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Abstract
This study investigates an application of Friedman test statistic as a model selection methodology
on post estimation data. Although there are various model selection criteria, their main focus is to
fit the model to the estimation data. Some of these criteria are appropriate for nested model
selection while the rest is suitable for non-nested model selection. The suggested model selection
methodology is indifferent to the distinction between nested or non-nested model selections. In
suggested methodology, the dataset are sub divided into two parts: First part is used to estimate
all the competing models while the rest are used for performance comparison of competing
models. In this respect, all competing models are ranked according to their forecast performance
based on proximity between observed and estimated values of the dependent variable in post
estimation data. Then, we showed that the suitability of Friedman test statistic in order to evaluate
the prediction performance of competing models.

Keywords: Model Selection, Econometric Model, Friedman Statistic, Prediction
Performance, Post Estimation Data.
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1. Introduction
Model selection among many competing models is one of the foremost topics in
regression analysis. The importance of model selection emerges because an
inappropriate model specification results in serious problems including biased
estimates due to an omission of relevant variables and inefficient estimates due
to inclusion of irrelevant variables. Therefore, discovering the best model among
many competing models lies at the core of model specification. The best model
search is a two-stage process. In the first stage, potentially important factors or
predictors are determined with consideration for unbiased and efficient estimates.
In the second stage, subset models that can be formed from predictors are
evaluated and competed. From any set of K predictors, the number of
alternative models that can be constructed is K2 (Kutner et al., 2005). It is
noteworthy that there is a trade-off between parsimony and precision, and model
selection based on estimation data is a procedure for seeking an optimum. In
other words, model selection based on estimation data could be evaluated as an
optimality search between goodness of fit and parsimony. There are many
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proposed methods for model selection. Some of these methods are appropriate
for nested model selection while the rest are suitable for non-nested model
selection. The common property of both nested and non-nested model selection
methodologies is to focus on goodness-of-fit to estimation data. However, the
suggested methodology is applicable for post estimation data. Furthermore, the
suggested methodology is appropriate for both nested and non-nested model
selections since the focus is goodness-of-fit of predictions to observations in post
estimation data. Therefore, the suggested methodology is indifferent to the
distinction between the nested and non-nested model selections.

Perhaps the most famous and naïve criterion for nested model selection is the
determination coefficient, denoted by TSS/RSS1R 2  where RSS is residual
sum of squares and TSS is total sum of squares. However, due to a number of
serious problems associated with 2R , its usage is not advised in general Asteriou
(2006). The major criticism of 2R is that due to the fact that the addition of an
explanatory variable cannot cause this statistic to fall. Therefore, 2R would
always lead one in favor of larger model. Note that in general, adding a variable
to the model increases the precision but decreases the parsimony, vice versa. An
alternative criterion for model selection is adjusted 2R . Adjusted 2R , denoted by

2R , is obtained by correcting the 2R statistic for degrees of freedom. 2R is given
by )KT/()1T)(R1(1 2  where T is the number of observations used for
estimation, and K is the number of parameters to be estimated. This criterion is
preferable to 2R since inclusion of an irrelevant variable is limited.

Some of the other criteria are: Akaike information criterion (AIC), which
minimizes T/K2)T/SSRln(  , Shwarz Bayesian information criterion SBIC,
which minimizes T/)TlnK()T/SSR(  , Amemiya's prediction criterion, which
minimizes )KT/()T/K1(SSR  , and Hannan and Quinn criterion that
minimizes )Tln(K2)T/RSSln(T  (Akaike 1974, Shwarz 1978, Hannan and
Quinn 1979, Amemiya 1980, Judge 1985, Kennedy 2003). Note that these
criteria are mainly used for non-nested model selection. Other criteria include
Mallow's C criterion and prediction sum of squares (PRESS) criterion (Kutner et
al., 2005). Each criterion gives different weights for the trade-off between
parsimony and precision.

In addition, there are other methods called automatic search procedures. These
methods are especially useful when the number of predictors is large, and
therefore, all possible models require numerous trials. Note that automatic
search procedures are not necessarily competitors of the model selection criteria.
Conversely, when there are too many covariates, the model selection criteria are
used with automatic search procedures. The automatic search procedures are
variety of automatic computer based search procedures and mainly appropriate
for nested model selection (Kutner et al., 2005). The mostly used automatic
search procedures are: Best Subsets Algorithms and Stepwise Regression
Methods.
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In this study, we propose use of the Friedman test for model selection by
focusing on post estimation analysis of competing models. With this motivation,
the rest of this study is organized as follows. Section 2 discusses measuring
prediction performances of competing models. The Friedman test statistic for
model selection requires a series of hypothesis testing procedures. These
procedures are derived in Section 3. Section 4 concludes.

2. Measuring Prediction Performances
We assume that there are c competing models where 1c . Furthermore, we
assume that the total observations are divided into two groups. The first m
observations are the estimation data and the remaining n observations are the
post estimation data. Suppose Model 1, Model 2, …, Model c are estimated
based on the estimation data. Then, based on the post estimation data, the
prediction performances can be measured as follows. Let 1y , 2y , …, ny denote
the observations of the dependent variable in the post estimation data.
Furthermore, let j1ŷ , j2ŷ , …, njŷ where  c,,2,1j  denote the predicted
values of the dependent variable from each model. Hence, the prediction
performances can be measured by smallness of the distances, defined by

|ˆ| ijiij yya 

where  n,,2,1i  and  c,,2,1j  . It is instructive to note that the prediction
performance is measured separately for each observation of the post estimation
data. Nevertheless, it is also noteworthy to state that the prediction performance
may be measured by smallness of any positive power transformation of the
distance. However, this does not affect the order of the competing models
because this order is invariant to such a transformation.

It is assumed that the dependent variable observations 1y , 2y , …, ny are
independent of each other in regression analysis. On the other hand, the
predictions j1ŷ , j2ŷ , …, njŷ are assumed to be constants since they are simply
produced from the competing models and the post estimation data of
independent variables. Related to this, saij ' are independent of each other. To
see this, consider two random variables U and V . If U and V are independent
of each other and also if u and v are constants, then uU  and vV  are also
independent of each other. The distances 1ia , 2ia , …, ica where  n,,2,1i 
play a crucial role in determining model rankings. Generally speaking, a smaller
rank must be assigned to a model with a relatively small distance. Then, the
preference data are obtained by the formula:

ijR the rank of ija in the set of 1ia , 2ia , …, ica in an ascending order

for  n,,2,1i  and  c,,2,1j  . Hence, the preference data is obtained as
follows:
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Table 1: Preference Data
Model 1 Model 2 … Model c

Observation (Block) 1 11R 21R … c1R
Observation (Block) 2 21R 22R … c2R
… … … … …
Observation (Block) n 1nR 2nR … ncR
Total 1.R 2.R … c.R

It is obvious that the set of the i th row ranks 1iR , 2iR , …, icR is a permutation of
the integers 1, 2, …, c for every  n,,2,1i  and the integers from 1 to c are
assigned as rankings from the smallest distance to the largest for the competing
models.

3. The Null Hypothesis and the Test Statistic
The null hypothesis is that there is no winner in the competing models. If there is
no winner in the competing models, then one can assign any permutation of 1, 2,
…, c equally likely as the ranks to the competing models. Hence, under the null
hypothesis,

 
!c
1kR,...,kR,,...kR,kRP cicjij22i11i  (1)

where 1k , 2k , …, ck are any permutation of 1, 2, …, c for every  n,,2,1i  . It
follows from (1) that the marginal probability function of ijR is given by

c
1)kR(P jij  (2)

where  n,,2,1i  ,  c,,2,1j  and  c,,2,1k j  . This result can be proven
as follows: Consider that the marginal probability function  jij kRP  is equal to
the sum of all the probabilities

 cicjij22i11i kR,...,kR,,...kR,kRP 

where 1k , 2k , …, jk , …, ck are any permutation of 1, 2, …, c under the
condition that ijR is fixed as jk . If ijR is fixed as jk , then there are )!1c( 

equally likely permutations for 1k , 2k , …, jk , …, ck . Then

c
1

!c
1)!1c()kR(P jij  .

Notice that the conditional probability of the event
11 jij kR  under the condition of

the event
22 jij kR  is given by:

1c
1)kR|kR(P

2211 jijjij 
 (3)

where  c,...,2,1jj 21  . The proof from (2) to (3) is similar to that from (1) to (2).
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Theorem 1: Let j.R and   ccUUUu  121  are defined by 



n

1i
ijj R.R and

,
2

)1c(n.R
2

)1c(n.R
2

)1c(n.R
)1c(nc

12'u
c1

c21








 













 respectively.

Then,     .000' 1 cuE  

Proof: Note that

2
1c

c
1c

c
12

c
11)R(E ij


  (4)

by equation (2). Furthermore, the expected value of j.R is given by:

  ).R(E)R(E)R(E.RE njj2j1j   (5)

As a consequence of (4) and (5), we have

2
)1c(n).R(E j


 (6)

where  c,,2,1j  . Thus, equation (6) completes the proof of Theorem 1.

Theorem 2:
c

IuVar '11)( 
 where I is cc unit matrix and   c

 11111  .

Proof: Notice that

    
6

1c21c
c
1c

c
12

c
11RE 2222

ij


  (7)

by equation (2). It follows from (4) and (7) that

       



12
12

22 cRERERVar ijijij (8)

Since the observations (distances) are assumed independent of each other,
).R(Var j is:





12

)1c(n).R(Var
2

j (9)

On the other hand,

1c
1

c
1)RR(E 2

c

1
1ijij

21
21 

 




(10)
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because 



1c
1

c
1)R|R(P)R(P)R,R(P 1ij2ij1ij2ij1ij 12121

 Notice

that   .
1
22

121 1
21

 


ccc


 Then, it follows from (10) and (4) that

        



12
1cRERERRER,RCov

212121 ijijijijijij (11)

Moreover, distances independency implies that:

  



12

)1c(n.R,.RCov
21 jj (12)

By using definition of u , )(uVar is given by:













 






 








 2

)1c(n.R
2

)1c(n.R
2

)1c(n.RVar
)1c(c

12
c21  (13)

Substituting both (9) and (12) into (13) yields:

ccccc

ccc

ccc

uVar



































1111

1111

1111

)(









. (14)

This completes the proof of Theorem 2.

Lemma 1:
 
  )1,0(N~
.RVar
.RE.R

j

jj  as n for each  cj ,2,1 .

Proof: By equations (4) and (8), the components of j.R have finite means and
finite variances. These conditions are sufficient (even if not necessary) for the
central limit theorem (Dudewicz and Mishra, 1988). This completes the proof of
Lemma 1.

Now, we can introduce the test statistic for testing the null hypothesis. To do this,

consider the following quadratic form u
c

IuQ 





 

11' . It is possible to show that

this quadratic form is equivalent to the Friedman statistic, and it is appropriate for
testing the null hypothesis. To show this, first the following lemma is presented:
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Lemma 2: .01 u

Proof: Notice that 


 

c
1j j 2

)1c(nc.R On the other hand, u1 can be shown to

be equal to 





 


   

c
1j

c
1jj 2

)1c(n.R
)1c(nc

12 Therefore, substituting the

former into the latter completes the proof of Lemma 2.

Hence, as a result of Lemma 2, Q can be rewritten as follows:

,uuQ  (15)

and its distribution is provided in following theorem.

Theorem 3: 2
1~ cQ  as n .

Proof: Since
c

I '11
 is an idempotent matrix, its eigenvalues  si ' are equal to

either 0 or 1 with the number of 1's is equal to its trace, which is .1c Hence,

   iDiagDiagP
c

IP 





 
 0111'11  (16)

where ccP is an orthogonal matrix with IPPPP  and  iDiag  is a )( cc -
dimensional diagonal matrix. Therefore, it follows that

  .'11 PPDiag
c

I i 





 
  (17)

In addition, let   ccVVVv 
 121  be defined by uPv ' . By using equation

(6), one can obtain   .000)(  vE Similarly, )()( iDiagvVar  can be
derived from equation (16). Hence, 1V , 2V , …, 1cV are standardized random
variables since their mean values are equal to 0 and their variances are equal to
1. In addition, the degenerate random variable 0cZ since both its mean value
and variance are all equal to 0. Further, )(vVar also denotes that the covariance
between any pair of 1V , 2V , …, 1cV is equal to 0 while 1V , 2V , …, 1cV have a
limiting )1,0(N distribution by virtue of both Lemma 1 and the definition of

uPv  . These conclusions imply that 1V , 2V , …, 1cV are mutually independent
when n . Hence, by the definition of Q given in (15) can be written as

.21
2
2

2
1  cVVVvvvPPvuuQ  (18)
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On the other hand, since 1V , 2V , …, 1cV )1,0(N~ and mutually independent as
n , Q has a limiting chi-square distribution with 1c degrees of freedom,

which completes the proof of Theorem 3.

Notice that by equation (15), Q is shown to be equivalent to the following:

.)1c(n3.R
)1c(nc

12
2

)1c(n.R
)1c(nc

12Q
c

1j

2
j

2c

1j
j 












 




 (19)

The statistic given in equation (19) is obviously the Friedman statistic having a
limiting chi-square distribution with 1c degrees of freedom as proven in
Theorem 3. Therefore, the rule of testing hypothesis when n is large is given by

Reject 0H if ;2
,1  cQ otherwise do not reject,

where  is the first type error and 2
,1 c is the upper  percentile point of a chi-

square distribution with 1c degrees of freedom. Notice that rejecting the null
hypothesis based on the above rule requires rejecting validity of equation given
in (1), which implies that at least some of the competing models have better
prediction performances than the others have. To discover the 'great' winner of
all the competing models, the above procedure should be repeated by
eliminating the ‘weakest’ model, to which the largest rank mostly assigned.

4. Conclusion
The primary objective of this paper is to introduce a methodology that is based
on the Friedman statistic for model selection. The suggested procedure depends
on the prediction performances that can be measured distances on post
estimation data. We showed that the prediction performances can be used to
rank models, and the test statistic calculated from ranked models is equivalent to
the Friedman test statistic. The procedure suggested here can be an alternative
for other commonly employed model selection criteria. The main advantage of
this methodology it is appropriate for both nested and non-nested model
selection since it compares prediction performances. Given that no attempt is
made to measure performance of Friedman test statistic in model selection, then
carrying out some empirical comparison of this procedure with other criteria and
identifying differences in how each criterion handles the statistical priorities of
model selection would prove fruitful in terms of future research.
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