
Pak.j.stat.oper.res.  Vol. 16  No.2 2020 pp 225-237  DOI: http://dx.doi.org/10.18187/pjsor.v16i2.2931 

 
The Weighted Power Lindley Distribution with Applications on the Life Time Data 225 

 

 

 

 

The Weighted Power Lindley Distribution with 

Applications on the Life Time Data 

Aafaq A. Rather1, Gamze Ozel2* 

* Corresponding Author 
 

 

1. Department of Statistics, Annamalai University, Annamalai nagar, Tamil Nadu, India, aafaq7741@gmail.com      

2. Department of Statistics, Hacettepe University, Ankara, Turkey, gamzeozl@hacettepe.edu.tr  

 

 

Abstract  

 

In this paper, we propose a new version of the power Lindley distribution known as weighted power Lindley 

distribution. The different structural properties of the new model are studied such as moments, generating functions, 

likelihood ratio test, entropy measures and order statistics. The maximum likelihood estimators of the parameters 

and the Fisher’s information matrix are discussed. It also provides more flexibility to analyse complex real data 

sets. Applications of the model to real data sets are provided using the new distribution, which shows that the 

weighted power Lindley distribution can be used quite effectively in analysing real life time data. 

 

Key Words: Weighted distribution, Power Lindley distribution, Reliability, Entropy, Order Statistics, Maximum 

likelihood estimator 

 

 

1. Introduction 

The weighted distributions are applied in various research areas related to biomedicine, reliability, ecology and 

branching processes. The concept of weighted distributions is traceable to the work of Fisher (1934) in respect of his 

studies on how methods of ascertainment can affect the form of distribution of recorded observations. Later, it was 

introduced and formulated in a more general way by Rao (1965) with respect to modelling statistical data where the 

routine practice of using standard distributions for the purpose was dismissed as inappropriate. The weighted 

distribution reduces to length biased distribution when the weight function considers only the length of the units. The 

concept of length biased sampling was first introduced by Cox (1969) and Zelen (1974). More generally, when the 

sampling mechanism selects units with probability proportional to some measure of the unit size, the resulting 

distribution is called size-biased. There are various good sources which provide the detailed description of weighted 

distributions. Many newly introduced distributions along with their weighted versions exist in literature whose 

statistical behaviour is extensively studied during decades. Das and Kundu (2016) discussed on various statistical 

properties of the weighted exponential distribution and its length biased version. Dar et al. (2018) obtained the 

weighted transmuted power distribution and discussed its properties and applications. Rather and Subramanian (2019) 

derived the weighted sushila distribution with various statistical properties and its applications. 

 A two-parameter power Lindley (PL) distribution was suggested by Ghitany et al. (2013). They introduced 

a new generalization of the Lindley distribution by considering the power transformation of the random variable 

X=T1/β. Nadarajah et al. (2011) discussed another generalization of the Lindley distribution named as the generalized 

Lindley distribution. Ashour and Eltehiwy (2014) derived the exponentiated PL distribution with properties and its 

applications. Alizadeh et al. (2017) obtained a new extension of the PL distribution, namely odd log-logistic PL 

distribution, for analysing bimodal data and discussed its properties. 

 In this paper, we introduce a new distribution with three parameters, namely as weighted power Lindley 

(WPL) distribution, with the hope that it will attract many applications in different disciplines such as reliability, 

survival analysis, biology and others. On applying the weighted version, the third parameter indexed to this distribution 

makes it more flexible to describe different types of real data than its sub-models. The WPL distribution, due to its 

flexibility in accommodating different forms of the hazard function, seems to be more suitable distribution that can be 

used in a variety of problems in fitting survival data.  
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 The paper is organized as follows: In Section 2, we define the proposed WPL distribution. Some structural 

properties are discussed in Section 3. The likelihood ratio test is given in Section 4. Then, Renyi and Tsallis entropy 

measures of the WPL distribution are obtained in Section 5. Order statistics are obtained in Section 6. Finally, the real 

life time data has been fitted and the fit has been found to be good. 

 

 

2. Weighted Power Lindley (WPL) Distribution 

2.1. Density and Cumulative Density Functions 

The probability density function (pdf) of the PL distribution with parameters β and θ and is defined by 

 𝑓(𝑥) =
𝛽𝜃2(1+𝑥𝛽)𝑥𝛽−1𝑒−𝜃𝑥

𝛽

(𝜃+1)
, 𝑥 > 0, 𝛽, 𝜃 > 0   (1) 

Suppose X is a non-negative random variable with pdf𝑓(𝑥). Let 𝑤(𝑥) be the non-negative weight function, then the 

pdf of the weighted random variable 𝑋𝑤is given by 

 𝑓𝑙(𝑥) =
𝑤(𝑥)𝑓(𝑥)

𝐸(𝑤(𝑥))
, 𝑥 > 0 

where𝑤(𝑥) is a non-negative weight function and𝐸(𝑤(𝑥)) = ∫𝑤(𝑥)𝑓(𝑥)𝑑𝑥.  

 

In this paper, we will consider the weight function as 𝑤(𝑥) = 𝑥𝑐, and using the definition of weighted distribution, 

the pdf of the WPL distribution is given as 

 𝑓𝑤(𝑥) =
𝑥𝑐𝑓(𝑥)

𝐸(𝑥𝑐)
,

  

 (2)

 
where c > 0 is the weight parameter and the expected value is defined as  

𝐸(𝑥𝑐) = ∫ 𝑥𝑐𝑓(𝑥)
∞

0

𝑑𝑥

 

 

=
1

(𝜃+1)
(
1

𝜃
)

𝛽+𝑐

𝛽
−2

(𝛤 (
𝑐

𝛽
+ 1) +

1

𝜃
𝛤 (

𝛽+𝑐

𝛽
+ 1))

   

(3) 

 

Substituting Eqs. (1) and (3) in Eq. (2), we obtain the density function of WPL distribution as follows: 

 

𝑓𝑤(𝑥) =
𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐−1(1+𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

,  𝑥 > 0,  𝛽, 𝜃, 𝑐 > 0      (4)

 

  

and the cumulative density function (cdf) of the WPL distribution is obtained by 

 𝐹𝑤(𝑥) = ∫ 𝑓𝑤(𝑥)𝑑𝑥
𝑥

0

 

  

= ∫
𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐−1(1+𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

𝑑𝑥.
∞

0

 

After simplification, the cdf of the WPL distribution is given by 

 

𝐹𝑤(𝑥) =
(𝛾((

𝑐

𝛽
+1),𝑥)+

1

𝜃
𝛾((

𝛽+𝑐

𝛽
+1),𝑥))

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
(𝛤(

𝛽+𝑐

𝛽
+1)))

                            (5)

 

Figures 1 and 2 represent graphs for the pdf and cdf of the WPL distribution for several values of parameters.  

 



Pak.j.stat.oper.res.  Vol. 16  No.2 2020 pp 225-237  DOI: http://dx.doi.org/10.18187/pjsor.v16i2.2931 

 
The Weighted Power Lindley Distribution with Applications on the Life Time Data 227 

 

        
 

2.2. Survival, Hazard and Reversed Hazard Functions 

 

In this section, we discuss about the survival function, hazard and reverse hazard functions of the WPL distribution. 

The survival function or the reliability function of the WPL distribution is given by 

 

 
𝑆(𝑥) = 1 − 𝐹𝑤(𝑥) 

 𝑆(𝑥) = 1 −
1

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
(𝛤(

𝛽+𝑐

𝛽
+1)))

(𝛾 ((
𝑐

𝛽
+ 1) , 𝑥) +

1

𝜃
𝛾 ((

𝛽+𝑐

𝛽
+ 1) , 𝑥)) 

 

The hazard function is also known as the hazard rate function, instantaneous failure rate or force of mortality and is 

given for the WPL distribution as  

 

 

ℎ(𝑥) =
𝑓𝑤(𝑥)

𝑆(𝑥)
 

 

ℎ(𝑥) =
𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐−1(1+𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
(𝛤(

𝛽+𝑐

𝛽
+1)))−(𝛾((

𝑐

𝛽
+1),𝑥)+

1

𝜃
𝛾((

𝛽+𝑐

𝛽
+1),𝑥))

 

 

The reverse hazard function of the WPL distribution is given by 

  

 

ℎ𝑟(𝑥) =
𝑓𝑤(𝑥)

𝐹𝑤(𝑥)

 

 

ℎ𝑟(𝑥) =
𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐−1(1+𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛾((
𝑐

𝛽
+1),𝑥)+

1

𝜃
𝛾((

𝛽+𝑐

𝛽
+1),𝑥))

 

 

 

Figures 3 and 4 represent graphs for the Survival function and Hazard rate function of the WPL distribution for several 

values of parameters.  
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3. Structural Properties  

In this section, we investigate various structural properties of the WPL distribution. 

Let X denotes the random variable of WPL distribution with parameters β, θ and c, then its rth order moment E(Xr) 

about origin is given by 

 

 

𝐸(𝑋𝑟) = 𝜇𝑟
′ = ∫ 𝑥𝑟𝑓𝑤(𝑥)𝑑𝑥

∞

0

  

  

= ∫
𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐+𝑟−1(1+𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

∞

0
𝑑𝑥.

 
 

After simplifying the expression, we get 

 

  

𝐸(𝑋𝑟) =
𝛤(
𝑐+𝑟

𝛽
−1)+

1

𝜃
𝛤(
𝛽+𝑐+𝑟

𝛽
+1)

𝜃

𝑟
𝛽(𝛤(

𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

.

 

 

Putting r =1, we get the expected value of WPL distribution as follows: 

   

𝐸(𝑋) =
𝛤(
𝑐+1

𝛽
−1)+

1

𝜃
𝛤(
𝛽+𝑐+1

𝛽
+1)

𝜃

1
𝛽(𝛤(

𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

 (6)

 

and putting r = 2, we obtain the second moment as 

 

𝐸(𝑋2) =
𝛤(
𝑐+2

𝛽
−1)+

1

𝜃
𝛤(
𝛽+𝑐+2

𝛽
+1)

𝜃

2
𝛽(𝛤(

𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

.

 

Therefore, the variance of the WPL distribution is given by 

 

𝑉(𝑋) =
𝛤(
𝑐+2

𝛽
−1)+

1

𝜃
𝛤(
𝛽+𝑐+2

𝛽
+1)

𝜃

2
𝛽(𝛤(

𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

− (
𝛤(
𝑐+1

𝛽
−1)+

1

𝜃
𝛤(
𝛽+𝑐+1

𝛽
+1)

𝜃

1
𝛽(𝛤(

𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

)

2

.

 
 

3.1 Harmonic mean 

.
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The harmonic mean of the WPL distributed random variable X can be written as 

𝛨 = 𝐸 (
1

𝑥
) = ∫

1

𝑥

∞

0

𝑓𝑤(𝑥)𝑑𝑥 = ∫
𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐−2(1 + 𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤 (
𝑐
𝛽
+ 1) +

1
𝜃
𝛤 (
𝛽 + 𝑐
𝛽

+ 1))

∞

0

𝑑𝑥. 

After simplifying the expression, we get 

 

 𝛨 =
𝜃

1
𝛽𝛤(

𝑐+1

𝛽
−1)+

1

𝜃
𝛤(
𝛽+𝑐+1

𝛽
+1)

𝜃

1
𝛽(𝛤(

𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

. 

 

3.2 Moment generating function and Characteristic function 

Let X have a WPL distribution, then the MGF of X is obtained as 

 

𝑴𝑿(𝒕) = 𝑬(𝒆
𝒕𝒙) = ∫ 𝒆𝒕𝒙𝒇𝒘(𝒙)𝒅𝒙

∞

𝟎

 Using Taylor’s series, we obtain 

 

𝑴𝑿(𝒕) = 𝑬(𝒆
𝒕𝒙) = ∫ (𝟏 + 𝒕𝒙 +

(𝒕𝒙)𝟐

𝟐!
+⋅⋅⋅⋅) 𝒇𝒘(𝒙)𝒅𝒙

∞

𝟎
 

 

= ∫ ∑
𝒕𝒋

𝒋!

∞
𝒋=𝟎 𝒙𝒋𝒇𝒘(𝒙)𝒅𝒙

∞

𝟎

 

 

= ∑
𝒕𝒋

𝒋!

∞
𝒋=𝟎 𝑬(𝑿𝒋)

 

 

= ∑
𝑡𝑗

𝑗!

∞
𝑗=0 (

𝛤(
𝑐+𝑗

𝛽
−1)+

1

𝜃
𝛤(
𝛽+𝑐+𝑗

𝛽
+1)

𝜃

𝑗
𝛽(𝛤(

𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

)

 

 

Similarly, the characteristic function of the WPL distribution can be obtained as 

 

 
𝜙𝑥(𝑡) = 𝑀𝑥(𝑖𝑡) = ∑

(𝑖𝑡)𝑗

𝑗!

∞
𝑗=0 (

𝛤(
𝑐+𝑗

𝛽
−1)+

1

𝜃
𝛤(
𝛽+𝑐+𝑗

𝛽
+1)

𝜃

𝑗
𝛽(𝛤(

𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

).

 

4. Likelihood Ratio Test 

Let X1, X2, ... , Xn be a random sample from the WPL distribution. We use the hypothesis 

 

 
𝐻𝑜: 𝑓(𝑥) = 𝑓(𝑥; 𝛽, 𝜃)against𝐻1: 𝑓(𝑥) = 𝑓𝑤(𝑥; 𝛽, 𝜃, 𝑐)

 In order to test whether the random sample of size n comes from the PL distribution or the WPL distribution. Then, 

the following test statistic is used 

 

 

𝛥 =
𝐿1

𝐿0
= ∏

𝑓𝑤(𝑥;𝛽,𝜃,𝑐)

𝑓(𝑥;𝛽,𝜃)

𝑛
𝑖=1 = ∏

𝜃

𝛽+𝑐
𝛽
−2
𝑥𝑖
𝑐(𝜃+1)

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

𝑛
𝑖=1

  

  

𝛥 = (
𝜃

𝛽+𝑐
𝛽
−2
(𝜃+1)

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

)

𝑛

∏ 𝑥𝑖
𝑐𝑛

𝑖=1  
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We reject the null hypothesis, if 

 

 

𝛥 = (
𝜃

𝛽+𝑐
𝛽
−2
(𝜃+1)

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

)

𝑛

∏ 𝑥𝑖
𝑐𝑛

𝑖=1 > 𝑘

 

 

 

𝛥 = ∏ 𝑥𝑖
𝑐𝑛

𝑖=1 > 𝑘(
(𝛤(

𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

𝜃

𝛽+𝑐
𝛽
−2
(𝜃+1)

)

𝑛

 

    

 

orΔ∗ = ∏ 𝑥𝑖
𝑐𝑛

𝑖=1 > 𝑘∗where 𝑘∗ = 𝑘(
(𝛤(

𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

𝜃

𝛽+𝑐
𝛽
−2
(𝜃+1)

)

 

 

For large sample size n, 2 log∆ is distributed as chi-square distribution with one degree of freedom and also p-value 

is obtained from the chi-square distribution. Thus, we reject the null hypothesis, when the probability value is given 

by 

 

𝑝(𝛥∗ > 𝛼∗)

  

where 𝛼∗ = ∏ 𝑥𝑖
𝑐𝑛

𝑖=1 is less than a specified level of significance and ∏ 𝑥𝑖
𝑐𝑛

𝑖=1 is the observed value of th statistic 𝛥∗. 
 

 

5. Entropy Measures 

The concept of entropy is important in different areas such as probability and statistics, physics, communication theory 

and economics. Entropy measures quantify the diversity, uncertainty, or randomness of a system. Entropy of a random 

variable X is a measure of variation of the uncertainty.  

5.1 Renyi Entropy  

The Rényi entropy is important in ecology and statistics as index of diversity. It was proposed by Rényi (1957). The 

Rényi entropy of order α for a random variable X is given by 

 𝑒(𝛼) =
1

1−𝛼
𝑙𝑜𝑔(∫ 𝑓𝛼(𝑥)𝑑𝑥)    

where 𝛼 > 0 and 𝛼 ≠ 1. Then, we have
 

 

𝑒(𝛼) =
1

1−𝛼
𝑙𝑜𝑔 ∫ (

𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐−1(1+𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

)

𝛼

𝑑𝑥
∞

0

 

  

=
1

1−𝛼
𝑙𝑜𝑔 ((

𝛽𝜃

𝛽+𝑐
𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

)

𝛼

∫ (𝑥𝛽+𝑐−1(1 + 𝑥𝛽)𝑒−𝜃𝑥
𝛽
)
𝛼

𝑑𝑥
∞

0
).

 

After simplifying the expression, we get 

 

𝑒(𝛼) =
1

1 − 𝛼
𝑙𝑜𝑔

(

 
 1

𝛼𝛽

(

 
 𝛽

(𝛤 (
𝑐
𝛽
+ 1) +

1
𝜃
𝛤 (
𝛽 + 𝑐
𝛽

+ 1))
)

 
 

𝛼

∑(
𝛼
𝑖
) (
1

𝜃
)
(
𝑖𝛽−𝛼+1

𝛽
)

𝛤 (
𝛼(𝛽 + 𝑐 − 1) + 𝑖𝛽 + 1

𝛼𝛽
)

∞

𝑖=0

)
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5.2: Tsallis Entropy 

A generalization of Boltzmann-Gibbs (B-G) statistical mechanics initiated by Tsallis has focussed a great deal to 

attention. This generalization of B-G statistics was proposed firstly by introducing the mathematical expression of 

Tsallis entropy (Tsallis, 1988) for a continuous random variable. Tsallis entropy of order λ of the WPL distribution is 

given by 

 

𝑆𝜆 =
1

𝜆−1
(1 − ∫ 𝑓𝜆(𝑥)𝑑𝑥

∞

0
)

  

  

=
1

𝜆−1
(1 − ∫ (

𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐−1(1+𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

)

𝜆

𝑑𝑥
∞

0
).

    
    

After simplifying the expression, we get 

 

 

 

𝑆𝜆 =
1

𝜆−1
(1 −

1

𝜆𝛽
(

𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

)

𝜆

∑ (
𝜆
𝑖
) (

1

𝜃
)
(
𝑖𝛽−𝜆+1

𝛽
)

𝛤 (
𝜆(𝛽+𝑐−1)+𝑖𝛽+1

𝜆𝛽
)∞

𝑖=0 )

 

6. Order Statistics 

Let X(1), X(2), ...,X(n) be the order statistics of a random sample X1, X2, ..., Xn drawn from the continuous population with  

pdf fx(x) and cdf Fx(x), then the pdf of rth order statistic X(r) is given by

  

 

𝑓𝑋(𝑟)(𝑥) =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
𝑓𝑋(𝑥)[𝐹𝑋(𝑥)]

𝑟−1[1 − 𝐹𝑋(𝑥)]
𝑛−𝑟

   

(7) 

 

Using Eqs  (4) and (5) in Eq. (7), the pdf of rth order statistic X(r) of the WPL distribution is given by 

𝑓𝑋(𝑟)(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 1)!

(

 
 𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐−1(1 + 𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤 (
𝑐
𝛽
+ 1) +

1
𝜃
𝛤 (
𝛽 + 𝑐
𝛽

+ 1))
)

 
 

 

×

(

 
 
 

1

(𝛤 (
𝑐
𝛽
+ 1) +

1
𝜃
(𝛤 (

𝛽 + 𝑐
𝛽

+ 1)))

(𝛾 ((
𝑐

𝛽
+ 1) , 𝑥) +

1

𝜃
𝛾 ((

𝛽 + 𝑐

𝛽
+ 1) , 𝑥))

)

 
 
 

𝑟−1

 

×

(

 
 
 

1 −
1

(𝛤 (
𝑐
𝛽
+ 1) +

1
𝜃
(𝛤 (

𝛽 + 𝑐
𝛽

+ 1)))

(𝛾 ((
𝑐

𝛽
+ 1) , 𝑥) +

1

𝜃
𝛾 ((

𝛽 + 𝑐

𝛽
+ 1) , 𝑥))

)

 
 
 

𝑛−𝑟

 

   

Therefore, the pdf of the higher order statistic X(n) can be obtained as 

 

𝑓𝑋(𝑛)(𝑥) = 𝑛(
𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐−1(1+𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

) 
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×

(

 
 
 

1

(𝛤 (
𝑐
𝛽
+ 1) +

1
𝜃
(𝛤 (

𝛽 + 𝑐
𝛽

+ 1)))

(𝛾 ((
𝑐

𝛽
+ 1) , 𝑥) +

1

𝜃
𝛾 ((

𝛽 + 𝑐

𝛽
+ 1) , 𝑥))

)

 
 
 

𝑛−1

 

 

and the pdf of the first order statistic X(1) can be obtained as 

 

𝑓𝑋(1)(𝑥) = 𝑛(
𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐−1(1+𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

) 

×

(

 
 
 

1 −
1

(𝛤 (
𝑐
𝛽
+ 1) +

1
𝜃
(𝛤 (

𝛽 + 𝑐
𝛽

+ 1)))

(𝛾 ((
𝑐

𝛽
+ 1) , 𝑥) +

1

𝜃
𝛾 ((

𝛽 + 𝑐

𝛽
+ 1) , 𝑥))

)

 
 
 

𝑛−1

 
 

7. Income Distribution Curve 

The Bonferroni and the Lorenz curves are not only used in economics in order to study the income and poverty, but it 

is also being used in other fields like reliability, medicine, insurance and demography. The Bonferroni and Lorenz 

curves are given by 

 𝐵(𝑝) =
1

𝑝𝜇1′
∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑞

0
 

and  

 𝐿(𝑝) = 𝑃𝐵(𝑝) =
1

𝜇1′
∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑞

0
  

Here, we define the first raw moment as 

 

𝜇1′ =
𝛤 (
𝑐 + 1
𝛽

− 1) +
1
𝜃
𝛤 (
𝛽 + 𝑐 + 1

𝛽
+ 1)

𝜃
1
𝛽 (𝛤 (

𝑐
𝛽
+ 1) +

1
𝜃
𝛤 (
𝛽 + 𝑐
𝛽

+ 1))

 

and 𝑞 = 𝐹−1(𝑝).Then, we have 

 

 

 

𝐵(𝑝) =
1

𝑝𝜇1′
∫

𝛽𝜃

𝛽+𝑐
𝛽 𝑥𝛽+𝑐(1+𝑥𝛽)𝑒−𝜃𝑥

𝛽

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

𝑞

0
𝑑𝑥.

 
 

After simplification, we get 

 

𝐵(𝑝) =
1

𝑝(𝛤 (
𝑐 + 1
𝛽

− 1) +
1
𝜃
(𝛤 (

𝛽 + 𝑐 + 1
𝛽

+ 1)))

(𝛾 ((
𝛽 + 𝑐 + 1

𝛽
) , 𝜃𝑞𝛽) +

1

𝜃
𝛾 ((

2𝛽 + 𝑐 + 1

𝛽
) , 𝜃𝑞𝛽))

 

Similarly, Lorenz curve is obtained as 

𝐿(𝑝) =
1

(𝛤 (
𝑐 + 1
𝛽

− 1) +
1
𝜃
(𝛤 (

𝛽 + 𝑐 + 1
𝛽

+ 1)))

(𝛾 ((
𝛽 + 𝑐 + 1

𝛽
) , 𝜃𝑞𝛽) +

1

𝜃
𝛾 ((

2𝛽 + 𝑐 + 1

𝛽
) , 𝜃𝑞𝛽)) 
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8. Estimation 

In this section, we will discuss the maximum likelihood estimators (MLEs) of the parameters of the WPL distribution. 

Consider X1,X2, ..., Xn be the random sample of size n from the WPL distribution, then the likelihood function is given 

by 

 

 

𝐿(𝑥; 𝛽, 𝜃, 𝑐) =
𝛽𝑛𝜃

𝑛(
𝛽+𝑐
𝛽
)

(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

𝑛∏ (𝑥𝑖
𝛽+𝑐−1(1 + 𝑥𝑖

𝛽)𝑒−𝜃𝑥𝑖
𝛽
)𝑛

𝑖=1

 

 

The log likelihood function is obtained as        

  

𝑙𝑜𝑔 𝐿 = 𝑛 𝑙𝑜𝑔 𝛽 + 𝑛 (
𝛽 + 𝑐

𝛽
) 𝑙𝑜𝑔 𝜃 − 𝑛 𝑙𝑜𝑔 (𝛤 (

𝑐

𝛽
+ 1) +

1

𝜃
𝛤 (
𝛽 + 𝑐

𝛽
+ 1)) +∑𝑙𝑜𝑔( 1 + 𝑥𝑖

𝛽)

𝑛

𝑖=1

 

+(𝑐 + 𝛽 − 1)∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

− 𝜃∑𝑥𝑖
𝛽

𝑛

𝑖=1

(8) 

 

The MLEs of β, θ, c can be obtained by differentiating Eq. (8) with respect to β, θ, c and must satisfy the normal 

equation 

 

 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝛽
=
𝑛

𝛽
−
𝑛𝑐

𝛽2
𝑙𝑜𝑔 𝜃 − 𝑛𝜓 (𝛤 (

𝑐

𝛽
+ 1) +

1

𝜃
𝛤 (

𝛽+𝑐

𝛽
+ 1)) 

+∑
𝑥𝑖
𝛽 𝑙𝑜𝑔 𝑥𝑖

(1 + 𝑥𝑖
𝛽)

𝑛

𝑖=1

+∑𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

− 𝜃∑𝑥𝑖
𝛽 𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1

= 0

 

 

 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝑐
=
𝑛

𝛽
𝑙𝑜𝑔 𝜃 − 𝑛𝜓(𝛤 (

𝑐

𝛽
+ 1) +

1

𝜃
𝛤 (

𝛽+𝑐

𝛽
+ 1)) + ∑ 𝑙𝑜𝑔 𝑥𝑖

𝑛
𝑖=1 = 0

 
 

 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝜃
=
𝑛

𝜃
(
𝛽+𝑐

𝛽
) −

𝑛𝛤(
𝛽+𝑐

𝛽
+1)

𝜃2(𝛤(
𝑐

𝛽
+1)+

1

𝜃
𝛤(
𝛽+𝑐

𝛽
+1))

+ ∑ 𝑥𝑖
𝛽𝑛

𝑖=1 = 0

 

 

where ψ(.) is the digamma function. Because of the complicated form of the above likelihood equations, algebraically 

it is very difficult to solve the system of nonlinear equations. Therefore, we use R and Wolfram Mathematica for 

estimating the required parameters. 

 To obtain confidence interval we use the asymptotic normality results. We have that, if�̂� = (�̂�,�̂�, �̂�) denotes 

the MLE of𝜆 = (𝛽, 𝑐, 𝜃), we can state the results as follows 

 

 √𝑛(�̂�– λ)→N3 (0, 𝐼−1(λ)) 

 

where I(λ) is Fisher’s information matrix given by 
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𝐼(𝜆) = −
1

𝑛

(

  
 

𝐸 (
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛽2
)𝐸 (

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛽𝜕𝜃
)𝐸 (

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛽𝜕𝑐
)

𝐸 (
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝜃𝜕𝛽
)𝐸 (

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝜃2
)𝐸 (

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝜃𝜕𝑐
)

𝐸 (
𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑐𝜕𝛽
)𝐸 (

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑐𝜕𝜃
)𝐸 (

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑐2
))

  
 

 

 

Here, we define  

 

 

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛽2
= −

𝑛

𝛽2
−
2𝑛𝑐

𝛽3
𝑙𝑜𝑔 𝜃 − 𝑛𝜓′ (𝛤 (

𝑐

𝛽
+ 1) +

1

𝜃
𝛤 (

𝛽+𝑐

𝛽
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(1 + 𝑥𝑖

𝛽)𝑥𝑖
𝛽(𝑙𝑜𝑔 𝑥𝑖)

2 − (𝑥𝑖
𝛽 𝑙𝑜𝑔 𝑥𝑖)

2

(1 + 𝑥𝑖
𝛽)2

𝑛

𝑖=1

− 𝜃∑(𝑥𝑖
𝛽 𝑙𝑜𝑔 𝑥𝑖)

2
𝑛

𝑖=1  

  

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝜃2
= −

𝑛

𝜃2
(
𝛽 + 𝑐

𝛽
) −

2𝑛𝛤 (
𝛽 + 𝑐
𝛽

+ 1)

𝜃3 (𝛤 (
𝑐
𝛽
+ 1) +

1
𝜃
𝛤 (
𝛽 + 𝑐
𝛽

+ 1))

− 𝑛

 

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝑐2
= −𝜓′ (𝛤 (

𝑐

𝛽
+ 1) +

1

𝜃
𝛤 (
𝛽 + 𝑐

𝛽
+ 1))

 

Also,
𝜕 𝑙𝑜𝑔 𝐿

𝜕𝛽𝜕𝑐
= −

𝑛

𝛽2
𝑙𝑜𝑔 𝜃 − 𝑛𝜓′ (𝛤 (

𝑐

𝛽
+ 1) +

1

𝜃
𝛤 (
𝛽 + 𝑐

𝛽
+ 1))

 
𝜕 𝑙𝑜𝑔 𝐿

𝜕𝛽𝜕𝜃
= −

𝑛𝑐

𝜃𝛽2
− 𝑛𝜓′ (𝛤 (

𝑐

𝛽
+ 1) +

1

𝜃
𝛤 (
𝛽 + 𝑐

𝛽
+ 1)) −∑𝑥𝑖

𝛽 𝑙𝑜𝑔 𝑥𝑖

𝑛

𝑖=1  
𝜕 𝑙𝑜𝑔 𝐿

𝜕𝑐𝜕𝜃
= −

𝑛

𝜃𝛽
− 𝑛𝜓′ (𝛤 (

𝑐

𝛽
+ 1) +

1

𝜃
𝛤 (
𝛽 + 𝑐

𝛽
+ 1))

 

 

where 𝜓(. )′ is the first order derivative of digamma function. Since λ being unknown, we estimate 𝐼−1(λ) by 𝐼−1(�̂�) 

and this can be used to obtain asymptotic confidence intervals for β, θ and c. 

 

 

9. Application 

In this section, we have used two real lifetime data sets for fitting WPL distribution and the model has been compared 

with the PL, Exponential and Lindley distributions. 

The first data set represents the survival times of 121 patients with breast cancer obtained from a large hospital which 

is widely reported in literatures like Ramos et al. (2013). The data set is given as follows:

  

The second data set corresponding to remission times (in months) of a random sample of 124 bladder cancer patients 

given in Lee and Wang (2003). The data set is given as follows: 

 

0.08   2.22   7.09   14.24 0.81   5.32   10.66   43.01   4.33 11.64   4.40   12.02 

2.09   3.52   9.22   25.82   2.62 7.39   15.96   1.19   5.49 17.36   5.85   2.02 

  2.73 4.98   13.80   0.51   3.82 10.34   36.66   2.75   7.66   1.40 8.26   3.31 

  3.48 6.99   25.74   2.54   5.32   14.83   1.05   4.26   11.25   3.02 11.98   4.51 

  4.87   9.02   0.50   3.70   7.32   34.26 2.69   5.41   17.14   4.34 19.13   6.54 

  6.94   13.29 2.46   5.17   10.06   0.90 4.23   7.63   79.05   5.71   1.76 8.53 
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  8.66   0.40 3.64   7.28   14.77   2.69   5.41 17.12   1.35   7.93   3.25 12.03 

  13.11   2.26   5.09   9.74   32.15   4.18   7.62 46.12   2.87   11.79   4.50 20.28 

  23.63   3.57   7.26 14.76   2.64   5.34   10.75 1.26   5.62   18.10   6.25   2.02 

0.2   5.06   9.47 26.31   3.88   7.59   15.62   2.83 7.87   1.46   8.37   3.36 

  6.93   8.65   12.63 22.69         
 

In order to compare the WPL distribution with the PL, Exponential and Lindley distributions, we consider the criteria 

like Bayesian information criterion (BIC), Akaike Information Criterion (AIC), Akaike Information Criterion 

Corrected (AICC) and -2 logL. The better distribution is which corresponds to lower values of AIC,BIC, AICC and – 

2 log L. For calculating AIC, BIC, AICC and -2 logL can be evaluated by using the formulas as follows: 

 

 AIC = 2K - 2logL,        BIC = klogn - 2logL,       𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘+1)

(𝑛−𝑘−1)
 

 

where k is the number of parameters, n is the sample size and -2 logL is the maximized value of log-likelihood function 

and are showed in table 1 and table 2. 

 

Table1: Parameter estimations and goodness of fit test statistics. 

Data 

Set 
Distribution MLE S.E -2 logL AIC BIC AICC 

 

 

 

 

 

1 

WPL 

�̂�=1.59953956 

�̂� =0.58700034 

�̂�=0.35120295 

�̂�=0.19458134 

�̂� =0.01995351 

�̂�=0.02661878 

726.8712 

 

732.8712 

 

 

741.2586 

 

 

 

733.0764 

 

 

PL 
�̂� =0.90725769 

�̂�=0.6127261 

�̂� =0.05679699 

�̂�=0.01432534 

 

1158.367 

 

 

1162.367 

 

 

1167.958 

 

 

1162.572 

 

Exponential �̂�=0. 021597653 0.001959203 1170.256 1172.256 1175.051 1172.2896 

Lindley �̂�=0. 042301604 0.002718848 1160.863 1162.863 1165.659 1162.8966 

 

 

 

Table2: Parameter estimations and goodness of fit test statistics. 

Data 

Set 
Distribution MLE S.E -2 logL AIC BIC AICC 

 

 

   

 

 

2 

WPL 

�̂�=0.24419247 

�̂� =0.45437968 

�̂�=0.57932961 

�̂�=0.07474640 

�̂� =0.0399462

7 

�̂�=0.05048331 

574.622 

 

 

580.622 

 

 

 

589.0828 

 

 

580.822 

 

PL 
�̂� =0.82536680 

�̂�=0.29920792 

�̂� =0.0476219

4 

�̂�=0.3795285 

 

799.5421 

 

 

803.5421 

 

809.1827 803.7421 

Exponential �̂�=0. 107404293 0.009644354 801.3337 803.3337 806.154 803.36544 

Lindley �̂�=0. 19711910 0.01260246 812.3593 

 

814.3593 

 

817.1796 814.39104 

 

 

From table 1 and table 2, we can see that the WPL distribution have the lower AIC, BIC, AICC and -2 logL values as 

compared to PL, Exponential and Lindley distributions. Hence, we can conclude that the WPL distribution leads to 

better fit than the PL, Exponential and Lindley distributions.   
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Figures 5 and 6 represent graphs for the density curves of data set 1 and 2. 

 

 

                    

        

10. Conclusion 

In the present study, a new version of the power Lindley (PL) distribution is introduced named as weighted power 

Lindley (WPL) distribution with three parameters and its different statistical properties are investigated and studied. 

The subject distribution is generated by using the weighted technique and the parameters have been obtained by using 

maximum likelihood estimator. The main motivation behind the completion of this manuscript is to make one realize 

how important are the new extensions in expressing some random processes even though when we have already a 

number of existing distributions. It is observed that for the considered data sets mostly the new cases of models proved 

to be best fit rather than the baseline distribution i.e. PL distribution. Finally the distribution has been fitted to a real 

life data and the fit has been found to be good. 
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