), exponentiated Pareto
(Stoppa;1990), exponentiated Pareto using Lehmann alternative typel(Gupta et al.;1998),
generalized Pareto (Choulakian and Stephens; 2001), generalized Pareto (Pisarenko and
Sornette; 2003), Pareto model for OLAP (Nadeau and Teorey; 2003), extended Pareto
(Akinsete et al. ;2008), beta-Pareto ( Eugene et al.;2002), Pareto (Farshchian and Posner;
2010), beta-EP ( Nassar and Nada ; 2011), beta-G Pareto (Zea et al.;2012 and Mansoor
;2013), beta generalized Pareto (Mahmoudi; 2011), gamma- Pareto (Alzaatreh et al.,
2011, 2013b), Weibull-Pareto (Alzaatren et al. ;2013a), Kumaraswamy-Pareto
(Bourguignon et al.;2013), new Weibull Pareto (Nasiru and Luguterah; 2015),
Pareto(Arnold;2015), new Pareto (Bourguignon et al.;2016), Weibull-Pareto (Tahir et.
al.;2016) and generalized Weibull Pareto distribution (Isah and Bala; 2017).

The main purpose of this article is to obtain a more flexible distribution for the lifetime
applications called the Blll-Pareto distribution. The Blll-Pareto density is arc, J-shape,
reverse J-shape, positively, negatively skewed and symmetrical. The BIlI-Pareto
distribution has, increasing, decreasing, increasing-decreasing, decreasing-increasing-
decreasing, modified bathtub, bathtub and inverted bathtub hazard rate function.

The flexible nature of the hazard rate function of the Blll-Pareto distribution helps to
serve as the best alternative model to the current models for modeling real data in
economics, life testing, reliability, survival analysis and other related areas of research.
The BllI-Pareto distribution provides better fit than sub-models.

Our interest is to study the BIllI-Pareto distribution in terms of its mathematical
properties, applications and comparison to sub-models.

The article is composed of the following sections. In Section 2, the BIll-Pareto
distribution is development on the basis of the T-X family technique. In Section 3, the
Blll-Pareto distribution is studied in terms of the basic structural properties, sub-models;
descriptive measures based quantiles and plots. In Section 4, moments, moments of order
statistics, incomplete moments, inequality measures, residual life function and some other
properties are presented. In Section 5, reliability measures are studied. In Section 6, the
Blll-Pareto distribution is characterized via (i) conditional expectation; (ii) ratio of
truncated moments; (iii) reverse hazard rate function; (iv) elasticity function; (v)
conditional expectation of certain function of the random variable; (vi) conditional
expectation of lower record values and (vii) conditional expectation of lower record
values with spacing. In Section 7, the parameters of Blll-Pareto are estimated using
maximum likelihood method. In Section 8, the simulation study for the performance of
the MLEs of the Blll-Pareto distribution with respect to sample size n is carried out. In
Section 9, the potentiality of the BIlI-Pareto distribution is demonstrated by its
application to real data sets. Goodness of fit of the probability distribution through
different methods is studied. The concluding remarks are given in Section 10.
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2. DEVELOPMENT OF BIII-PARETO DISTRIBUTION

The probability density function (pdf) and cumulative distribution function (cdf) of the
Pareto distribution are given, respectively, by

g(x;zc,e)zf(éj , X>6,x>0,0>0 1)
o\ 0
and

G(X;K,Q)zl—[g)_K, X>0,x>0,0>0. )

The odds ratio for the Pareto random variable X is
(5]
_G(x;x,0) o
W (G(X)) - G(X; K, 3) - [Xj,«

(O

Gurvich et al. (1997) replaced ‘x’ with odds ratio in the Weibull distribution for the
development of a class of extended Weibull distributions. Alzaatren et al. (2013)

developed the cdf of the T-X family of distributions as
W(G(x))
F(x)= j r(t)dt,

a

where w (G(x))is a function of G(x) and r(t)is the pdf of a non-negative random

variable.

Bourguignon et al. (2014) inserted the odds ratio of a baseline distribution in place of ‘x’
in the cdf of the Weibull distribution for the development of a new family of
distributions.

The Blll-Pareto is developed by inserting the odds ratio of the Pareto random variable in
place of ‘x’ in the cdf of the BIII distribution. The cdf for BIII-Pareto distribution is
obtained as

W(G(x)) o
F(x) = j apt”(1+t7) " dt,
0

or

B
Fxa f.x,0)= | aft(1+t7) T,

0

K A
F(x)={1+[(§j —1} } ,a>0,>0,K>0,x>0. ©)

The pdf of BllI-Pareto distribution is

TR [[gj _1}/}1 {1+ [[gj _1r } x>0 @

or
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For a =1,the Blll-Pareto distribution reduces to Log-logistic-Pareto (LL-Pareto) and for
£ =1, the Blll-Pareto distribution reduces to inverse Lomax-Pareto (IL-Pareto).

2.1 Transformations and Compounding

In this sub-section, the BIllI-Pareto distribution is derived through (i) ratio of the
exponential and gamma random variables and (ii) the generalized inverse Weibull Pareto
(GIWP) and gamma distributions.

.
. X
Lemma (i) If Z,~exp(1),Z, ~ gamma(«, 1), then forZ, :HEJ - } Z,, we have

K

B
X =6 (—j +1| ~ BIll —Pareto(«a, ,,0,x).

() If x;8,6,x|n~w(xB.6,x7)= nﬂ%(gjm{(ijk _l}‘ﬁ—l e—'{[a}'_l}ﬁ

o

and e ~ g(a,n)zﬁna—le-n, n>0, then, the Blll-Pareto distribution is obtained via

integrating the effect of  with the help of
f(X,O!,,B,(g,l():IW(X;IB,Q,K‘|77)Q(OC,7])dI]. (5)
0
So X ~ BlII — Pareto(a, 3,0, k).

3. STRUCTURAL PROPERTIES OF BIII-PARETO DISTRIBUTION

The survival, hazard, cumulative hazard, reverse hazard functions and Mills ratio of a
random variable X with Blll-Pareto distribution are given, respectively, by

bl
cCCRNNORIN

h(x) = x>0, ()

el T

-B -«

H(x)=In{1- 1{(%)’(—1} x>0, ®)

oG 3T el A oo
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K -5
1- 1+[£Xj —1]
0
m(x) = , X>0.
9 T (10
ECICERACE
ZAN 0 0
The elasticitye(x) = W = xr(x) of Blll-Pareto distribution is given by
X

-p-1 B

w-anf5] (5] el | oo

The elasticity of the Blll-Pareto distribution shows the behavior of the accumulation of
probability in the domain of the random variable.

3.1 Shapes of the Blll-Pareto Density and Hazard Rate Functions

The following graphs show that shapes of the BllI-Pareto density are arc, J-shape, reverse
J-shape, positively, negatively skewed and symmetrical. The BllI-Pareto distribution has,
increasing, decreasing, increasing-decreasing, decreasing-increasing-decreasing,
modified bathtub, bathtub and inverted bathtub hazard rate function.

Blll-Pareto Distribution

—— a=3.00,8=1.65,k=5.00, 6=1
@=1.50,8=7.00,k=1.50,6=1

----- - @=0.85,8=1.15,k=3.00,6=1
a=0.65,8=1.90,k=3.55,6=1
@=0.75,$=6.00,k=1.80,6=1

----- - @=0.56,8=1.05,k=0.95,6=1

=5 ) e s oo < mmm-- - @=4.00,=10.0,k=1.05,6=1

Fig. 1: Plots of pdf of the BllI-Pareto Distribution for the selected parameters values
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Blll-Pareto Distribution
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Fig. 2: Plots of hrf of the Blll-Pareto Distribution for the selected parameters values
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Fig. 3: Plot of hrf of the Blll-Pareto Distribution  Fig. 4: Plot of hrf of the BllI-Pareto Distribution

13

3.2 Quantile function of the BllI-Pareto Distribution

A

The quantile function of the Blll-Pareto distribution is X, =6|(q “-1| +1| . The

med

. 1
median of the BIlll-Pareto distribution is x , =6 [2“—1) +11| . The random

number generator for Blll-Pareto distribution is

1 _1 © . . — .
N (Za _lJ 7 .1|  where the random variable Z has the uniform distribution on

(0,2).
Some measures based on quartiles for location, dispersion, skewness and kurtosis for the

Blll-Pareto distribution respectively are: Median M = Q, and quartile deviation is
2
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Q§ _Qi QE _ZQl +Q1
Q.D.=——* Bowley’s skewness measure is S, = —*——=2—="and Moors kurtosis
2 Q;-Q,
P
QZ _Q§ +Q§ _QE
measure based on octiles isK =——2—28 8 The quantile based measures exist
Qﬁ _Qg
8 8

even for distributions that have no moments. The quantile based measures are less
sensitive to the outliers.

4. MOMENTS
Moments, incomplete moments, inequality measures, residual life functions and some
other properties are provided here.

4.1 Moments of the Blll-Pareto Distribution
The r'™ moment about the origin of X with the Blll-Pareto distribution is

U= E(Xr):ixrf(x)dx,

=

x i
w=E af' [ j (1——(x+—] r=123,... (12
(x')=a03] ¢ g
Mean and Variance of the BllI-Pareto distribution are

E(X):aei[;jB(l—%,aJr%J, (13)

e 3

aeziﬁé[;jB[l_%,ajL%j_ (14)

Var(X) = 1 2 "

Z DI

C
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n
The factorial moments for the Bl1I-Pareto distribution are E [ X ]n =Y @, E(X"),

r
- r . .
S A
r—1 i—0 BB
where [ X ] = X (X +1)(X +2)....(X +i—1) and @, is Stirling number of the

first kind.
The Mellin transform helps to determine moments for a probability distribution. By
definition, the Mellin transform for the Blll-Pareto distribution is

M{f(x);s}= f*(s)zoff(x) x> Ldx. (16)
M{f (x);s} —zx“aﬁg(g)u{(g - rl 1+ {(g —1r o .
Let ng —1r — W, then
(1) (o) o
M{f(x);s}zae(s_l) EK;') [i B ]B[lé,a+éj. (17)

The s™ raw moment of X with the BIlI-Pareto distribution using Mellin transform is
, M{f(x);s+1}
= M{f(x)i1}

The k™ moment about the mean of X is determined from the relationship

e =E[X-E(X)] = ( ) u,u( i)
J_
The Pearson’s measure of skewness+y,, Kurtosisp,, moment generating function and
cumulants can be calculated from
o I r—1
=8 gy =M My (1) = Z%E(x)r and ke =E(X") - (£dkeE(X"0).

(nz)z  (#2) = e
The numerical measures of the median, mean, variance, skewness and kurtosis of the
BllI-Pareto distribution for selected values of the parameters to illustrate their effect on
these measures.
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Table 1: Median, mean, standard deviation, skewness and Kurtosis of the BllI-
Pareto Distribution

Parameters Median Mean Standard Skewness Kurtosis
a, ﬁ, K,0 Deviation

12,21 1.4136 1.5296 0.4989 16.5801 1914
1,2,3,1 1.2596 1.3169 0.2462 4.1497 | 87.5969
1,3,2,1 1.4138 1.4635 0.2586 3.4796 | 70.4517
1,3,3,1 1.2597 1.2852 0.1436 2.2267 | 20.2875
0.5,3,3,1 1.1917 1.2138 0.1372 2.0026 | 17.6597
1,3,3.5,1 1.2190 1.2393 0.1172 1.8895 | 12.0125
1,35,3,1 1.2599 1.2787 0.1194 1.7343 | 11.1507
1,3.5,3.5,1 1.2190 1.2340 0.0980 1.6220 9.7836
14,41 1.8909 1.1985 0.0713 1.4059 9.2767
0.1,55,1 1.0455 1.0587 0.0533 0.9902 3.9426
0.1,6,5,1 1.0562 1.0647 0.0514 0.6883 3.0007
0.4,7.8,6,1 1.1050 1.1039 0.0282 0.0059 3.7621
0.25,7,6,1 1.0830 1.0813 0.0323 0.0310 3.0416
0.25,7.24,5.5,1 1.0999 1.0978 0.0379 0.0077 3.0475
0.25,7.25,5.55,1 1.0990 11.0969 0.0375 0.0038 3.0434
0.1,6,6,1 1.0466 1.0535 0.0423 0.6710 2.9399
0.1,7,71 1.0462 1.0494 0.3482 0.4361 2.4382
0.1,8,8,1 1.0448 1.0459 0.0293 0.2644 2.2561
0.3,8,6,1 1.0986 1.0966 0.0305 -0.1046 3.3282
0.2,8,5,1 1.1054 1.1024 0.0423 -0.0584 2.7897
0.3,8,7,1 1.0840 1.0822 0.0258 -0.1243 3.2567
0.3,10,7,1 1.0878 1.0856 0.0220 -0.3383 3.3906

4.2 Moments of Order Statistics

Moments of order statistics have applications in reliability and life testing. Moments of
order statistics are also designed for the replacement policy with the prediction of failure

of the future items determined from few early failures.
The pdf of the m™ order statistic X __ for the BIll-Pareto distribution is

AN _ i n-m g _ 5 —(am+aj+1)
;( b'(7") K‘(X XY - x\* g J
f (X ) = aff— —j [—j -1 1+ [—j -1 X > 6.
B(m,n-m+1) ~ 0\ 0 7 7
Moments about the origin of X, are given by
0 Z (_1)J ( ?7m ) -1 K -A-1 K -p ~(ameaj+d)
E(X ) =[x 22 aﬂf(fj (EJ “1| i1+ (fj 1 dx,
"y B(mn-m+1) 6\ 6 0 0
S0
E(X'..)=a0"— *Bl1l-—, — |, r=123,.. 18
m:n a B(m,n-m-i-l) |_o[l ] [ a(m+ J)+ ] r ( )
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1 - -
[;f}B(l—L,a(m + j)+ij.
p p
4.3 Incomplete Moments

Incomplete moments are used in mean inactivity life, mean residual life function and
other inequality measures.
The lower incomplete moments for random variable X with the Blll-Pareto distribution

Mean of X is

n

3

(') 2

(mn-m+1)=5

o

E(Xp,)=ab (19)

j
B

are
wir-e.o)-ensa) 157l | o
- L 3 N
Let ng - } =W, x=0(w_ﬂ+1JK, xrzer[w_ﬂ+1JK,then
Ey..(X")= a@fwgl] (1+ W;J; {L+w) " dw
[t |
M;(z):Em(Xf)—aefg(i;j r=123,., (20)

where B(Z ;.,.)is the incomplete beta function.

The upper incomplete moments for the random variable X with the BIlll-Pareto
distribution are

X

jresg;

NGRS

B

X

EJK—l 7 S PLEL
0 B B

The mean deviation about mean is MDy, = E|X — 44| = 244F (14 ) - 24M; (14

B
0

] |

-8 -a-1
} dx,

(21)

1

) and the

mean deviation about median is MD,, = E|X —M|=2MF(M)-2MM;(M )where
,ul’ = E(X) and M :Qé' Bonferroni and Lorenz curves for a specified probability p are

2

computed by B(p)=M;(q)/ps and L(p)=M,(q)/s4, whereq=Q, .

380
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4.4 Residual Life functions
The residual life, saym, (), of X with the Blll-Pareto distribution is

-p
1 n n-s £ (2 z " i i
m(z)=—=) (:)(-2) a@ ) |c B:||=| -1| 1-—,a+—;. (22)
The average remaining lifetime of a component at time z, say m, (), or life expectancy
known as mean residual life (MRL) function, is given by

e e (R I

The reverse residual life, say M, (), of X with the BllI-Pareto distribution is

M, (2)=E| (z-X)|x 2],

a+—

Mn(2)=%§(—l)s(2)z“‘saesizo(;J B{l(f]’(qﬂ- i i} . (24
; ,

The waiting time z for the failure of a component has passed with condition that this
failure had happened in the interval [0, z] is called mean waiting time (MWT) or mean
inactivity time. The waiting time z for the failure of a component of X with Blll-Pareto

distribution is defined by
B[l—i,mlj—
s BB
3l

Mw\m

1 3 1s s
:mz ()Z ‘af

s=0
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5. RELIABILITY MEASURES
In this section, reliability measures are studied.

5.1 Stress-strength Reliability for the BIl1-Pareto Distribution
Le X, ~BIll —Pareto(a,, ,x,0), X, ~ Blll — Pareto(a,, B,x,6) such that X, represents

strength and X, represents stress. Then, reliability of the component for the Blll-Pareto
distribution is

il

R=Pr(X,<X,) jf
[
Y

—ay

-fersG) [ ] H{z” —j:}l“”{l{(z)‘—lﬂ -
S I R I [ R

Therefore (i) R is independent of B,xand @ (ii) fore,=c,, R=05,X ad X, are

independently and identically distributed (i.i.d.) and there is equal chance that X, is
bigger than X, .

5.2 Estimation of Multicomponent Stress-Strength System Reliability for the BlII-
Pareto Distribution

Suppose a machine has at least components working out of “m” component. The
strengths of all components of the system are X;,X,,....X,,, and stress Y is applied to

the system. Both strengths X, X,,....X,,, and stress Y are i.i.d.. The cdf of Y is G and

F is cdf of X. The reliability of a machine is the probability that the machine functions
properly i.e.

Ry, = P(strengths > stress) = P[atleast"s"of (X;,X,,...X,)exceedY].  (27)
Let X ~ BIIl —Pareto (e, 3,6,x),Y ~ Blll —Pareto(c,, 3,6, x)With unknown  shape

parameters o, and o.,and common scale parameter ¢, where X and Y are

independently distributed. The reliability in multicomponent stress- strength for the BIlI-
Pareto distribution is:

m({m)®
Rs,m = Z (I j ,[ [1_ F(Y)]I[F(Y)]m_l dG(Y) (Bhattacharyya and Johnson; 1974), (28)

“ 2

l=s —00
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(m-0)

o el SCRIN AR CRN

_B'_O‘Z
b m (m)l 0o
Letting t={1+ (g) -1 , We obtain Rs,m: z(g jj‘(l_tV) tV(m E)dt.
{=s 0

: 1 11 m : 1
Let z=t",t=2zv, dt==2zV dz,then R, = [ jj(l t) U(m- )dt,
A% , /=S € 0

m\! n1 1
—zv dz,
o
Rs.m ZE > (ij[€+l,m—,€+lj
’ V=s\{ \Y

-1
0
Rslmzigi{]—[( —j+lﬂ where v =L, (29)
- \%

j=0 a2

MB

[N
]l
(%)

The probability Rs,m in (29) is called multicomponent stress-strength model reliability.

6. CHARACTERIZATIONS

In this section, the BIlI-Pareto distribution is characterized through: (i) conditional
expectation; (ii) ratio of truncated moments (iii) elasticity function (iv) reverse hazard
rate function (v) Characterization based on the conditional expectation of certain function
of the random variable (vi) conditional expectation of lower record values and (vii)
conditional expectation of lower record values with spacing.

6.1 Characterization via Conditional Expectation
Here the BIlI-Pareto distribution is characterized via conditional expectation.
Proposition 6.1.1: Let X : Q2 — (0,0) be a continuous random variable with cdf

F(x) (0<F(x)<1 for x>8), then fora.>1, X has pdf (4) if and only if

E_'(gy_l'ﬂ y <+(0{+1{1+a[@1 H or =0, (30

Proof. If X has pdf (4), then

E _(%jk % <t}:(F(t))_1£|:[g)K— } f (x)dx
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t P B
=(F(t))‘lﬂ[§j —1} x
ol XY x)* o x\* 1
(=) (2] ] H@ 4 }
Upon integration by parts and simplification, we obtain

T e e

Conversely, if proposition 6.1.1 holds, then

fle ] ool ] L

Differentiating (31) with respect to t, we obtain
ey L f() e 17 FO) | ey
l:(gJ —1} f (t)— (0!1)[1+ 0{(5) —1:| ](al){aﬂg(gJ

K 1A -
After simplification and integration, we arrive at F(t)=[1+{(%} -1 ] >0,

6.2 Characterization of the Blll-Pareto Distribution through Ratio of Truncated
Moments

The BIlI-Pareto distribution is characterized using Theorem 1 (Glanzel; 1987) on the
basis of a simple relationship between two truncated moments of X. Theorem 1 is given
in Appendix A.

Proposition 6.2: Let X:Q—(6,0) be a continuous random variable. Let

I LR

The random variable X has pdf (4) if and only if, the function p(x) has the form
s

p(x):[(gJK _1} x>0

Proof. If X has pdf (4), then
B

(1—F(x)E(h (X)X =x) =|:(ng —1:| X >0,

(1-F (x))E(hy ()| X = x) = ng]( —1} X >0,
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en(lxza o T
E[hz(X)|X2x]_p( )—[[9] 1}, 6.

k-1 K
Conversely, if p(x) has the given form, then p’(x):ﬂ—(—j [(—j - }

0

The differential equation §'(X)= (XF))}S:(()X:Z();Z( ): Zﬂgnijxll(gjl( —~ } has solution

2p

s(x)=1In (gjk—li x>0,

Therefore, in light of theorem 1, X has pdf (4)
Corollary 6.2.1: Let X :Q— (6,0) be a continuous random variable and let

. "y . - a+l
hz(x):m_lﬂgj _ } {1{%) _1} } , x>60. The pdf of X is (4) if and only if

there exist functions p(x)andh,(x) (defined in Theorem 1), satisfying the differential
equation

p(x)th(lg)— ) Y %@ H%) ‘1T1 {“ K%} - r } L@

Remark 6.2.1: The general solution of (32) is

o[ (&) ] s 57 ol ]} ool

where D is a constant.
6.3 Characterization of the Blll-Pareto Distribution Based on Reverse Hazard Rate
Function

In this sub-section, the Blll-Pareto distribution is characterized via reverse hazard rate
function.

Definition 6.3.1: The reverse hazard function I (X), of a twice differentiable function
F, satisfies the differential equation

i[lnf(x)]=ré( ) e ().

Proposition 6.3.1: Let X : 2 —(0,) be contlnuous random variable. The pdf of X is (4) if

and only if its reverse hazard rate function, . (X) satisfies the first order differential
equation
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BEN

7|

(33)

AR d

— e—r(xlc—l el
afki r

1)

Proof If X has pdf (4), then (33) surely holds. Now if (33) holds, then

d —-k+1 -K d 9
&[rF (X)x J = affx0 X

1G]

, X>0,

or 1 po=ap”[ %] [Ezj’(ﬂrl
R

which is the reverse hazard rate function of the Blll-Pareto distribution.

6.4 Characterization via Elasticity Function
In this sub-section, the BIlI-Pareto distribution is characterized via elasticity.

Definition 6.4.1: Let X :0—(6,0) be a continuous random variable with pdf f (x).The

elasticity function € (X) is a twice differentiable function satisfying the differential
equation
er(x) e (x
il:m f (X)]=£+i)—l_
dx e (x) X X
Proposition 6.4.1: Let X :Q — (6,%) be continuous random variable. The pdf of X is (4) if

its elasticity function, e (X), satisfies the first order differential equation

H@ ‘l} : H%) —1:&1}% (x)+ g[g] {(ﬂ +1)H§jk —1:ﬂ +1}ep (%)= aﬂg(zj“_ (34)

o\ o
Proof If X has pdf (4), then (34) surely holds. Now if (34) holds, then

i_
dx_

X

or e (x)= aﬁfc[ng {@ _1r1 {H KQ

& A (5 foes

which is the elasticity function of the Blll-Pareto distribution.

386

= aﬂl{'%{( X
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6.5 Characterization based on the conditional expectation of certain function of the
random variable
In this subsection we employ a single function y of X and characterize the distribution

of X in terms of the truncated moment of (X ) . The following proposition has already

appeared in Hamedani’s previous work (2013), so we will just state it here which can be
used to characterize the Blll-Pareto distribution.
Proposition 6.5.1. Let X:Q—(e, ) be a continuous random variable with cdf F. Let

w(X) be a differentiable function on (e, f) with lim _ w(x)=1. Then for §=1 ,

E[w(X)| X £X] =0y (X), X €(e, f) implies that w(x) = (F(x))%_l , X e (e, T).
e TP
Remark 6. 5.1. For (e, f) = (0,%), w(X) = 14{[5) —1} and 5= -2,
o a+l

Proposition 6.5.1 provides a characterization of the Blll-Pareto distribution.

6.6 Characterization via Conditional Expectation of Record Values

Faizan and Khan (2011) and Khan and Faizan (2014) characterized distributions via
conditional expectation of lower record values. We characterize Blll-Pareto distribution
via conditional expectation of the lower record values.

Proposition 6.6.1: Let X:Q2—(a,b)be a continuous random variable with cdf F (x)and

pdf f (x). Let X, be the rth record value of a random sample X, X,,...X .Then, for
two successive values X, ,and X, , 1<m<r<s<n,

D GEIh X | Xy =X] =§chi with/=i-1,1,

i=r i=r

if and only if F(x)=e*"® a>0, where c, are real numbers satisfying > ¢, =0 with
¢, =0and h(x) is differentiable function of x.

. TP
Remark 6.6.1: Taking a=c, h(x)=1In 1{(%) — } , Proposition 6.6.1 provides a

characterization of the Blll-Pareto distribution.

6.7 Characterizations Based on the Conditional Expectation of the Lower Record
Values with Spacing

We characterize the BllI-Pareto distribution via conditional expectation of the lower
record values with spacing.

Proposition 6.7.1: Let X :Q—(a,,a,) be a continuous variable with pdf f(x) and cdf

F(x), where a; and a; may be finite or infinite. Let X . be the rth lower record value,

(r)
then the conditional expectation of X, given X, for 1</ <x,is

E[XL(")‘XL“J =a,,h(x)+b,,, (=rr+l.
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If and only if F(a)= [ah(x)+b]c, a, < X < a, and h(x) is a monotonic and differential
function of x such thath(x)—»>0as x—a, and F(x)—>0asx— a where

_ 1 {—K . b
a,, =(1+c*) " and bd_—a(l—ad).
ey 17
Remark 6.7.1: Takinga=1b=1, h(x):[(gj —} ,c=—a, Proposition 6.7.1

provides a characterization of the BllI-Pareto distribution.

7. MAXIMUM LIKELIHOOD ESTIMATION
In this section, parameter estimates are derived using maximum likelihood method. The
log likelihood function for the Blll-Pareto distribution with the vector of parameters

=(a,B.0,x)is

nina+ning+nnx-nklnd+(x-1)Inx -

t=i(0)- ool (5] Al oengnte] (5T |

where @ is assumed to be known. In order to compute the estimates of the parameters of
the BIII-P distribution, the following nonlinear equations must be solved simultaneously:

aa . ;I{1+K 'Yl}ﬂ]w, (36)
ot

v (a+1)2{1+{(%)’(1r]1 e
§ £—n|n9+|nx (B+1) Zﬂj 1J [’;)K|n(’;j+ )

« w3 s el |

8. SIMULATION STUDY

In this Section, we perform a simulation study by using selected the BIlI-Pareto
distributions. To see the performance of MLE's of these distributions, we generate 1,000
samples of sizes 50, 100, 200 and 400 with its quantile function of the BIll-Pareto
distribution. All results related to MLEs have been obtained by the optim-CG routine in
the R programme. The results of the simulations are reported in Table 2. From this Table,
we observe that the estimates approach true values as the sample size increases whereas
the standard deviations of the estimates decrease, as expected.

(35)
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Table 2. Empirical means and standard deviations (in parenthesis) for selected the BllI-
Pareto distributions

True ..
Sample Parameters Empirical Results
sizes - - A N
a!ﬂy 0!’( (04 ﬁ 0 K
52053 4.9994 20248 | 05023 | 3.0184
2,05, (0.0123) | (0.1470) | (0.0116) | (0.0891)
a1 29977 20456 | 1.0041 | 5.0531
2.1, (0.0923) | (0.1777) | (0.0098) | (0.2205)
_ 0.7611 6.0368 | 10.0343 | 0.5046
n=50 0.7.6,10,05 (0.2549) | (0.5902) | (0.2120) | (0.0276)
05508 10.0117 50438 | 50650 | 0.8063
550, (0.0809) | (0.3371) | (0.3111) | (0.0374)
6.9729 08122 | 03009 | 9.9854
7,0.803,10 (0.2484) | (0.0744) | (0.0055) | (0.1679)
52053 4.9998 20142 | 05016 | 3.0082
2,05, (0.0089) | (0.1037) | (0.0085) | (0.0703)
a1t 2.9915 20099 | 09997 | 50338
2.1, (0.0532) | (0.1652) | (0.0097) | (0.2110)
) 0.7525 59842 | 10.0081 | 0.5036
n=100 0.7.6,10,05 (0.1315) | (0.2278) | (0.0717) | (0.0194)
05508 9.9992 5.0058 | 50500 | 0.8056
550, (0.0372) | (0.2006) | (0.1892) | (0.0239)
6.9977 0.8104 | 0.3006 | 9.9998
7,0.803,10 (0.0171) | (0.0555) | (0.0042) | (0.0117)
52053 5.0003 20021 | 04996 | 3.0006
2,05, (0.0084) | (0.0835) | (0.0067) | (0.0038)
291t 2.9997 19995 | 1.0004 | 5.0027
2.1, (0.0117) | (0.0890) | (0.0054) | (0.1623)
_ 0.7134 6.0069 | 10.0078 | 0.5019
n=200 0.7.6,100.5 (0.0862) | (0.1953) | (0.0586) | (0.0137)
105508 10.0010 50026 | 50359 | 0.8044
550 (0.0301) | (0.1307) | (0.1269) | (0.0167)
6.9994 0.8042 | 0.3002 | 10.0002
7,0.80.3,10 (0.0042) | (0.0330) | (0.0028) | (0.0032)
- 2054 5.0001 19943 | 04999 | 2.9994
2,05, (0.0065) | (0.0527) | (0.0038) | (0.0382)
221t 2.9998 19997 | 0.9998 | 50123
2.1, (0.0250) | (0.0792) | (0.0047) | (0.1399)
) 0.7093 6.0022 | 10.0027 | 05011
n=400 0.7.6,10,05 (0.0624) | (0.1539) | (0.0511) | (0.0092)
105508 9.9998 4.9967 | 50008 | 0.8010
550, (0.0182) | (0.1169) | (0.1201) | (0.0146)
6.9999 0.8032 | 02999 | 10.0002
7,08,0310 (0.0006) | (0.0282) | (0.0020) | (0.0019)

9. APPLICATIONS
The BIlI-Pareto distribution is compared with IL-Pareto, LL-Pareto, Pareto and Burr 111
(BII) distributions. Different goodness fit measures such as Cramer-von Mises (W),
Anderson Darling (A), Kolmogorov- Smirnov statistics with p-values, Akaike
information criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian
information criterion (BIC), Hannan-Quinn information criterion (HQIC) and likelihood
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ratio statistics (—2¢) are computed for monthly remission times of 128 cancer patients
(Lee and Wang, 2003), average annual percent change in private health insurance
premiums and strength of carbon fibers using R-Package.

The better fit corresponds to smaller W, A, K-S, AIC, CAIC, BIC, HQIC and —27 value.
The maximum likelihood estimates (MLEs) of unknown parameters and values of
goodness of fit measures are computed for Blll-Pareto distribution and its sub and
competing models. The MLEs, their standard errors (in parentheses) and goodness-of-fit
statistics like W, A, K-S (p-value) are given in table 3, 5 and 7. Table 4, 6 and 8 displays
goodness-of-fit values.
9.1 Application I: Monthly Remission Times
Monthly remission of 128 cancer patients (bladder) are :
8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26,3.57, 5.06, 7.09,
9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54,3.70, 5.17,
7.28,9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77,32.15, 2.64, 3.88,5.32,
7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34,7.59, 10.66, 15.96, 36.66, 1.05, 2.69,
4.23,5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26,2.83,
4.33,5.49,7.66,11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34,
5.71, 7.93, 11.79,18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37,
12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36,
6.93, 8.65, 12.63 and 22.69”.

“0.08,2.09, 3.48, 4.87, 6.94,

Table 3: MLEs, their standard errors (in parentheses) and Goodness-of-fit statistics
for cancer patients’ data

390

Model K 0 K-S
¢ p W A p-value
Bill-Pareto | 0.3813 | 8.9283 | 01382 | 0.08 0.038
(0.1034) | (1.5955) | (0.0051) 00203 101425 | 9909
IL-Pareto | 23.9531 | _ 08514 | 008 | 05866 |0, |0.1234
(4.7842) (0.0546) ' (0.04171)
LL- Pareto | - 52584 |0.1610 | 0.08 0.053
(0.3965) | (0.0034) 0.1382 10.9346 | g675)
Pareto 02319 | 0.08 0.4246
(0.0206) 0.2904 118785 | 5 2e-16)
BIll 4207 | 10333 |- 0.1017
(0.4054) | (0.0604) 0.3856 124543 | 5 1413)
Table 4: Goodness-of-fit statistics for cancer patients’ data
Model AIC CAIC BIC HQIC o7
Blll-Pareto | 818.9111 | 819.1062 | 827.4436 | 822.3777 | 812.9110
IL-Pareto | 868.1794 | 868.2762 | 873.8678 | 870.4905 | 864.1794
LL- Pareto | 828.7483 | 828.8451 | 834.4367 | 831.0505 | 824.7484
Pareto 1081182 | 1081.214 | 1084.026 | 1082.338 | 1079.182
BIlI 857.3729 | 857.4689 | 863.0769 | 859.6905 | 853.3728
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We can perceive that the BIlI-Pareto distribution is best fitted model because the values
of all criteria of goodness of fit are significantly smaller for Blll1-Pareto distribution.

Estinatedpofof 84 disribuion for Cancer PatentsData Kagenee Sunivl oo BIL distiuton o Carcr Pl D

OtsenedPrtatites

Fig. 5: Fitted pdf, cdf, survival and pp plots of the BllI-Pareto distribution for
Cancer Patients Data

We can perceive that the BllI-Pareto distribution is best fitted to empirical data (Fig. 5).
9.2 Application I1: Insurance Premiums

The average annual percent change in private health insurance premiums are: 14.4, 14.0,
15.4, 9.4, 11.7, 15.0, 24.9, 20.7, 12.5, 14.9, 12.6, 16.7, 13.8, 11.0, 12.9, 10.1, 1.9, 8.5,
16.5, 15.3,13.3,9.8,8.4,7.9,3.7,5.1,4.6,4.4,54,6.1, 8.0, 10.0, 11.2, 10.1, 6.4, 6.7, 5.7,
5.8.

Table 5: MLEs, their standard errors (in parentheses) and Goodness-of-fit statistics
for insurance premiums

Model K 0 K-S
“ p w A p-value
Blll-Pareto | 0.2029 11.9926 | 0.3257 1.9 0.0783
(0.1012) | (4.7618) | (0.0162) 0.0272 1 02101 | 4 9779
IL-Pareto | 20.0432 | 2151 |19 | 01975 |, o | 0.1455
(7.7497) (0.2811) ' (0.4136)
LL- Pareto | ---- 4.1537 0.4227 1.9 0.1002
(0.5758) | (0.0211) 0.1392 1 0.8027 | 4 g516)
Pareto - 0.6067 1.9 0.3723
(0.0998) 0.1404 1 0.7914 | 7 h21e-05)
Bl 29.0536 | 1.6935 - - 0.1653
(9.3745) | (0.1743) 0.2188 | 1.3453 | 499
Table 6: Goodness-of-fit statistics for insurance premiums
Model AIC CAIC BIC HQIC o7
Blll-Pareto 220.2731 | 221.0003 | 225.1058 | 221.9768 214.2730
IL-Pareto 227.4998 | 227.8527 | 230.7216 | 228.6356 223.4998
LL- Pareto 2245074 | 224.8603 | 227.7292 | 225.6432 220.5074
Pareto 282.3576 | 282.4719 | 283.9685 | 282.9255 280.3576
Bl 246.2924 | 246.6352 | 249.5675 | 247.4577 242.2924
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We can perceive that the Blll-Pareto distribution is best fitted model because the values
of all criteria of goodness of fit are significantly smaller for the BIlI-Pareto distribution.

st i BIP distibun o nsurance e Dta stibuto 2 @ e v P B0 bt s 9P Pltfor BIIP disibutonfor nsurance Premiums Deta

OtsenedPrties

Fig. 6: Fitted pdf, cdf, survival and pp plots of the BllI-Pareto distribution for
insurance premiums

We can perceive that the BllI-Pareto distribution is best fitted to empirical data (Fig.6)
9.3 Application I11: Strength of Carbon Fibers

The tensile strength of 100 carbon fibers are: 3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31,
3.15,2.81,1.41, 2.76, 3.19, 1.59, 2.17, 3.51, 0.84, 1.61, 1.57, 1.89, 2.74, 3.27, 2.41, 3.09,
2.43, 2.53, 2.81, 3.31, 2.35, 2.77, 2.68, 4.91, 1.57, 2.00,1.17, 2.17, 0.39, 2.79, 1.08, 2.88,
2.73,2.87, 3.19, 1.87, 2.95, 2.67, 4.20, 2.85, 2.55, 2.17, 2.97, 3.68, 0.81, 1.22, 5.08, 1.69,
3.68, 4.70, 2.03, 2.82, 2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 3.33, 2.56, 2.59, 2.83, 1.36, 1.84,
5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56,
2.38,1.92,0.98,1.59,1.73,1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65.

Table 7: MLEs, their standard errors (in parentheses) and Goodness-of-fit statistics
for strength of carbon fibers

Model K 0 K-S
“ p w A p-value
Blll-Pareto | 0.2391 | 13.1598 | 0.3128 | 0.39 0.0557
(0.0648) | (2.6949) | (0.008) 0.0517°10.3213 | ) 91g5)
IL-Pareto | 30.8544 2.1562 | 0.39 0.1591
(7.6556) | — (0.1611) 0.7029 ) 3.9721 (0.01334)
LL- Pareto 52540 |0.3770 |0.39 0.4046 0.1072
— (0.4515) | (0.009) ' 2.1981 | (0.2057)
Pareto 0.5476 | 0.39 | 0.4740 0.4022
— — (0.055) 2.6314 | (2.442e-14)
Bl 49677 | 22867 | 0.6239 0.1476
(0.5619) | (0.148) ' 3.4468 | (0.02556)
Table 8: Goodness-of-fit statistics for strength of carbon fibers
Model AlIC CAIC BIC HQIC Y
Blll-Pareto 279.1095 279.3621 | 286.8949 282.2595 273.1094
IL-Pareto 319.259 319.384 324.4492 321.359 315.2590
LL- Pareto 297.4927 297.617 | 302.683 299.5927 293.4928
Pareto 494.3998 494.4411 | 496.995 495.4498 492.3998
BIII 327.7371 327.8608 | 332.9474 329.8458 323.7370
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We can perceive that the BllI-Pareto distribution is best fitted model because the values
of all criteria of goodness of fit are significantly smaller for the BllI-Pareto distribution.

Estmaed pafof 8P distriuiion for Srength of Carbon Fibers Dela. Estimted o of BIPdistbuto for Srength ofCarban Fiers D

trengthofCaton Fvers Daa

1 1 3 i 5

OtsenedPbaties

Fig. 7: Fitted pdf, cdf, survival and pp plots of the Blll-Pareto distribution for
strength of carbon fibers
We can perceive that the BllI-Pareto distribution is best fitted to empirical data (Fig. 7).

10. CONCLUDING REMARKS

We have developed a flexible Blll-Pareto distribution on the basis of the T-X family
technique. We have studied certain properties of this distribution including descriptive
measures, sub-models, moments, factorial moments, incomplete moments, inequality
measures, residual life functions, reliability measures and compounding. The Blll-Pareto
distribution is characterized via different techniques. The MLEs for the BllI-Pareto
distribution have been computed. The simulation study for the performance of the MLEs
of the BIlI-Pareto distribution with respect to sample size n is carried out. Applications of
the Blll-Pareto model to real data sets (monthly remission times of cancer patients, health
insurance premiums and strength of carbon fibers) are presented to show the significance
and flexibility of the Blll-Pareto distribution. Goodness of fit shows that the Blll-Pareto
distribution is the best fitted model. We have shown that the BllI-Pareto distribution is
empirically better for lifetime applications.
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Appendix A
Theorem 1: Let (Q, F.P) be a probability space and let [d,,d,] be an interval with
d, <d, d, =—0,d,=). Also suppose that a continuous random variable
X :Q—>[d,,d,] has distribution function F. Let h(x) and h,(x) be two real functions
E[h, (X)|X>x]
E[h,(X)|X>x]
should be in simple form. Assume that, h(x), h,(x)¢C([d,,d,]) p(x)&C?([d,,d,]) and F
is strictly monotone function and twofold continuously differentiable on interval[d,,d,].
Assume that the equality h,(X)p(x)=h(X) has no real result inside of[d,,d,]. Then

cdf “F “is obtained from h(x),h,(x) andp(x) functions  as

ot P |
S0 SRR

p(t)
"(t)h,(t
S'(t) = ( ) 2( ) and K is a constant, selected to make
)-hi(t)

p
p(t)h,(t)—h(t

continuous on [d,,d,] such that p(x)where p(X) is real function and

exp(—s(t))dt, where S(t) is obtained from equation
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