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Abstract
Although model selection is routinely used in practice, little is known about its precise effects on
any subsequent inference that is carried out. The same goes for the effects induced by the
closely related technique of model averaging. This paper is concerned with the use of the same
data first to select a model and then to carry out inference, in particular point estimation and point
prediction. The properties of the resulting estimator, called a post-model-selection estimator
(PMSE), are difficult to derive. Using selection criteria such as hypothesis testing, AIC, BIC, HQ
and CP, we illustrate that, in terms of risk function, no single PMSE dominates the others. The
same conclusion holds more generally for any penalized likelihood information criterion. We also
compare various model averaging schemes and show that no single one dominates the others in
terms of risk function. Since PMSEs can be regarded as a special case of model averaging, with
0-1 random weights, we propose a connection between the two theories, in the frequentist
approach, by taking account of the selection procedure when performing model averaging. We
illustrate the point by simulating a simple linear regression model.

Keywords: Model averaging, Model selection, Inference after model selection,
Post-selection.

1. Introduction
In most statistical modeling applications, several models are plausible a priori,
and so some model selection procedure is applied to choose the (single) model
that will be used in the subsequent analysis, e.g. to estimate quantity or
quantities of interest. Overviews, explanations, discussions and examples of
model selection procedures can be found in the books by Linhart and Zucchini
(1986), McQuarrie and Tsai (1998), Burnham and Anderson (2002) and
Claeskens and Hjort (2008).

An alternative to selecting a single model for estimation purposes is to use a
weighted average of the estimates resulting from each of the models under
consideration. This leads to the class of model averaging estimators. Several
options are available for specifying the weights; e.g. they can be based on the
Akaike's information criterion, AIC (Akaike, 1973) or, in the Bayesian paradigm,
on the Bayesian information criterion, BIC (Schwarz, 1978). It is not the
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construction of the estimator that causes difficulties; the problem is to determine
its properties.
The same problem arises for estimators obtained after model selection. This is
not surprising, since model selection corresponds to the special case of model
averaging in which the weight one is assigned to the selected model, and the
weight zero to all other models. We refer to these estimators as post-model
selection estimators (PMSE, Leeb and Pötscher, 2005). If both model selection
and estimation are based on the same set of data, then ignoring this fact in the
subsequent analysis leads to invalid inferences. Literature on this issue includes,
inter alia, Bancroft (1944) for pretest estimators, Breiman (1992), Hjorth (1994),
Chatfield (1995), Draper (1995), Buckland et al. (1997), Zucchini (2000), Candolo
et al. (2003), Hjort and Claeskens (2003), Efron (2004), Leeb and
Pötscher(2005), Longford (2005), Nguefack-Tsague and Zucchini (2005),
Claeskens and Hjort (2008) and Zucchini et al. (2011). A bibliography on the
topic is provided in Nguefack-Tsague (2006).

Section 2 gives brief accounts of model averaging estimators and PMSEs. In
Section 3 we propose a new approach for computing the weights for the
competing models, one that takes into account the selection probability of each
model. Given a selection procedure, we suggest to weight the likelihood of each
model by the estimated probability that the model is selected. Section 4
illustrates the point that, even in a very simple example (simple linear regression)
no single PMSE is best over the entire spectrum of possibilities, where ``best"
here is defined as the mean squared error (risk). Nevertheless, on the whole, the
proposed averaging scheme compares favourably with the more established
estimators. Following a brief summary (Section 5) the appendix gives proofs of
some of the statements in the paper.

2. Model averaging and post-model selection estimators

2.1  Model averaging estimators

Let },,{= 1 KMMM  be a set of K plausible models to estimate  , the quantity
of interest. Denote by ˆk the estimator of  obtained when using model kM .
Model averaging involves finding non-negative weights, Kww ,,1  , that sum to
one, and then estimating  by

=1

ˆ ˆ= .
K

kk
k
w  (1)

Some classical model averaging weights base the weights on penalized
likelihood values. Let kIC denote an `information criterion' of the form

,log2= kkk sLIC  (2)

where ks is a penalty term, and kL is the maximized likelihood value for the
model kM . The Akaike information criterion (AIC) (Akaike, 1973) is the special
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case with kk qs 2= , where kq is the number of parameters of model kM .
Buckland et al. (1997) proposed using weights of the form:
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“Akaike weights'' (denoted by kaicw , ) refer to the case with kk AICIC = . Numerous
applications of Akaike weights are given in Burnham and Anderson (2002).
Candolo et al. (2003) applied them to a linear regression example.

The analogous Bayesian model averaging is described in Hoeting (1999) and
Wasserman (2000). In the context of regression and classification, LeBlanc and
Tibshirani (1996) proposed using no penalty term, that is setting l

K

lkk LLw  1=
/= .

Hjort and Claeskens (2003) proposed the smooth focused information criterion
(FIC) and other model averaging schemes to study model averaged, or
compromise estimators, together with their limiting distributions and risk
properties. Model averaging in semi-parametric regression with AIC-based or
BIC-based weights was studied by Claeskens and Carroll (2007).

We note that, if one were able to find closed-form expressions for the model
selection probabilities )(Pr selectedisM k for each model, then an obvious
weighting scheme would be to use an estimator of these probabilities, but this is
not often recommended, as we show below.

2.2  Post-model selection estimators
A post-model selection estimator (PMSE) can be regarded as a special case of a
model averaging estimator in which one of the weights is equal to one and the
remaining 1K weights are equal to zero. The model selection criterion
determines which model is assigned the weight one and hence used to estimate

 . The index of the selected model, k̂ , is a random variable. We denote the
selected model by k̂

M , and the PMSE of the quantity of interest by ˆˆk . Let (.)I
denote the indicator function that has the value 1 if the argument is true, and 0 if
it is false. Then

ˆ ˆ
=1 =1

ˆ ˆ= ( ) , = ( ) .
K K

k kk k
k k

M I model k is selected M I model k is selected  
Clearly, the properties of ˆˆk depend on (among other things) the set of candidate
models, M , and on the selection procedure, which we denote by S .

3. Combining model averaging and model selection
As pointed out, PMSEs are special cases of model averaging estimators whose
properties depend on the selection procedure S . We therefore suggest
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estimating  by a weighted average of the ˆk in which the weights take account
of S , specifically where they depend on estimators

ˆ( | ) = Pr( | ), = 1,k kp M S M is selected S k K . This suggestion is new because
classical model averaging does not take the selection probabilities into account.
We propose the following adjusted likelihood weights

.,1,2,=,
)|(

)|(=

1=

, Kk
LSMp

LSMpw
ii

K

i

kk
kal 


(4)

The likelihoods are taken into account because they quantify the relative
plausibility of the data under each competing model; the estimated selection
probability )|( SMp k adjusts the weights for the selection procedure. Both of
these components are required. If one were to use only the likelihoods to
determine the weights then complex models (i.e. models having many
parameters) would automatically be assigned larger weights. The weights kalw ,

are similar to the weights kw defined in (3) but they differ in the way the likelihood
is adjusted. With the proposed method a ``bad" model will be penalized by any
reasonable selection procedure through the probability )|( SMp k , even if it is
complex in terms of the number of parameters. We let the selection procedure
determine in how far a model is penalized.

The problem that needs to be solved is that of constructing estimators, )|( SMp k ,
of the model selection probabilities. Hjort and Claeskens (2003) showed that a
naive bootstrap estimator of the selection probability of model kM (namely the
proportion of resamples in which kM is selected) does not work. If the selection
probabilities depend on some parameter for which a closed form expression
exists, and if one can find an estimator of the parameter, then it is possible to
obtain estimators for these probabilities. For the case where there is no close
form, Miller (2002) suggested using a Monte Carlo method based on projection.

For finite samples one can use the variance formulae proposed in Buckland et al.
(1997); the first when estimates are perfectly correlated and the second when
they are independent:

2 2
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(5)

where ̂ is the weighted estimator and kalw , the weight for model kM . Although
neither of these two extreme scenarios are likely to occur in practice, these
expressions provide an indication of the range of values in which the variance
falls. For large samples, one can use the limiting risk properties and limiting
distributions of general model weights as given in Hjort and Claeskens (2003).
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4. Illustration with simple linear regression

4.1  The set-up
Consider the familiar simple linear regression model

,,1,=,= 10 nixY iii   (6)

where the 2~ (0, )
iid

i N  . For simplicity we consider the case in which  is known,
but similar results are obtained when  is unknown. Without loss of generality
we assume that 0=x , since the model can be reparameterized as

iii zY   10= , where xxz ii = . The OLS estimators of the parameters of this
model are given by

0
ˆ = y and 2

1 =1 =1
ˆ = ( ) /n n

i i ii i
x y y x   .

As is well-known, these estimators are normally distributed, unbiased, such that

=0v Var 2
0
ˆ( ) = / n  , =1v Var 2 2

1 =1
ˆ( ) = / n

ii
x   , Cov 0 1

ˆ ˆ( , ) = 0  ,
and therefore independently distributed.

We consider the problem of estimating )|(= xYE for a given (e.g. future)
value, x , of the covariate, but (as often occurs in practice) suppose that we are
uncertain whether or not it is advantageous to take the covariate into account
when doing so. In other words, estimation can be based on either of the following
two models:

.=:,=: 10201  xMmodelunderMmodelUnder  (7)

Suppose now that we first apply a model selection procedure to determine which
model to use and then estimate  using the selected model. Our objective in the
next section is to derive the properties of the resulting estimator.

4.2  Post-model selection estimators

We denote the standardized intercept and standardized slope by 000 /= vb  and

111 /= vb  , respectively. It follows that the OLS estimators of 0 and 1 can be
represented as

0 0 0 0
ˆ = ( )v Z b  and 1 1 1 1

ˆ = ( )v Z b  ,

where 0 1, ~ (0,1)
iid

Z Z N . For the two models in (7), 1M has 1=1q and 2M has
2=2q parameters. Let 1IC and 2IC be information criteria of the form (2) for 1M

and 2M , respectively. The following propositions are proved in the appendix.
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Proposition 1: For a criterion of the form (2) with kk hqs = , 0>h ,
.)(= 2

1112 hbZICIC  (8)

In terms of the criterion model 2M is chosen if hbZ  || 11 ; otherwise 1M is
chosen. Denoting the PMSE of  by ˆ,

ˆ
k h

 we have that

ˆ 0 1 1 0 1 1 1,
ˆ ˆ ˆˆ = (| |< ) ( ) (| | )
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Thus the behaviour of ˆ,
ˆ
k h

 is largely determined by that of .~1h

Proposition 2: The expectation, bias and variance of the PMSE in (9) are given
by
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where )(1)(= qrd  , )()(= rqe   , )()(= rrqqf   , 1= bhr  ,

1= bhq  ;  is the density function of the standard normal and  the
distribution function.

Note that these moments of the PMSEs do not depend on the values of the
dependent variable, and they depend on the covariate x only through 2

1= i
n

i
x via

1v =Var 2 2
1 =1
ˆ( ) = / n

ii
x   . (This explains why the properties of PMSEs in this

example are not sensitive to other aspects of the data set.) In multivariate
regression, the important quantity is 1)( XX . We used simulated data to
investigate the properties of different PMSEs, namely 610 samples of size 20=n ,

with 1=2 , ~ (1,10), =1,2, ,
iid

ix U i n , 0=0 , 6.5=x . The reported results are
not sensitive to the choice of these selected values; in particular, increasing the
sample size, has minimal impact on the results. All expectations here were taken
with respect to the full model, 2M . As the risk functions are symmetric around
zero we only display the graphs for 0>1b . All computations are performed with
the software R (R Development Core Team, 2010).

Suppose we apply a test of hypothesis to select one of the two models in (7), i.e.
we test the null hypothesis, H 0 : 0=1 (i.e. that model 1M holds) at the level 
and select model 1M if the hypothesis can't be rejected; otherwise we select 2M .
(Unlike the literature, instead of using the term “pretest" for the estimator
obtained after a test of hypothesis, we prefer “post-testing" to be consistent with
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the PMSE terminology.) In particular 2M is chosen if 1 1 1
2

ˆ| | / v z 


 , i.e if

2
111 || 


 zbZ where
2

1 

z is the quantile of the N(0,1). Thus hypothesis testing

can be regarded as an information criterion of the form (2) with 2

2
1

= 

zh .

(Equivalently the significant level is )](2[1= h , so that a test of hypothesis
with 0.16= is equivalent to the AIC.)

The values of h for some classical selection procedures are given by














.1979),()ln(ln
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QuinnandHannanHQforn
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h
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The Mallows Cp (Mallows, 1973) is an example of a selection criterion that is
not of the form of (2). As is shown in the appendix, and for the two models
defined in (7), this criterion leads to model 2M being selected if 2>)2,(1, 2

1bnF  ,
where )2,(1, 2

1bnF  is the non-central F distribution with 1 and n-2 degrees of
freedom and non-central parameter 2

1b .

Figure 1: Densities of five PMSEs for 6.5)=|(= xyE following model selection
using a test of hypothesis ( 5%= ), AIC, BIC, CP and HQ when 0.2=1b . The
expected value of each PMSE is shown.
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Figure 1 displays the densities of post-testing (with 0.05= ), post-AIC, post-BIC,
post-CP and post-HQ estimators of  . The densities are all bimodal, reflecting
the mixture nature of the PMSEs. Note also the gap in their support. None of
them are even approximately normally distributed. The figure also displays 
and ˆ( )E  , from which one can ascertain the bias.

Figure 2: Risk function of the PMSE as a function of the standardized slope for
different levels, of the penalty factor h .

Figure 2 displays the MSE (risk) of PMSEs, for selection with criteria of the type
(2), as a function of 1b (or, strictly speaking, as a function of || 1b ) for different
values of the penalty factor, h . For small values of 1b the risk is reduced by
increasing h , but the opposite is true for large values of 1b . All the lines in the
figure cross; no single value of the penalty factor h is optimal over the entire
range of 1b .

Figure 3: Risk function of the post-testing estimator as a function of the
standardized slope for different significance levels,  .
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Figure 3 displays the risk of the PMSE as a function of 1b when selection is
based on a test of hypothesis using different values of the significance level,  .
For small values of 1b the risk is reduced by using small values of  , but the
opposite holds for large values of 1b . Here too all the lines in the figure cross and
no single value of  is optimal over the entire range of 1b . This fact is not
surprising, since the hypothesis testing is equivalent to an information criterion of
the form (2) with a penalty factor 2

2
1

= 

zh .

The PMSE for the Mallows C P is given by

2
ˆ, 0 0 0 1 1 1 1ˆ = ( ) ( ) ( (1, 2, ) > 2).k CP v Z b x v Z b I F n b     (11)

Figure 4: The risk of the post-C P, post-BIC, post-AIC and post-testing estimators
as functions of the standardized slope 1b .

Figure 4 compares the risk for PMSEs based on 4 standard model selection
criteria. The post-testing leads to the smallest risk for small values of 1b , followed
by the BIC, AIC, and finally C P. The reverse is true when 1b is large. No selection
criterion dominates the others; none of them is best over the entire range of the
slope parameter.

4.3  Model averaging

Consider a model averaging estimator with weights ww =1 and ww 1=2 for the
models 1M and 2M in (7):

1 2 0 0 1 0 1
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ= (1 ) = (1 )( ) = (1 ) .w w w w x w x               (12)
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Using an information criterion of the form (2) with kk hqs = , 2M is selected if

hbZ  || 11 . Thus the probability of selecting model 2M is given by
)(1)(=)|(Pr 11112 bhZbhZSM  , which can be estimated using

2 1 1 1 1 1 1
ˆ ˆ= ( ) 1 ( ) = ( ( )) 1 ( ( )).p h b h b h Z b h Z b             

From (3) the special case 2=h leads to the Akaike weight, proposed by
Buckland et al. (1997):

.
1

=
1

=
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The analogous weight for the general case of a criterion of the form (2) with
kk hqs = is
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and for the non-penalized information criterion
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2
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Thus from (4), the adjusted likelihood weight for model 2M is

,
1

=
2)11(2

1

2

2)11(2
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2
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al

e

ew






 (16)

where )/(1= 222 pp  . The proposal to base the (model averaging) weight of a
model on its likelihood adjusted by its estimated model selection probability is, of
course, not restricted to criteria of the form (2).

Figure 5: Model selection probabilities as function of 1b
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Figure 5 shows the probability of selecting model, 2M , as a function of 1b , using
four different criteria. As expected the curves behave similarly: as 1b increases so

)|(Pr 2 SM also increases and approaches one. However, the curves are not
identical, and so the properties of the corresponding PMSEs are also different. It
is this dependence on the selection criterion that the adjusted likelihood weights
are designed to take into account.

Figure  6: Comparison of risks of PMSEs (broken line) with adjusted weights
(solid line) and Akaike weights (dashed line) as function of 1b

The fact that no single PMSE uniformly dominates the others in terms of risk was
illustrated in Figure 4. The top right-hand panel of Figure 6 compares the risk of
the post-AIC estimator with the risk of two model averaging estimators, one
based on Akaike weights and the other on adjusted likelihood weights. The other
three panels display similar comparisons for the hypothesis testing, BIC and C P

selection criteria. For each value of 1b the model averaging estimator based on
adjusted likelihood weights either has the smallest risk, or has a risk that is not
much larger than the smallest risk attained by the other estimators. Furthermore
it is substantially better than the alternatives considered over quite a large
interval of 1b values. This illustrates that, on the whole (at least in this example)
the estimator based on the adjusted likelihood weights outperforms that based on
Akaike weights, post-testing, post-AIC, post-BIC and post-CP.
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5. Concluding Remarks
We have proposed a method of assigning weights for model averaging in a
frequentist context. The key idea is to incorporate the estimated probability of
selecting each model into the weights. We have illustrated the advantage of the
method in the context of a simple regression analysis. We showed that, on the
whole, the proposed method is superior (in terms of risk function) to the popular
model averaging method based on Akaike weights. In principle the same idea is
more generally applicable. However, several problems need to be solved before
the proposed method can be applied in typical (more complex) settings. In many
applications, e.g. when selecting a model for a density function from a set of
candidate models, the competing models are not nested, which they were in our
example. It is more difficult to estimate the model selection probabilities if the
models are not nested. In general it is not easy to construct estimators for such
probabilities if no closed form expression for them is available. As indicated in the
text, Monte Carlo methods offer an alternative approach in such cases.

The fact that the proposed method performs very well in the example
investigated here suggests that the method is promising and worth further
investigation. The main challenges will be to construct estimators for the
selection probabilities in more realistic settings, and to investigate the theoretical
properties of the resulting model averaging estimators.

6. Appendix

Proof of Proposition 1
From (2) with kk hqs = we have that

)()lnln2(= 121212 ssLLICIC  where .=2== 1212 hhhhqhqss 

Under normality
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xv  it follows that

2
2 1 1 1

ˆln ln = / (2 )L L v and hence that 2 2
2 1 1 1 1

ˆ= / 1 = ( )IC IC v h Z b h      .

Proof of Proposition 2
From (9), the moments of ˆ,

ˆ
k h

 are given by
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ˆ 0 1 0 1,

ˆ ˆ 0 1 0 1 1, ,

2 2 2
ˆ 0 1 1,

ˆˆ( ) = ( ) ( ) = ( ),

ˆ ˆ( ) = ( ) = ( ( ) ),

ˆˆ( ) = ( ) ( ) = / ( ).

h hk h

hk h k h

h hk h

E E x E x E

Bias E b v x x E

Var Var x Var n x Var

    

    

    

 

 

 

 

  

 

 



 

(17)

The PMSE of h1
~ can be written as )(=)|(|)(=~

1111111 sayAvhbZIbZv hh  .
If 1/2

10 || hbZ  then qZ 0 or rZ <0 , and so

.)(12)(1=)()(=)(
),(21)(=

)()())()((2))(1)(1)((=

)()()()(=)(
),(=

)()())(1)((=
)()()()(=)(

2
11

22
1

2
1

1
2
1

2
1

2
1

2
1

1

11

fededbddbAEAEAVar
sayfebdb

rrqqrqbqrb

dzzzbdzzzbAE
sayedb

rqqrb
dzzzbdzzzbAE

hhh

q

r

h

q

r

h
































Substituting E )(=)~( 11 hh AEv and Var 11 =)~( vh Var )( hA in (17) yields the
required results.

Proof relating to Mallows C P criterion

k
k

k qn
nRSS

RSSPC 2
2)/(

=
2




, where kRSS is the residual sum of squares for model

kM (k=1,2), 1=1q and 2=2q . Hence 2=2
2)/(

=
2

21
21 




 F
nRSS
RSSRSSPCPC (say).

It is well-known (see, e.g., Section 7.2 in Linhart and Zucchini, 1986) that, under
the normality assumption, the numerator and denominator of F are
independently distributed, and that 2

2
2

2  nRSS  . The numerator, given by
2 2

2 21
1 2 1 1

1

ˆ
= = ( )RSS RSS b Z

v
    , is distributed as )( 2

1
2
1

2 b , where 2
1b is the non-

centrality parameter. It follows that F has a non-central Fisher distribution,
namely )2,(1, 2

1bnF  . Model 1M is chosen if 21< PCPC , i.e. if 2<F .
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