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Abstract

The presented work of this paper addresses the two shape properties, positivity and monotonicity of
irregular surface data. The data is initially triangulated and a side-vertex scheme is adopted to interpolate
the data over each triangle. Each boundary and radial curve is a rational function with three parameters
facilitating 18 parameters in each triangular patch. The presence of these parameters leads to an automotive
scheme for shape preservation and shape control. The data dependent constraints are derived on 6 of these
parameters for preservation of positive and monotone properties of data, while, remaining 12 are free for
shape modification. This scheme is local, does not constrain step length and derivatives, equally applicable
to both data and data with derivatives.

Keywords: Rational cubic function, Triangular patch, Shape parameters, Positivity,
Monotonicity.
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1. Introduction

The development of interpolation and approximation techniques which address the
problem of shape preservation and control is one of the sought areas of Computer
Graphics. The properties of data, whether gathered experimental or physical, can be
categorized as positive, monotone and convex. Ordinary interpolation techniques
guarantee smoothness but do not concentrate whether the shape properties of data are
also inherited by developed curves and surfaces.

The data related to population distribution and probability distribution (Hussain et al.,
1997) monthly rainfall amounts, progress of an irreversible process, level of gas
discharged in certain chemical reaction, density and volume etc. (Hussain and Hussain,
2010) are always positive. A few examples of monotone data are dose-response curves
and surfaces in biochemistry and pharmacology, approximation of couples and quasi
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couples in statistics, empirical option pricing model in finance and approximation of
potential functions in physical and chemical systems (Beliakov, 2005).

The limitation of ordinary interpolation techniques leads to the problem of shape
preserving interpolation discussed by a number of authors. Chan and Ong (Chan and
Ong, 2001) involved the cubic Bézier triangular interpolant for range restricted
interpolation of irregular surface data. The derived sufficient conditions imposed
restrictions on Bézier ordinates to give non-negative cubic Bézier triangular patch. The
interpolating surface is a convex combination of these patches. If the Bézier ordinates did
not satisfy the imposed restriction then it was remedied by scaling of first order partial
derivatives at vertices. Piah, Goodman and Unsworth (Piah et al., 2005) also used cubic
Bézier triangular interpolant to preserve the shape of irregular surface data. The
derivatives at data sites were computed to be consistent with these conditions. Piah et al.,
(2006) addressed the problem of range restricted interpolation using quartic Bézier
triangular interpolant which was an extension of (Piah et al., 2005). Each triangular patch
was the convex combination of three quartic Bézier triangular patches. Again the
positivity was ensured by a set of restriction on Bézier ordinates. Hussain and Hussain
(2010, 2011) used rational function with parameters to preserve the positive and
monotone shape of irregular surface data. Hussain and Hussain (2010, 2011) developed
data dependent constraints on these parameters to preserve the positive and monotone
shape of data and no parameter were free for shape refinement. Mulansky and Schmidt
(1994) used quadratic spline on a Powell-Sabin refinement of triangulation to generate a
constrained interpolant. Utreras (1985) defined a method that how positivity can be
treated as a constraint, providing a global optimization at each step of iteration, but its
computational cost was high.

Beliakov (2005) introduced a method for monotone interpolation and smoothing of
irregular surface data. Monotonicity constraints were applied on noisy data to make it
smooth and change it into a quadratic programming problem. This method was only
useful to preserve the shape of monotone Lipschitz continuous function. Han and
Schumaker (1997) scheme addressed the monotonicity of irregular surface data. The
given irregular surface data was arranged over rectangular grids. The demerit of this
method was that a system of N -irregular surface data points reduced to N - rectangles.
Moreover, a few of these were very small in one or both directions. Goodman et al.,
(1995) proposed derivative estimation scheme for scattered data.

The piecewise rational cubic function (Sarfraz, et al.,, 1997) having three shape
parameters generates the radial and boundary curves of each triangular patch. Each
triangular patch has six shape preserving parameters and twelve free parameters for shape
refinement. The subject of the paper is to develop local positive and monotone irregular
surface data interpolation schemes which do not constrain step length and derivatives.

The remaining paper is organized as follows: The cubic Hermite side-vertex interpolation
scheme (Nielson, 1979) for irregular surface data is reviewed in Section 2. In Section 3.1,
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a rational function with parameters is developed for irregular surface data interpolation.
The problems of positive and monotone data interpolation are discussed in Section 3.2
and 3.3 respectively. Section 4 demonstrates the results developed in the previous
sections. Section 5 concludes the paper.

2. Cubic Hermite Interpolation of Irregular Surface Data

i
s
\

Fig. 1. Location of the vertices and edges of the triangle AVV V.

This section provides a review of irregular surface data interpolation scheme proposed by
Nielson (1979). The primary requirement was to arrange the data over the triangular grid
such that each data point was the vertex of some triangle. The partial derivatives at the
vertices of triangle were computed. The data at the three boundaries of a triangle were
interpolated by cubic Hermite spline. The rational interpolant of each triangle was a
convex combination of radial curves, the curves joining the vertex to the opposite edge of
the triangle. The radial curves were also obtained by cubic Hermite interpolation. For any

triangle AV.V W, , with barycentric coordinates u, v andw, any point V' = (x, y) on the

triangle can be expressed as:

V=ulV,+vV,+wV,, u+v+w=1and wu,v,w>0 (1)

The Nielson side-vertex interpolant, interpolating the irregular data arranged over a
triangular patch was expressed by the following convex combination:

VW RC, + u2w2RCj +u’v’RC,

P(u,v,w)=
2.2 2.2 2.2
VW Huw +uy

)

RC,, RC; and RC, were the radial curves connecting the vertices V;, V; and V; to the
opposite edges ¢, e; ande,. The order of continuity achieved by Nielson scheme was
c'.
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At the vertices of the triangle AVV.V, where two of the barycentric coordinates are

simultaneously zero, the P(u,v,w) is defined as

P(u,0,0)=2,, P(0,v,0)=2,, P(0,0,w)=Z,,

where Z,, i=1,2,3 are the ordinate values at the vertices V,, V; and V} respectively.

3. Shape Properties of Irregular Surface Data

In this section, shape preserving interpolation schemes are developed to interpolate the
positive and monotone irregular surface data. The data is triangulated by Delaunay
triangulation method (Fang and Piegl, 1992). The Nielson side-vertex interpolation
scheme by Nielson (1979) is used to interpolate the data over the each triangle with the
modification that each boundary curve and each radial curve is the rational cubic function
(Sarfraz et al., 1997). Both positivity and monotonicity preserving schemes have
developed constraints on parameters to preserve the shape of data.

3.1 Rational interpolant for irregular surface data

Let {(x;,5,,Z,),i=12,3,...,n} be the given set of irregular data arranged over the
triangulated grid. Without the loss of generality we shall consider an arbitrary triangle
AVV.V,, and will construct the rational interpolant over AV,V V. The edges of AVV YV,

opposite to the vertices V,, V,, V, are ¢, e, and ¢, respectively. Arbitrary points of the

1

edges ¢;, e; and ¢, are denoted by S;, S, and S, . Let RC,, RC; and RC, be the radial
curves joining the vertices V,, V,, V, to the edgese,, e, and ¢, respectively. Z,
i =1,2,3 are the ordinate values at vertices V,, V., Vi respectively. The radial curve RC,

1

connecting the vertex V; to the point S, on the opposite boundary edge e, is defined as

RC, = RS 3)
RCid

RC, ={v'e, +(1-u)’ 4} Z, +{(1—u)3 B+(1-u) uAZ}BC(Si)+u2vaiD3 +u’wa,D,
—u(l-u)vp.D,—u(l-u)wp.D,,

A4 =(+7), 4 =B +7),

RC, =au’ +y,(1-u)u+p (1-u)’,

D1=(xj—xi)a§—xC(Si)+( - ,.)ag—yc(si),
D, =(5 =) ZH(8)+ (=) 2 (5).
D, = (=) G )+ (3, -) S0,
D, =(5=x) () (=) 5 (),
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BC(SI) _ 5130(122 +S12S {(a1 +}/1)Z2 +a1d3} +S1S2 {(ﬂl +7/1 )Z3 _ﬂ1d4} +S3ﬂlz3 | (4)

2 2
s, +ys;s+ s

dy = () 27 ) + (32, ) (7))

ox ay
or oF
d, =% —x,)]—(V, —y. )=,
4 (xk x/)ax( k)+(yk yj)ay( k)a
v w
S, = , S = .
v+w V+w

Similarly, the radial curves connecting the vertices V, and ¥, to the edges e, and e, are

defined as

RC,
RO, = 5)

RC,, ={Va, +(1-)V’B} Z, +{(1-v)' B, +(1=v) vB,} BC(S, ) + vuer,D, +v'war,D,
—v(l—v)u,B_/Ds—v(l—v)w,BjDé,

RC,=apy’ +2y,(1-v)v+ B, (1-v),

B =(a;+7,), B,=(f,+7,),

Dy :(xi—xj)ag—C<Sj)+(yi Y )agc(s )

Dy =G =x) (5, )+ (3 - )‘98 (s,).
oF oF

Dy ==, )5 1)+ (=) 5 07).

D= =x) TV )+ () 57

’”13a123 +”12r{(a2 +72)Zz +a2d5} +7’1’”2 {(ﬂz +7/2)Zl _ﬁZdé} +"3ﬂ221

B )= , 6
c(s) P — (©)
oF oF
ds = (5= ) o (V) + (i =2) 52 00)
oF oF
o= (5 =5) S+ (=30 500
w u
7= r=
u+w u+w
RC
RC, =—, 7
e ™

RC, = {w3ak +(l—w)wzCl}Z3 +{(1—W)3 B, +(1—w)2 wCz}BS(Sk)+w2uakD” +whva, D,

—w(1=w)uBD, —w(1-w)vB,D,,
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RC,, =0(kw2 +7/k(1—w)w+,8k (l—w)z,
o :(ak+7k)7 G, :(ﬁk+]/k)7

OBC OBC
D, =(x—-x)—(S - — (S
=) 2 )+ -3 25,
OBC OBC
DlOZ(xj_xk) A (Sk)+(yj_yk) ay (Sk)’
oF oF
D . =(x—x )—(V. - —(V,
1 (xz xk)ax( k)+(yz yk)ay( k)’

D =(, =) S0+ (3, =) 504).

_ t’a,Z, + tlzt{(oz3 +73)Z, + a3d1}+t1t2 {(/3’3 +73)Z, —ﬁgdz} +£'B.Z,

BC(5,) ot} +ytt+ Pt - ©®
oF oF

dlz(xj—x,)a(ViH(yj—y,.)g(Vi),
oF oF

d2=(xj_xi)g(Vj)jL(y.f_yi)a(Vj)’

=2 =Y

Yusv utv

Theparameters al‘a aja aka ala aza a35 ﬁ,‘a 18]‘7 ﬂka ﬁ]a ﬂZ’ ﬂ37 7/1'7 yja 7//(7 7/17 }/2 and
y, are parameters known as shape design parameters used to modify the shape of surface

as required. The rational interpolant over each triangular patch is constructed by
substituting the values RC;, RC, and RC, from (3), (5) and (7) in (2).

3.2 Positivity preserving interpolation of irregular surface data
Let {(x,,y,,Z,),i=12,3,..,n} be the given irregular data, positive over the whole
domain (Z, >0,i=1,2,3,...,n).

The rational interpolant (2) will be positive if each of the boundary curve defined in (3),
(5) and (7) are positive. The radial curves RC;, RC; and RC, can be rearranged as:

RCi — RCin ,
RCid
where
RC, = {(1_u)3 B +u(l-u) AQ}BC(SI.)+051.ZI VG, + WG, +V'G, + WG, + WG, +V'G, +
VWG, +vw' G +w'G,, 9)
RCid:aiu2+;/i(1—u)u+ﬂi(l—u)2, (10)

G, =-3a,Z,+AZ +a.D;,
G, =-3aZ +AZ +aD,,
G, =a,Z,—2A4Z - BD,—2a.D,,
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G,=6aZ -44Z - pD, - BD,-2aD,-2aD,,
G, =3a,Z,-24Z - B.D,-2a,D,,
Gy =—a,Z, +AZ + BD +aD,,
G, =-3a,Z, +3A4Z,+2BD,+ B.D, +2a,D,+a,D,,
Gy, =30, Z, +34Z,+2B8D,+ B.D +2a,D,+a,D;,
G, =-a,Z+AZ +pBD,+aD,,

RC,

RC, ==
'~ RC,
RC, = {(l—v)3 B, +(1-v)’ sz}BC(Sj) &, Z, +ul, +wL, +u’ Ly +uwL, + WLy +u L +
wwL, +uw’ L + WL, (11)
2
RC,=ap’ +y,(1-v)v+p,(1-v), (12)

L =-3a,Z,+BZ,+a,D,,
L,=-3a,Z,+BZ,+a,/Dy,
L, =3a,Z,-2B,Z, - 3,D;—2a,D,,
L,=6a,Z,-4BZ, - B,D;— B,D;—2a D, —2a, D,
Ly =3a,Z,-2B,Z, - 8,Ds —2a,D,,
Li=-a,Z,+BZ,+p,Ds+a,D,,
L,=-3a,Z,+3BZ,+2,Ds;+ ,Ds+2a,D, + Dy,
Ly=-3a,Z,+3BZ,+2p,D,+ f,D; +2a, Dy +a,D,,
Ly=-a,Z,+BZ,+ f,Ds+a,D,
RC,,
Rde

2

RC, =

RC, = {(1—w)3 B+ (1-w) wCz}BC(Sk)+akZ3 +uM, +vM, + 1M, +uvM, +v* M +
WM+ u'vM, +u’M +v'M,, (13)

RC,, =a,w + 7, (1-w)w+ B, (1-w)’, (14)

M, =3a,Z,+CZ +a.D,,

M,=-3a,7,+CZ,+aD,,

M, =3a, 2, -2CZ, - f.Dy =204, D,,,

M, =6a,Z,-4CZ, - B.D, - B, D\, =204, D), =2/, D,

M =30, 2, -2CZ; - D, - 22, D,

Mg =-0,Z,+CZ+ B.Dy +a, Dy,

M, =-3a,Z,+3CZ,+2B,D, + B.D,, +2a,D,, + o, D,, ,

M, =-3a,72,+3CZ,+25.D,+ B.D,+2a,D,+a,D,,

My =-a,Z,+CZ,+ Dy + oD, .
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RC. >0 if RC,, >0 and RC,, >0.
From (9), RC, >0 if o, >0, 8 >0, BC(S;)>0 and G, >0, i=12,3,..,9.
From (10), RC,, >0 if &, >0, >0 and y, >0.
Using Theorem developed in (Sarfraz, Al-Mulhem and Ashraf, 1997), BC(S,)>0 if
7, > Max- 0, i LA ,
ZZ ZS
G >0,i=123,.,9if
¥ > Max10 2002, —a,D; 20,7, —aD, —pD -a,D; -BD,—aD,
i 9 Zl s Zl s Zl s Zl ’
_ﬂi(le +D2)_ai(2D3 +D4) _/6[(2D2 +D1)_ai(2D4 +D3) and
3Z, ’ 37,
BD +2aD,-aZ ,BD +2a.D,-a,Z, ,B(D +D,)+2a, (D, +D,)-2a,Z,
-2Z, -27, -4z,

7 <Mm{

d, d,
Similarly, RC, > 0if y, >Max{0 - 7},
3 1

L>0,i=1,23,.9 if

y > Maxl0 20,2, -a,;D, 2a,Z,-a;Dy —f,D;—a;D, —p,Ds—a Dy
J 2 22 b Zz b Zz b Zz b
—p,(2D; + Dg)— o (2D, + Dy) —p,(2D+ Ds)— (2D + D;) and
37, ’ 37,
y <Minlo B:Ds+2a,D,—a,Z, B,Di+2a,Dy-a,Z, B,(D;+Dg)+2a,(D,+Dy)-2a,Z,
/ ’ 27, ’ 27, ’ 47,
Similarly, RC, >0, if y, > Max<0, —i d— ,
Z, Zz
M, >0,i=1,23,.,9 if
¥ > Max10, 202, -, D), 2002, -y D, -BDy—ay D, -B.D,—a, D,
¢ Z, ’ A ’ A ’ 23 ’
-p.2D,+D,))-a,(2D,,+D,,) —p,(2D,,+D,)—a,(2D,, +D,,) and
3Z, ’ 3Z,
v, < Min]0 ﬂkD +2a0,D, -y Z; B.D,+2e, Dy, - Zy B (Dy+Dy)+2a, (D, +Dy,) 204 Z;
* 27, ’ 27, ’ 47,

The above discussion is summarized as:

Theorem 1. The C' triangular patch, defined over the triangular domain in (2), is
positive if the following sufficient conditions are satisfied:

0 <7,<0,, Q3<7j<Q4a Os <7, <0y,
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O = Max0 20072, -a,D;, 20,2, -a,D, -BD —-a,D;, -pD,-aD,
1 5 Zl ) Zl 5 Zl ) Zl 5
_ﬂi(ZDl +D2)_ai(2D3+D4) _:Bi(zD2+D1)_ai(2D4+D3)
37, ’ 37, ’
0, = Min ,BD +2a,D,-a,Z, ,BD +2a,D, -, Z, ﬂ(D +D,)+20,(D,+D,)-2a,Z,
27, 27, 47, ’
0. = Max)0 2a,Z,-a;D, 2a,Z,-a;D; —f,D;—a;D, —p,Ds—a Dy
3 s Z2 5 22 5 22 5 22 5
—p,(2D; + Dg)—a;(2D; + Dy) —p,(2D+ Ds)— (2D + D;)
37, ’ 37, ’
Y ,BD+2aD -a,Z, ﬁD+2aD -a,Z, ﬂ(D+D)+20{(D+D) 2a,Z,
O, = Min 27, 27, 47, ’
0. = Max 0, 20,2, -, Dy, 20425 -0y Dy, =D~y D, —fDy~D,
5 Z3 3 Z3 b Z3 3 23 M
—B.(2D, + Dyy) -, (2D, + Dy,) —f,(2Dyy + Dy) -, (2D, +Dn)}
3Z, 3Z,
0, = ﬁk y +20,.Dy, ~ay 2, :Bk Dy +20, Dy, ~ 4, Z, :Bk(D Dyy)+20, (D, +Dy,) =204, Z, )
27, 27, 47,

3.3 Monotonicity preserving interpolation of irregular surface data

In this section, we shall establish the sufficient conditions for the monotonicity of rational
interpolant (2) in an arbitrary direction d = AV, + AV, + AV, 4+ A4, +4,=0.
(Floater and Pena, 2000) stated:

Definition 1. A function f (x, y) is said to be strictly monotone in any direction d if

Dd f ('x Y ) >0 s
where D, denotes the directional derivative along the directiond . o

Let {(xl., yl.,Zi), i:1,2,3} be the monotone irregular surface data defined over the
triangle AVVV, obeying the restrictions that if x, <x; andy, <y, then Z <Z, and
Z'>0 andZ} >0, I=1i,j,k.

The directional derivative of (2) along the direction d =AV, + AV, +AV,, with A4 +

A+ 2y =0 s
op . oP . oP _(D,P),
D,P= ﬂw—u /125 %——(DdP)D, (15)
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(DdP)N = VWE +uVWE, +uV E, + VW' E, +w W E, +u VW E, +uv*'w’E, +
u'w'E, +u'wWw' E, +uV'wE  +ut W E, +uViwE,,, (16)

(DdP)D = (u2v2 VW + 14/2u2)2 (17)

E., i=1,2,3,..,12can be obtained by simple computation involved in (15). Using the
Definition (1), the rational interpolant (2) is monotone if D,P>0.

(D,P), > 0is positive always, whereas, (D,P), >0 if E, >0, i=1,2,3,..,12.
E >0, i=1,23,.,12 if

RC,>0,with i=1,2,3,7n,>0, ,>0,06,>0;i=12,3,..17.
4(RC,-RC,)>0, 4(RC,—RC,)>0, 4,(RC,-RC,)>0, A4 (RC,—RC,)>0,
4 (RC,-RC;)>0, 4,(RC,~RC,)>0,7,>0, 7,>0,5,>0 ; i=1,2,3,.17.
¥, > Max{0,Con, 1 <i <8}, y, > Max{0,Con,,9 <i <16},

75 > Max{0,Con,,17 <i <24}, y, > Max{0,Con,,25 < i <30},

75 > Max{0,Con, 31 <i <36}, y, > Max{0,Con,,37 <i < 42},

where
Con. = ﬂi(/lle + %Dz) B 2/?1@(21 B BC(Si))
' 2A4(Z,-BC(S)+(4LDy+ 4,D,)
~4Aa,(Z, - BC(S,))-(4,D, + ,D,)e,
Con, = >
(Z, - BC(S)A,
Con. = JDi+ D)~ ha(Z, = BC(S,))
} A(Z,-BC(S,)) ’
Con. = BaDy+4D5) =2 (Z, - BC(S)
) 24(Z,-BC(S))) ’
Con, =— AiD, ,
Con, = —&,
D4
Con = —A(D,+2D)
D3
Con, = ~B.(D, +2D,) ’
D4
Con. = B ADs + D) =24, (Z, ~BC(S,)))
* 24,(Z,-BC(S) +(4D, +AD,)
c —44a,(Z,-BC(S,)— (4D, + ADy)a,
on,, = R

(Z, = BC(S; )4,
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_ ADs +AD0) S, — Aha,(Z, - BC(S)))

Con,, = ,
A4 (Z,—BC(S)))
Con. = BiwDs + Dg) ~22,0,(Z, - BC(S))
B 22,(Z, - BC(S,)) :
C0n13 = _%7
Con,, = _BDs ,
Con_ PP 2D).
D7
Con,, = _ﬂj (D +2D0) ,
DS
Con... = B.(A4Dy+A,D,))—248,(Z,—BC(S,))
T 2A,(Z,—-BC(S,)+(AD, +AD,)
Con. = ~4(Z;=BC(S,) = (4D, + 4Dy
; (Z, - BC(S ), ’
Con... = (ADy +A4,Dy) B, — Ao (Z, = BC(S,))
19 %(ZS_BC(SIC)) ’
Con.. = B (4D, +A4,D,,)-24,a,(Z,—BC(S,))
: 24,(Z, - BC(S,)) ’
Con,, __BDs ,
Con,, = v ,
Con, = LDo+2D).
Dll
COI/I24 = _ﬂk (DIO +2D12) ’
DlZ
C0n25 _ /12“1613 —Zﬁgﬂl (Z3 _Zz)+22'3ﬂ1d4 ’
2/13 (Z3 - Zz)
o, s+ (2= ) a2, 2)
/13(23 _Zz)
Con,, = sds=34an(Z, = 2,)~2hand,
_23614
Con,, = ~ALPdy 2842, = Zy) - 4L B2, - Z;) ’
ﬂ’z (Zz _Zs)
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24pids — By =30p(2,~25)

Con,, =
A,d,
Con,, = ~2hy0ds = Aofpds + 20042 = Zy).
24,(Z,-Z,)
Con.. = 2a%ds =24 5,(Z, ~Z,) + 24 ,d,
31— 2/11(2 ~7) >
Con,, = houds +(224, -4 ) ey (Z, Z)
(2, -Z,)
Con,, = %8s =340y(Z,~2,) ~2Aad,
_ﬂ’ldé
Con,, = Pl + 242~ 2)=4pi(Z,-2)
L(Z,-Z)
Cony, = 2 P,ds — 4, 5,d; 31352(23_21)’
Ad;
Con, = “a0ads = APl + 245022, =Z,)
24,(Z,-Z,)
Con. = 0 =22 B,(Z, = 2,) + 200 f3d,
ny; = 20.(Z,~7,) >
Con, _ 220+ 0A = R) a2, =)
/12(22_21)
Cony, = hasd, =340, (2, — Z,) —2hand, ’
-A,d,
Con,, = —HPsds +2Pho (2~ 2,)~ B2~ 2)
A(Z,-Z,)
Con,, = 24 pyd, — A4 Bid, =345 (Z, Z)
Ad,
Con,, = 2Aasd — A fidy + 24 (Z, - 2,)
221(21_22)

The above discussion is summarized as:

Theorem 2. The triangular patch P, defined over the triangular domain, in (2), is
monotone in the direction d = AV, + AV, +AV,, with 4 + A, + 1, =0 if the following
conditions are satisfied

7\ =D +Max{0,C0ni,1Si£8}, 7, =D, +Max{O,C0ni,9£i£16} ,

7y = py +Max{0,Con,,11<i <24}, y,=p,+Max{0,Con,,25<i<30},
¥s = ps +Max{0,Con,,31<i <36}, y, = ps+Max{0,Con,,37<i<42},
where p, >0,i=1,2,3,...,6.
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4. Numerical Examples

In this section, the shape preserving interpolating scheme developed in Section 3 is
implemented on some functions.

Example 1. The positive irregular surface data is generated from the following positive
function

F (x,y) = (xy - 1)2 +0.2,
and the domain is restricted to[-4,4]x[~4,4]. Figs. 2 and 3 show the Delaunay
triangulation of the domain and linear interpolation of the positive irregular surface data
generated from the function 7, (x,y). Fig.4 is generated from the interpolating scheme,
discussed in Section 3 for the value of shape parameters o, =a, =a; =, =4, =, =,
=a,=a,=pf=p,=B,=1 and y,=y, =y, =y, =y, =y, =2 which reduces the

given interpolant to the cubic Hermite triangular interpolant. Fig. 5 is another view of
Fig.4. Figs. 4 and 5 show that some part of the surface lie below the plane Z =0, it
means that it only interpolates the data but does not preserve the shape of the positive
irregular surface data. Fig.6. is generated from Theorem 1 with free parameters

a=a,=a,=p=p,=p=a,=a;,=a,=p,=p,=0F,=13. In Fig, it is to be

noted that the shape of the positive irregular surface data is preserved. Fig.7 provides
another view of Fig.6.

Example 2. The next example is also for the positive irregular surface data generated
from the following function

F,(x,y)=x’y+e"sin(y),
and domain is restricted to [0,3]>< [0,3]. Figs. 8 and 9 represent the Delaunay triangulation
and linear interpolation of the irregular surface data generated from the function F, (x,y).
Fig.10 is the cubic Hermite triangular surface of the given function and we observed that

cubic Hermite did not preserve the shape of positive data. Fig.11 is another view of
Fig.10. Fig.12 is generated from the Theorem 1 for the free parameters are

g =a,=o,=Q=p=F=0,=a,=aq,=p=0,=5,=122 and the surface
generated from this scheme is positive. Fig.13 is another view of Fig.12.

Example 3. The monotone irregular surface data are generated from the following
function

F, (x,y) =x+ln(x2 +y2)—1.5,
and domain is restricted to [1, 10]>< [1, 10]. Figs. 14 and 15 are the Delaunay triangulation

and linear interpolation of the monotone irregular surface data. Fig.16. is the cubic
Hermite triangular surface and by using the Hermite interpolant, the surface deviates
from its monotone behaviour. Figs. 17 and 18 are the xz-view and yz-view of the
Fig.16. Fig.19. is generated from Theorem 2 for the values of free parameters
aq=a,=a,=p=p=pF=a,=a,=a,=F=0,=p=0001. This scheme has
preserved the monotone shape of irregular surface data. Figs. 20 and 21 are the xz -view
and yz-view of Fig.19.
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Example 4. The fourth example is also for the monotone irregular surface data generated
from the following function

F4(x,y)=ln(2x+y+]).
The domain is restricted to [O, S]x[O, 5]. Fig. 22 and 23 are the Delaunay triangulation

of the domain and linear interpolation of the irregular data generated from the function
F,(x,y)- Fig.24. is the cubic Hermite triangular surface and it does not preserve the shape

of monotone data. Figs 25 and 26 are the xz-view and yz-view of the Fig.24. Fig.27 is
generated from  Theorem 2 and values of shape parameters are
a=a,=a,=p=p=pF=a,=a,=a,=f=p,=p =0.05. Monotone shape of the

data has been preserved in Fig.27. Figs. 28 and 29 are the xz-view and yz-view of

Fig.27.
| e - - -
# 1N 4 ¥,
3 e “\ ¥ p - +

Fig.4.Hermite triangular surface of /| (x, y) . Fig.5. Another view of Fig.4.
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4 4 W5

Fig.6. Positive side-vertex interpolantof £, (x, ). Fig.7. Another view of Fig.6.

] [ %] 1 1§ H L 1
E-atig

Fig.8. Triangulation of the domain F, (x, y).

Fig.10. Hermite triangular surface of F, (x, ). Fig.11. Another view of Fig.10.
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x ¥ F P

Fig.13. Another view of Fig.12.

1k

AN

nmEbE

Fig.16. Hermite triangular surface of F (x, y) .

Fig.17. xz-view of Fig.16.
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Fig.20. xz-view of Fig.19. Fig.21. yz-view of Fig.19.

l / \<“\
: / f><><
AN =N

Fig.22. Triangulation of the domain of F, (x, y). Fig.23. Linear interpolation of F, (x, y).
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Fig.24. Hermite triangular surface of F (x, y)

Fig.25. xz-view of Fig.24.

¥ L4 1 1 1 1 1 u i i ¥

Fig.26. yz-view of Fig.24.

Fig.27.Monotone side-vertex interpolantof F, (x, y).

Fig.28. xz-view of Fig.27.

Fig.29. yz-view of Fig.27.
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5. Conclusion

In (Beatson and Ziegler, 1985, Chan and Ong, 2001, Piah, Goodman and Unsworth,
2005, Piah, Saaban and Majid, 2006), constraints are derived on derivatives. When
derivatives are given with data then these schemes are not helpful. But in this paper, the
scheme is acceptable to both data with and without derivatives. In (Hussain, et al, 2009),
a piecewise rational cubic function with one free parameter is used. This scheme does not
give the freedom to the user to modify the shape of the data. In this paper, 12 shape
parameters in each triangular patch are free for user choice to modify the shape of the
data.

The monotonicity preserving scheme presented in (Beliakov, 2005) is only applicable to
Lipschitz continuous functions. In (Han and Schumaker, 1997) the given irregular data is
arranged to rectangular grid but the schemes of this paper are acceptable to both
rectangular and triangular grid.
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