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Abstract  

 

We study a new family of distributions defined by the minimum of the Poisson random number of independent 

identically distributed random variables having a general Weibull-G distribution (see Bourguignon et al. (2014)). 

Some mathematical properties of the new family including ordinary and incomplete moments, quantile and 

generating functions, mean deviations, order statistics, reliability and entropies are derived. Maximum likelihood 

estimation of the model parameters is investigated. Three special models of the new family are discussed. We 

perform three applications to real data sets to show the potentiality of the proposed family. 
 

Key Words: Weibull-G family, Entropy, Generating Function, Maximum Likelihood, Order 

Statistic. 
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1. Introduction 

In many applied areas such as lifetime analysis, biomedical science, reliability, engineering, social sciences, 

finance and insurance, there is a clear need for extended forms of the classical models, i.e., new distributions which 

are more flexible to capture skewness and kurtosis behavior and to improve the goodness-of-fit of the generated 

family. Recent developments focus on new techniques by adding shape parameters to existing distributions for 

building classes of more flexible distributions. However, there is a clear need for further extended distributions, which 

are more flexible to model lifetime data in applied areas. 

 

Several studies have suggested that Weibull distribution, an asymmetrical distribution has limitations in fitting all 

types of data where the topic of reliability comes into play. For example, Drobinski et al. (2015) in their study, 

demonstrated that in modeling wind speed data, since the Weibull distribution is heavily relied on empirical 

perspective rather than physical justification, it might not be a good candidate in fitting to these types of environmental 

data. In their study, the authors provided due justification that the Weibull model works less efficiently for wind speed 

data as compared to wind components data. Basu et al. (2009) studied the usefulness of the Weibull distribution in 

evaluating the strength distribution for brittle materials. The authors indicated that other probability models, such as 

normal, log-normal works better under certain reasonable circumstances. On the other hand, the Poisson distribution 

has its limitation as well as demonstrated by Pak-poy (1964). It is suggested in that study that the popular Poisson 

model for modeling road traffic problems is not recommended in some practical situations, where the variance is much 
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bigger than the mean. All these above merits for finding a mixture of Weibull-G family of distribution, proposed and 

studied by Bourguignon et al. (2014) (after adding more flexibility to Weibull model itself) with possibly a discrete 

probability distribution with the same support (0,∞).  This is why we considered Poisson distribution with the 

Weibull-G type models to capture more flexibility. We hope that our proposed model will be better in capturing several 

patterns of the data structure to describe appropriately the associated reliability structure, in particular to those cases 

where the individual Weibull-G family (a specific member) or the Poisson distribution alone might not be a good 

model. 

 

The well-known generators are the following: beta-G by Eugene et al. (2002), Kumaraswamy-G by Cordeiro and de 

Castro (2011), exponentiated generalized-G by Cordeiro et al. (2013), generalized transmuted-G by Nofal et al. (2017), 

transmuted exponentiated generalized-G by Yousof et al. (2015), Kumaraswamy transmuted-G by Afify et al. (2016b), 

transmuted geometric-G by Afify et al. (2016a), generalized odd generalized exponential family by Alizadeh et al. 

(2017), exponentiated Weibull-H family by Cordeiro et al. (2017), exponentiated generalized-G Poisson family by 

Aryal and Yousof (2017), transmuted Weibull-G family by Alizadeh et al. (2018), Marshall-Olkin generalized-G 

Poisson family by Korkmaz et al. (2018b) and odd Lomax-G family by Cordeiro et al. (2019). Many other useful 

families and new models can be cited by Brito et al. (2017), Cordeiro et al. (2018), Altun et al. (2018a-b), Gad et al. 

(2019), Yousof et al. (2017a-b, 2018a-d and 2019), Hamedani et al. (2017, 2018 and 2019), Korkmaz et al. (2018a), 

Sen et al. (2018), Korkmaz et al. (2019), Ibrahim et al. (2019), Nascimento et al. (2019) and Ibrahim (2020a-b) and 

Mansour et al. (2020). 
  

We motivate our model by considering a typical system failure in a reliability context. We envision a scenario that we 

will encounter a data which is a mixture of discrete and continuous type. We begin by assuming the distribution of a 

system consisting of 𝑁 independent subsystems having a zero inflated Poisson distribution. We discard the scenario 

that all components simultaneously will fail to work, theoretically viable but realistically not a prudent one. 

Suppose  𝑍1, . . . , 𝑍𝑁  be independent identically random variable (iid) with common CDF Weibull-G and  𝑁  be random 

variable with  

𝑃(𝑁 = 𝑛) =
1

𝑒𝑥𝑝( 𝜃) − 1
×

𝜃𝑛

𝑛!
|𝑛 = 1,2, . . . , 𝜃 > 0 

 and define  𝑀𝑁 = 𝑚𝑎𝑥(𝑍1, . . . , 𝑍𝑁)  then 

𝐹(𝑥) = ∑ 𝑃𝑟(𝑀𝑁 ≤ 𝑥|𝑁 = 𝑛)

∞

𝑛=1

𝑃𝑟(𝑁 = 𝑛) 

= ∑ {
1 − 𝑒𝑥𝑝[−𝜃𝐺(𝑥 ; 𝛼 , 𝜙)]

[𝑒𝑥𝑝(𝜃) − 1]
}

𝑛∞

𝑛=1

1

𝑒𝑥𝑝( 𝜃) − 1

𝜃𝑛

𝑛!
 

=
1

[𝑒𝑥𝑝(𝜃)−1]
{𝑒𝑥𝑝 (𝜃 − 𝜃 𝑒𝑥𝑝 {− [

𝐺(𝑥 ;𝜙)

𝐺(𝑥 ;𝜙)
]
𝛼

}) − 1}.                                (1) 

 

Equation (1) is called Weibull-G Poisson (WGP) distribution. Several new models can be generated by considering 

special distributions for  𝐺(𝑥 ; 𝜙) . 

The corresponding PDF of (1) reduces to  

𝑓(𝑥 ; 𝜃 , 𝛼, 𝜙) =
𝜃𝛼𝑔(𝑥 ; 𝜙)𝐺(𝑥 ; 𝜙)𝛼−1

[𝑒𝑥𝑝(𝜃) − 1]𝐺(𝑥 ; 𝜙)𝛼+1
𝑒𝑥𝑝 {− [

𝐺(𝑥 ; 𝜙)

𝐺(𝑥 ; 𝜙)
]

𝛼

} 

× 𝑒𝑥𝑝 (𝜃 − 𝜃 𝑒𝑥𝑝 {− [
𝐺(𝑥 ; 𝜙)

𝐺(𝑥 ; 𝜙)
]
𝛼

}).                                     (2) 

The reliability function (rf) of  𝑋  is given by 

𝑅(𝑥 ; 𝜃 , 𝛼, 𝜙) = 1 −
1

[𝑒𝑥𝑝(𝜃) − 1]
{𝑒𝑥𝑝 (𝜃 − 𝜃 𝑒𝑥𝑝 {− [

𝐺(𝑥 ; 𝜙)

𝐺(𝑥 ; 𝜙)
]

𝛼

}) − 1}, 

where  𝜃  and  𝛼  are two positive shape parameters. A random variable  𝑋  with PDF (2) is denoted by  𝑋 ∼ WGP 

(𝜃, 𝛼, 𝜙). 

 

The rest of the paper is organized as follows. In Section 2, we provide a useful mixture representation for its PDF. In 

Section 3, we define two special models and give some plots of their PDF's and hazard rate functions. In Section 4, 

we derive some of its general mathematical properties including quantile and generating functions, ordinary and 

incomplete moments, mean deviations, entropies, order statistics, residual and reversed residual life and stress-strength 
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mode. Maximum likelihood estimation of the model parameters is addressed in Section 5. In Section 6, simulation 

results to assess the performance of the proposed maximum likelihood estimation procedure are discussed. In Section 

7, we provide three applications to real data to illustrate the importance and flexibility of the new family. Finally, 

some concluding remarks are presented in Section 8. 

2. Linear representation 

In this section, we provide a useful representation for (2) using the concept of exponentiated distributions. 

The WGP family density in (2) can be expressed as  

𝑓(𝑥) =
𝜃𝛼

[𝑒𝑥𝑝(𝜃) − 1]
∑

𝜃𝑖𝑔(𝑥 ; 𝜙)𝐺(𝑥 ; 𝜙)𝛼−1

𝑖! 𝐺(𝑥 ; 𝜙)𝛼+1

∞

𝑖=0

𝑒𝑥𝑝 {− [
𝐺(𝑥 ; 𝜙)

𝐺(𝑥 ; 𝜙)
]

𝛼

} 

× (1 − 𝑒𝑥𝑝 {− [
𝐺(𝑥 ; 𝜙)

𝐺(𝑥 ; 𝜙)
]

𝛼

})

𝑖

. 

The last equation can be expressed as 

 

𝑓(𝑥) = ∑
(−1)𝑗+𝑘+𝑚

𝑖! 𝑘!

∞

𝑖,𝑗,𝑘,𝑚=0

(
𝑖
𝑗
) (

−[𝛼(𝑘 + 1) + 1]
𝑚

)
𝜃𝑖+1𝛼(𝑗 + 1)𝑘

[𝑒𝑥𝑝(𝜃) − 1]
𝑔(𝑥 ; 𝜙)𝐺(𝑥 ; 𝜙)𝛼(𝑘+1)+𝑚−1. 

Then, the WGP density can be rewritten as  

𝑓(𝑥) = ∑ 𝜔𝑘,𝑚
∞
𝑘,𝑚=0    𝜋𝛼(𝑘+1)+𝑚(𝑥),                                                  (3) 

where  𝜋𝜂(𝑥) = 𝜂𝑔(𝑥 ; 𝜙)𝐺(𝑥 ; 𝜙)𝜂−1  and  

𝜔𝑘,𝑚 =
𝛼(−1)𝑘+𝑚 (−

[𝛼(𝑘 + 1) + 1]
𝑚

)

𝑘! [𝑒𝑥𝑝(𝜃) − 1][𝛼(𝑘 + 1) + 𝑚]
∑

(−1)𝑗(𝑗 + 1)𝑘𝜃𝑖+1

𝑖!

∞

𝑖,𝑗=0

(
𝑖
𝑗
). 

Equation (3) reveals that the WGP density function is a mixture of Exp-G densities. Thus, some mathematical 

properties of the new family can be derived from those properties of the Exp-G class. The CDF of the WGP family 

can also be expressed as a mixture of E-G densities. By integrating (3), we obtain the same mixture representation  

𝐹(𝑥) = ∑ 𝜔𝑘,𝑚
∞
𝑘,𝑚=0  𝛱𝛼(𝑘+1)+𝑚(𝑥),                                                    (4) 

where  𝛱𝜂(𝑥)  is the CDF of the Exp-G family with power parameter  (𝜂) . 

3. Special WGP distributions 

The PDF (2) allows greater flexibility of its tails and can be widely applied in many applied areas of statistics. Now, 

we define and study two special models of the WGP family by taking the following baseline distributions: gamma 

(G), log-logistic (LL) and exponentiated exponential (EE) distributions. The PDF (2) will be most tractable when the 

CDF  𝐺(𝑥 ; 𝜙)  and the PDF  𝑔(𝑥 ; 𝜙)  have simple analytic expressions. 

 

3.1 The WG P distribution 

The G distribution with positive parameters  𝑎  and  𝑏  has PDF and CDF (for 𝑥 > 0) given by  

𝑔(𝑥) =
1

𝑏𝑎𝛤(𝑎)
𝑥𝑎−1𝑒𝑥𝑝 (−

𝑥

𝑏
)      and   𝐺(𝑥) =

1

𝛤(𝑎)
𝛾 (𝑎,

𝑥

𝑏
), 

 respectively, where  𝛾 (𝑎,
𝑥

𝑏
) = ∫ 𝑡𝑎−1𝑥/𝑏

0
𝑒−𝑡𝑑𝑡  is the incomplete gamma function. Then, the PDF of the WGP 

distribution reduces to 

 

𝑓(𝑥) =
𝜃𝛼𝑥𝑎−1 𝑒𝑥𝑝 (−

𝑥
𝑏
)𝛤(𝑎) [𝛾 (𝑎,

𝑥
𝑏
)]

𝛼−1

𝑏𝑎[𝑒𝑥𝑝(𝜃) − 1] [𝛤(𝑎) − 𝛾 (𝑎,
𝑥
𝑏
)]

𝛼+1 𝑒𝑥𝑝 {− [
𝛾 (𝑎,

𝑥
𝑏
)

𝛤(𝑎) − 𝛾 (𝑎,
𝑥
𝑏
)
]

𝛼

} 

× 𝑒𝑥𝑝 (𝜃 − 𝜃 𝑒𝑥𝑝 {− [
𝛾 (𝑎,

𝑥
𝑏
)

𝛤(𝑎) − 𝛾 (𝑎,
𝑥
𝑏
)
]

𝛼

}). 

The plots in Figures 1 and 2 show some possible shapes of the density and hazard rate functions of the WGP 

distribution. 
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3.2 The WLLP distribution 

The LL distribution with positive parameters 𝑐 and 𝑠 has PDF and CDF given by 𝑔(𝑥) =
𝑐

𝑠
(
𝑥

𝑠
)𝑐−1 [1 + (

𝑥

𝑠
)𝑐]

−2

  (for  

𝑥 > 0 ) and  𝐺(𝑥) = 1 − [1 + (
𝑥

𝑠
)𝑐]−1,  respectively. Then, the PDF of the WLLP distribution is given by 

𝑓(𝑥) =
𝜃𝛼𝑐𝑥𝑐−1 {1 − [1 + (

𝑥
𝑠
)

𝑐

]
−1

}
𝛼−1

𝑠𝑐[𝑒𝑥𝑝(𝜃) − 1] [1 + (
𝑥
𝑠
)

𝑐

]
−𝛼+1 𝑒𝑥𝑝 [− (

𝑥

𝑠
)

𝑐𝛼

] 

× 𝑒𝑥𝑝 {𝜃 − 𝜃 𝑒𝑥𝑝 [− (
𝑥

𝑠
)

𝑐𝛼

]}. 

Plots of the density and hazard rate functions of the WLLP distribution are displayed in Figures 3 and 4 for some 

parameter values. 

 
 

 

 

 

 Figure  
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3.3 The WEEP distribution 

The EE distribution with scale parameter  𝜆 > 0  and shape parameter  𝛽 > 0  has PDF and CDF given by  𝑔(𝑥) =
 𝛽𝜆 𝑒𝑥𝑝(−𝜆𝑥) [1 − 𝑒𝑥𝑝(−𝜆𝑥)]𝛽−1  (for  𝑥 > 0 ) and  𝐺(𝑥) = 1[− 𝑒𝑥𝑝(−𝜆𝑥)]𝛽 , respectively. Then, the WEEP 

density function reduces to 

 

𝑓(𝑥) =
𝜃𝛼𝛽𝜆[1 − 𝑒𝑥𝑝(−𝜆𝑥)]𝛼𝛽−1

{1 − [1 − 𝑒𝑥𝑝(−𝜆𝑥)]𝛽}𝛼+1
𝑒𝑥𝑝 (

−[1 − 𝑒𝑥𝑝(−𝜆𝑥)]𝛼𝛽

{1 − [1 − 𝑒𝑥𝑝(−𝜆𝑥)]𝛽}𝛼
) 

×
𝑒𝑥𝑝(−𝜆𝑥)

[𝑒𝑥𝑝(𝜃) − 1]
𝑒𝑥𝑝 [𝜃 − 𝜃 𝑒𝑥𝑝 (

−[1 − 𝑒𝑥𝑝(−𝜆𝑥)]𝛼𝛽

{1 − [1 − 𝑒𝑥𝑝(−𝜆𝑥)]𝛽}𝛼
)]. 

Figures 5 and 6 display some possible shapes of the density and hazard rate functions of this distribution. 

 

4. Mathematical properties 

In this section, we derive some general mathematical properties of the new family. Established explicit expressions to 

calculate statistical measures can be more efficient than computing them directly by numerical integration. 

 

4.1 Quantile and generating functions 

The quantile function (qf) of  𝑋,  where  𝑋 ∼ WGP (𝜃, 𝛼, 𝜙) , is obtained by inverting (1) to optain  𝑄(𝑢) = 𝐹−1 ,  

0 ≤ 𝑢 ≤ 1.  
Simulating the WGP random variable is straightforward. If  𝑈  is a uniform variate on the unit interval  (0,1),  then 

the random variable  𝑋 = 𝑄(𝑈)  follows (2). 

For simulating from WGP if  𝑢 ∼ 𝑢(0,1) , then solution of nonlinear equation  

𝑥𝑢 = 𝐺−1

[
 
 
 
 (− 𝑙𝑜𝑔 {1 −

1
𝜃

𝑙𝑜𝑔[1 + 𝑢(𝑒𝑥𝑝( 𝜃) − 1)]})

1
𝛼

1 + (− 𝑙𝑜𝑔 {1 −
1
𝜃

𝑙𝑜𝑔[1 + 𝑢(𝑒𝑥𝑝( 𝜃) − 1)]})

1
𝛼

]
 
 
 
 

. 

Here, we provide two formulae for the mgf  𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋)  of  𝑋 . Clearly, the first one can be derived from equation 

(3) as  

𝑀𝑋(𝑡) = ∑ 𝜔𝑘,𝑚

∞

𝑘,𝑚=0

𝑀𝛼(𝑘+1)+𝑚(𝑡), 

where  𝑀𝑘(𝑡)  is the mgf of  𝑌𝑘 . Hence,  𝑀𝑋(𝑡)  can be determined from the exp-G generating function. 

A second formula for  𝑀𝑋(𝑡)  follows from (3) as  
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𝑀𝑋(𝑡) = ∑ 𝜔𝑘,𝑚

∞

𝑘,𝑚=0

𝜏(𝑡, 𝛼[𝑘 + 1] + 𝑚 − 1), 

where  𝜏(𝑡, 𝑘) = ∫
1

0
𝑒𝑥𝑝[𝑡𝑄𝐺(𝑢)] 𝑢𝑘𝑑𝑢  and  𝑄𝐺(𝑢)  is the qf corresponding to  𝐺(𝑥 ; 𝜙) , i.e.,  𝑄𝐺(𝑢) =

𝐺−1(𝑢 ;𝜙) . 

 

4.2 Ordinary and incomplete moments 

The  𝑟 th moment of  𝑋 , say  𝜇𝑟
′  , follows from (3) as 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∑ 𝜔𝑘,𝑚

∞
𝑘,𝑚=0 𝐸(𝑌𝛼(𝑘+1)+𝑚

𝑟 ).                                      (5) 

Henceforth,  𝑌𝛾  denotes the Exp-G distribution with power parameter  𝛾 . 

The variance, skewness, and kurtosis measures can now be calculated using the well-known relations. The  𝑛 th central 

moment of  𝑋 , say  𝑀𝑛 , is given by  

𝑀𝑛 = 𝐸(𝑋 − 𝜇1
′ )𝑛 = ∑ (

𝑛
𝑟
)

𝑛

𝑟=0

(−𝜇1
′ )𝑛−𝑟𝐸(𝑋𝑟) 

= ∑

𝑛

𝑟=0

∑ 𝜔𝑘,𝑚

∞

𝑘,𝑚=0

(
𝑛
𝑟
) (𝜇𝑟

′ )𝑛−𝑟𝐸(𝑌𝛼(𝑘+1)+𝑚
𝑟 ). 

The cumulants ( 𝜅𝑛 ) of  𝑋  follow recursively from  

𝜅𝑛 = 𝜇𝑛
′ − ∑

𝑛−1

𝑟=0

(
𝑛 − 1
𝑟 − 1

) 𝜅𝑟𝜇𝑛−𝑟
′ , 

where  𝜅1 = 𝜇1
′  ,  𝜅2 = 𝜇2

′ − 𝜇1
′2, 𝜅3 = 𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 𝜇1
′3 , etc. 

The main applications of the first incomplete moment refer to the mean deviations and the Bonferroni and Lorenz 

curves. These curves are very useful in economics, reliability, demography, insurance and medicine. The  𝑠 th 

incomplete moment, say  𝜙𝑠(𝑡) , of  𝑋  can be expressed from (3) as  

𝜙𝑠(𝑡) = ∫ 𝑥𝑠𝑡

−∞
𝑓(𝑥)𝑑𝑥 = ∑ 𝜔𝑘,𝑚

∞
𝑘,𝑚=0 ∫ 𝑥𝑠𝑡

−∞
𝜋𝛼(𝑘+1)+𝑚(𝑥)𝑑𝑥.                         (6) 

4.3 Mean Deviations 

The mean deviations about the mean  [𝛼1 = 𝐸(|𝑋 − 𝜇1
′ |)]  and about the median  [𝛼2 = 𝐸(|𝑋 − 𝑀|)]  of  𝑋  are given 

by  𝛼1 = 2𝜇1
′ 𝐹(𝜇1

′ ) − 2𝜙1(𝜇1
′ )  and  𝛼2 = 𝜇1

′ − 2𝜙1(𝑀), respectively, where  𝜇1
′ = 𝐸(𝑋) ,  𝑀 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) =

𝑄(0.5)  is the median,  𝐹(𝜇1
′ )  is easily calculated from (1) and  𝜙1(𝑡)  is the first incomplete moment given by (6) 

with  𝑠 = 1. Now, we provide two ways to determine  𝛼1  and  𝛼2 . 

First, a general Equation for  𝜙1(𝑡)  can be derived from (6) as  

𝜙1(𝑡) = ∑ 𝜔𝑘,𝑚

∞

𝑘,𝑚=0

𝑉𝛼(𝑘+1)+𝑚(𝑥), 

where 𝑉𝑘(𝑥) = ∫ 𝑥
𝑡

−∞
𝜋𝑘(𝑥)𝑑𝑥  is the first incomplete moment of the Exp-G distribution. 

A second general formula for  𝜙1(𝑡)  is given by  

𝜙1(𝑡) = ∑ 𝜔𝑘,𝑚

∞

𝑘,𝑚=0

𝜐𝛼(𝑘+1)+𝑚−1(𝑡), 

where  𝜐𝑘−1(𝑡) = 𝑘 ∫ 𝑄𝐺(𝑢)
𝐺(𝑡)

0
𝑢𝑘−1𝑑𝑢  can be computed numerically. 

These equations for  𝜙1(𝑡)  can be applied to construct Bonferroni and Lorenz curves defined for a given probability  

𝜋  by  𝐵(𝜋) = 𝜙1(𝑞)/(𝜋𝜇1
′ )  and  𝐿(𝜋) = 𝜙1(𝑞)/𝜇1

′  , respectively, where  𝜇1
′ = 𝐸(𝑋)  and  𝑞 = 𝑄(𝜋)  is the qf of  𝑋  

at  𝜋 . 
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Table 1: Mean, variance, skewness and kurtosis for the WEEP distribution 

θ α β Mean Variance Skewness Kurtosis 

0.5 0.5 0.5 0.01598 0.00464 8.34499 104.5005 

  1.5 0.10004 0.05089 3.38828 17.8778 

  2 0.14287 0.08365 2.79435 12.58904 

  5 0.34026 0.30518 1.66057 5.29040 

 1.5 0.5 0.00927 0.00175 6.65653 6.65652 

  1.5 0.053683 0.03151 3.76445 17.89543 

  2 0.07273 0.05369 3.45308 14.90687 

  5 0.14842 0.19721 2.92195 10.38314 

 2 0.5 0.00572 0.00104 7.71279 74.99725 

  1.5 0.03177 0.02002 4.93748 28.53828 

  2 0.04252 0.03401 4.64573 24.90873 

  5 0.08420 0.12229 4.15565 19.28276 

1.5 0.5 0.5 0.01627 0.00541 8.34159 101.6934 

  1.5 0.08903 0.05313 3.70740 20.24034 

  2 0.12384 0.08556 3.14089 14.75641 

  5 0.27772 0.29740 2.06815 6.86562 

 1.5 0.5 0.00822 0.00183 7.28082 67.63469 

  1.5 0.04222 0.02818 4.51647 24.56415 

  2 0.05619 0.04668 4.20113 21.01491 

  5 0.11058 0.16112 3.64668 15.36836 

 2 0.5 0.00484 0.00103 8.69822 91.90487 

  1.5 0.02419 0.01693 5.96136 40.4247 

  2 0.03189 0.02802 5.65369 35.90259 

  5 0.06129 0.09533 5.11985 28.57023 

 5 0.5 0.00012 2.56279 47.00557 2423.183 

  1.5 0.00056 0.00044 39.3412 1614.199 

  2 0.00072 0.00071 38.53685 1536.394 

  5 0.00131 0.00229 37.18356 1407.508 

2 0.5 0.5 0.01609 0.00571 8.42407 102.3361 

  1.5 0.08265 0.05320 3.91368 21.94791 

  2 0.11351 0.08477 3.35794 16.28804 

  5 0.24729 0.28686 2.30769 7.97881 

 1.5 0.5 0.00769 0.00185 7.62109 72.694 

  1.5 0.03722 0.02642 4.93981 28.7914 

  2 0.04908 0.04316 4.62583 24.96535 

  5 0.09477 0.14434 4.06486 18.7226 
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Table 1: Mean, variance, skewness and kurtosis for the WEEP distribution (Continuing) 

θ α β Mean Variance Skewness Kurtosis 

 2 0.5 0.00444 0.00102 9.22235 101.5581 

  1.5 0.02102 0.01549 6.54351 48.06931 

  2 0.02749 0.02531 6.23262 43.10474 

  5 0.05197 0.08367 5.68358 34.85865 

 5 0.5 0.00011 0.00002 51.59404 2895.111 

  1.5 0.00047 0.00038 43.70736 1988.029 

  2 0.00059 0.00061 42.85088 1896.793 

  5 0.00108 0.00191 41.39155 1743.229 

5 0.5 0.5 0.01249 0.00626 9.84363 129.5283 

  1.5 0.04625 0.04359 5.75658 41.74523 

  2 0.05952 0.06515 5.23424 34.06376 

  5 0.11131 0.18621 4.24021 21.55607 

 1.5 0.5 0.00512 0.00179 9.84951 111.4646 

  1.5 0.01827 0.01763 7.82813 66.54218 

  2 0.02289 0.02681 7.577204 61.81638 

  5 0.03965 0.07564 7.100170 53.25236 

 2 0.5 0.00274 0.00089 12.43983 171.2925 

  1.5 0.00982 0.00947 10.48454 116.2765 

  2 0.01228 0.01446 10.23989 110.1829 

  5 0.02111 0.04092 9.77559 98.95934 

 5 0.5 0.0000 5 0.00001 78.65482 6389.314 

  1.5 0.00018 0.00017 74.58790 5670.93 

  2 0.00023 0.00027 73.88042 5545.666 

  5 0.00038 0.00076 72.56972 5315.87 

  

4.4 Entropies 

The Rényi entropy of a random variable  𝑋  represents a measure of variation of the uncertainty. The Rényi entropy 

is defined by  

𝐼𝛿(𝑋) = (1 − 𝛿)−1 𝑙𝑜𝑔 (∫ 𝑓(𝑥)𝛿
∞

−∞

𝑑𝑥) ,  𝛿 > 0 and 𝛿 ≠ 1. 

Then, we can write 

𝑓(𝑥)𝛿 = (
𝜃𝛼

𝑒𝜃 − 1
)

𝛿

𝑒𝑥𝑝 {−𝛿 [
𝐺(𝑥)

𝐺(𝑥)
]

𝛼

} 𝑒𝑥𝑝 (𝜃𝛿 − 𝜃𝛿 𝑒𝑥𝑝 {− [
𝐺(𝑥)

𝐺(𝑥)
]

𝛼

}) 

= ∑
(−1)𝑗𝜃𝛿+𝑖𝛼𝛿𝛿𝑖𝑔(𝑥)𝛿𝐺(𝑥)𝛿𝛼−𝛿

𝑖! (𝑒𝜃 − 1)𝛿𝐺(𝑥)𝛿𝛼+𝛿

∞

𝑖,𝑗=0

(
𝑖
𝑗
) 𝑒𝑥𝑝 {−(𝑗 + 𝛿) [

𝐺(𝑥)

𝐺(𝑥)
]

𝛼

}. 

After some algebra, we have 

𝑓(𝑥)𝛿 =  ∑ 𝜏𝑘,𝑚

∞

𝑘,𝑚=0

𝑔(𝑥)𝛿𝐺(𝑥)𝛼𝑘+𝛿(𝛼−1)+𝑚, 

where  

𝜏𝑘,𝑚 =
(−1)𝑘+𝑚𝛼𝛿

𝑘! (𝑒𝜃 − 1)𝛿
(
−𝛼𝑘 − 𝛿(𝛼 + 1)

𝑚
) ∑

∞

𝑖,𝑗=0

(−1)𝑗𝛿𝑖(𝑗 + 𝛿)𝑘𝜃𝛿+𝑖

𝑖!
(
𝑖
𝑗
). 

Then, the Rényi entropy can be expressed as 

𝐼𝛿(𝑋) = (1 − 𝛿)−1 𝑙𝑜𝑔 [ ∑ 𝜏𝑘,𝑚

∞

𝑘,𝑚=0

∫
∞

−∞

𝑔(𝑥)𝛿𝐺(𝑥 ; 𝜙)𝛼𝑘+𝛿(𝛼−1)+𝑚𝑑𝑥]. 

The  𝛿 -entropy, say  𝐻𝛿(𝑋) , can be obtained as 

𝐻𝛿(𝑋) =
1

𝛿 − 1
𝑙𝑜𝑔 {1 − [ ∑ 𝜏𝑘,𝑚

∞

𝑘,𝑚=0

∫
∞

−∞

𝑔(𝑥)𝛿𝐺(𝑥 ; 𝜙)𝛼𝑘+𝛿(𝛼−1)+𝑚𝑑𝑥]}. 
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The Shannon entropy of a random variable  𝑋 , say  𝑆𝐼 , is defined by  

𝑆𝐼 = 𝐸{−[𝑙𝑜𝑔 𝑓 (𝑋)]}. 
The Shannon entropy is a special case of the Rényi entropy when  𝛿 ↑ 1  and it follows by taking the limit of  𝐼𝛿(𝑋)  

as  𝛿  tends to 1. 

 

4.5 Order statistics 

Order statistics make their appearance in many areas of statistical theory and practice. Let  𝑋1, … , 𝑋𝑛  be a random 

sample from the WGP family of distributions. The PDF of  𝑖 th order statistic, say  𝑋𝑖   :   𝑛 , can be written as  

𝑓𝑖   :   𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖,𝑛−𝑖+1)
∑ (−1)𝑗𝑛−𝑖

𝑗=0 (
𝑛 − 𝑖

𝑗
) 𝐹(𝑥)𝑗+𝑖−1.                        (7) 

Using (1), (2) and (7) we get 

𝑓(𝑥)𝐹(𝑥)𝑗+𝑖−1 = ∑ 𝑡𝑘,𝑚
∞
𝑘,𝑚=0    𝜋𝛼(𝑘+1)+𝑚(𝑥),                                       (8) 

 where  𝜋𝑘(𝑥)  is the Exp-G density with power parameter  𝜂  and 

𝑡𝑘,𝑚 =
𝛼(−1)𝑘+𝑚

𝑘! (𝑒𝜃 − 1)𝑗+𝑖
∑

𝑙=0

𝑗+𝑖−1

∑

ℎ,𝑤=0

∞
(−1)𝑙+𝑤

ℎ!
𝜃ℎ+1(𝑗 + 𝑖 − 𝑙)ℎ(𝑤 + 1)𝑘  

× (
𝑟
𝑙
) (

ℎ
𝑤

) (
−[𝛼(𝑘 + 1) + 1]

𝑚
). 

    Substituting (8) in equation (7), the PDF of  𝑋𝑖   :   𝑛  can be expressed as  

𝑓𝑖   :   𝑛(𝑥) = ∑ ∑
(−1)𝑗𝑡𝑘,𝑚

𝐵(𝑖, 𝑛 − 𝑖 + 1)

𝑛−𝑖

𝑗=0

∞

𝑘,𝑚=0

(
𝑛 − 𝑖

𝑗
) 𝜋𝛼(𝑘+1)+𝑚(𝑥). 

 

Then, the density function of the WGP order statistics is a mixture of Exp-G densities. Based on the last Equation, we 

note that the properties of  𝑋𝑖   :   𝑛  follow from those properties of  𝑌𝛼(1+𝑘)+𝑚 . For example, the moments of  𝑋𝑖   :   𝑛  

can be expressed as  

𝐸(𝑋𝑖   :   𝑛
𝑞

) = ∑ ∑
(−1)𝑗𝑡𝑘,𝑚

𝐵(𝑖, 𝑛 − 𝑖 + 1)

𝑛−𝑖

𝑗=0

∞

𝑘,𝑚=0

(
𝑛 − 𝑖

𝑗
)  𝐸 (𝑌𝛼(𝑘+1)+𝑚

𝑞
). 

4.6 Stress-strength model 

Stress-strength model is the most widely approach used for reliability estimation. This model is used in many 

applications of physics and engineering such as strength failure and system collapse. In stress-strength modeling, say  

𝑅(𝑋1, 𝑋2|𝑋1 > 𝑋2) = 𝑃𝑟( |𝑋1 > 𝑋2) , is a measure of reliability of the system when it is subjected to random stress  

𝑋2  and has strength 𝑋1. 

 

The system fails if and only if the applied stress is greater than its strength and the component will function 

satisfactorily whenever  𝑋1 > 𝑋2 .  𝑅(𝑋1, 𝑋2|𝑋1 > 𝑋2)  can be considered as a measure of system performance and 

naturally arise in electrical and electronic systems. Further, the reliability of the system is the probability that the 

system is strong enough to overcome the stress imposed on it. 

 

Let  𝑋1  and  𝑋2  be two independent random variables have WGP (𝜃1, 𝛼1, 𝜙)  and WGP (𝜃1, 𝛼1, 𝜙)  distributions .The 

PDF of  𝑋1  and the CDF of  𝑋2  can be written from equations (1) and (2), respectively as 

𝑓1(𝜃1, 𝛼1, 𝜙) = ∑
𝛼1(−1)𝑘+𝑚

𝑘! (𝑒𝜃1 − 1)

∞

𝑘,𝑚=0

(
−𝛼1(𝑘 + 1) − 1

𝑚
) 

× ∑ (
𝑖
𝑗
)

∞

𝑖,𝑗=0

𝑔(𝑥 ;𝜙)𝐺(𝑥 ; 𝜙)𝛼1(𝑘+1)+𝑚−1 

and 

𝐹2(𝜃2, 𝛼2, 𝜙) = ∑
𝛼2(−1)𝑙+𝑤

𝑙! (𝑒𝜃2 − 1)[𝛼2(𝑙 + 1) + 𝑤]

∞

𝑙,𝑤=0

(
−𝛼2(𝑙 + 1) − 1

𝑤
) 
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× ∑
(−1)𝑑𝜃2

ℎ+1

ℎ! (𝑑 + 1)−𝑙

∞

ℎ,𝑑=0

(
ℎ
𝑑
)𝐺(𝑥 ; 𝜙)𝛼2(𝑙+1)+𝑤. 

Then,  𝑅(𝑋1, 𝑋2|𝑋1 > 𝑋2)  is given by 

 

𝑅(𝑋1, 𝑋2|𝑋1 > 𝑋2) = ∫ 𝑓1(𝜃1, 𝛼1, 𝜙)𝐹2(𝜃2, 𝛼2, 𝜙)
∞

0

𝑑𝑥 

= ∑ 𝑑𝑘,𝑚,𝑙,𝑤

∞

𝑘,𝑚,𝑙,𝑤=0

, 

where 

𝑑𝑘,𝑚,𝑙,𝑤 =
𝛼1𝛼2(−1)𝑘+𝑚+𝑙+𝑤

𝑘! 𝑙! (𝑒𝜃1 − 1)(𝑒𝜃2 − 1)[𝛼2(𝑙 + 1) + 𝑤]
 

× (
−𝛼2(𝑙 + 1) − 1

𝑤
) (

−𝛼1(𝑘 + 1) − 1
𝑚

) 

× ∑
𝜃1

𝑖+1𝜃2
ℎ+1(−1)𝑗+𝑑(𝑗 + 1)𝑘(𝑑 + 1)𝑙

𝑖! ℎ! [𝛼1(𝑘 + 1) + 𝛼2(𝑙 + 1) + 𝑚 + 𝑤]

∞

𝑖,𝑗,ℎ,𝑑=0

(
𝑖
𝑗
) (

ℎ
𝑑
). 

5. Estimation 

Several approaches for parameter estimation were proposed in the literature but the maximum likelihood method is 

the most commonly employed. Here, we consider the estimation of the unknown parameters of the new family from 

complete samples only by maximum likelihood. Let  𝑥1, … , 𝑥𝑛  be a random sample from the WGP family with 

parameters  𝛼, 𝜃  and  𝜙 . Let  𝚯 be the  𝑝 × 1  parameter vector. To obtain the MLE of  𝛩 , the log-likelihood function,  

ℓ = ℓ(𝚯) , is given by 

 

ℓ = 𝑛 𝑙𝑜𝑔 𝜃 + 𝑛 𝑙𝑜𝑔 𝛼 − 𝑛 𝑙𝑜𝑔(𝑒𝜃 − 1) + (𝛼 − 1)∑ 𝑙𝑜𝑔 𝐺 (𝑥𝑖 ; 𝜙)

𝑛

𝑖=0

 

+∑ 𝑙𝑜𝑔 𝑔 (𝑥𝑖 ; 𝜙)

𝑛

𝑖=0

− (𝛼 + 1)∑ 𝑙𝑜𝑔 𝐺 (𝑥𝑖 ; 𝜙)

𝑛

𝑖=0

− ∑ 𝑝𝑖

𝑛

𝑖=0

+ 𝜃 ∑𝑞𝑖

𝑛

𝑖=0

, 

where  𝑝𝑖 = [𝐺(𝑥𝑖 ; 𝜙)/𝐺(𝑥𝑖 ; 𝜙)]
𝛼

  and  𝑞𝑖 =  1 − 𝑒𝑥𝑝(−𝑝𝑖).  

The components of the score vector are 

𝑈𝜃 =
𝑛

𝜃
−

𝑛𝑒𝜃

(𝑒𝜃 − 1)
+ ∑ 𝑞𝑖

𝑛

𝑖=0

, 

𝑈𝛼 =
𝑛

𝛼
+ ∑ 𝑙𝑜𝑔 𝐺 (𝑥𝑖 ; 𝜙)

𝑛

𝑖=0

− ∑ 𝑙𝑜𝑔 𝐺 (𝑥 ; 𝜙)

𝑛

𝑖=0

 

−∑𝑝𝑖 𝑙𝑜𝑔 [
𝐺(𝑥𝑖 ; 𝜙)

𝐺(𝑥𝑖 ; 𝜙)
]

𝑛

𝑖=0

+ 𝜃 ∑𝑝𝑖

𝑛

𝑖=0

𝑒−𝑝𝑖 𝑙𝑜𝑔 [
𝐺(𝑥𝑖 ; 𝜙)

𝐺(𝑥𝑖 ; 𝜙)
] 

and 

𝑈𝜙𝑘
= ∑

𝑔′(𝑥𝑖 ; 𝜙)

𝑔(𝑥𝑖 ; 𝜙)

𝑛

𝑖=0

+ (𝛼 − 1)∑
𝐺′(𝑥𝑖 ; 𝜙)

𝐺(𝑥𝑖 ; 𝜙)

𝑛

𝑖=0

− 𝛼 ∑
𝐺′(𝑥𝑖 ; 𝜙)

𝐺(𝑥𝑖 ; 𝜙)2

𝑛

𝑖=0

[
𝐺(𝑥𝑖 ; 𝜙)

𝐺(𝑥𝑖 ; 𝜙)
]

𝛼−1

 

+(𝛼 + 1) ∑
𝐺′(𝑥𝑖 ; 𝜙)

𝐺(𝑥 ; 𝜙)

𝑛

𝑖=0

+ 𝛼𝜃 ∑𝑒−𝑝𝑖

𝑛

𝑖=0

𝐺′(𝑥𝑖 ; 𝜙)

𝐺(𝑥𝑖 ; 𝜙)2
[
𝐺(𝑥𝑖 ; 𝜙)

𝐺(𝑥𝑖 ; 𝜙)
]

𝛼−1

, 

where  𝑔′(𝑥𝑖 ; 𝜙) = 𝜕𝑔(𝑥𝑖 ; 𝜙)/𝜕𝜙𝑘     and       𝐺′(𝑥𝑖 ; 𝜙) = 𝜕𝐺(𝑥𝑖 ; 𝜙)/𝜕𝜙𝑘 . 

Setting the nonlinear system of equations  𝑈𝜃 = 𝑈𝛼 = 0  and  𝑈𝜙𝑘
= 0  and solving them simultaneously yields the 

MLEs. For doing this, it is usually more convenient to adopt nonlinear optimization methods such as the quasi-Newton 

algorithm to maximize  ℓ  numerically. For interval estimation of the parameters, we obtain the  𝑝 × 𝑝  observed 

information matrix  𝐽(𝚯) = {
𝜕2ℓ

𝜕𝑟𝜕𝑠
}  (for  𝑟, 𝑠 = 𝜃, 𝛼, 𝜙 ), whose elements can be computed numerically. Under standard 
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regularity conditions when  𝑛 → ∞ , the distribution of  𝚯̂  can be approximated by a multivariate normal distribution 

to obtain confidence intervals for the parameters. Here, 𝑱(𝚯̂), is the total observed information matrix evaluated at  𝚯̂ 

. The elements of  𝐽(𝚯) are given in the Appendix A. 

6. Simulation study 

In this section, we evaluate the performance of the MLEs by using Monte Carlo simulation for different sample sizes 

and different parameter values. We choose PWEE model for this purpose. The simulation study is repeated 10,000 

times each with sample sizes  𝑛 = 25,50,75,100,200,400  and parameter combinations 

I: 𝛽 = 0.5 ,  𝛼 = 0.5 ,  𝜆 = 1 , and   II:  𝛽 = 0.5 ,  𝛼 = 1.5 ,  𝜆 = 2. 

 

Table 2 presents the average bias (Bias), Mean Square Error (MSE), Coverage Probability (CP), average lower bound 

(LB) and average upper bound (UB) values of the parameters  𝛽 ,  𝛼  and  𝜆  for different sample sizes. From the 

results, we can verify that the Bias and MSEs decreases as the sample size  𝑛  increases. The CP of the confidence 

intervals are quite close to the nominal level of 95%. Therefore, the MLEs and their asymptotic results can be used 

for estimating and constructing confidence intervals even for reasonably small sample sizes. 

Table 2: Monte Carlo simulation results: Bias, MSE, CP, LB and UB. 

 n Bias MSE CP LB UB n Bias MSE CP LB UB 

   I      II    

β 25 0.821 1.491 0.94 0.133 2.272 25 0.525 1.164 0.93 0.138 2.989 

 50 0.553 0.165 0.94 0.738 1.838 50 1.169 1.006 0.98 0.761 2.100 

 75 0.414 0.093 0.94 0.407 1.214 75 0.817 0.592 0.98 0.228 1.561 

 100 0.320 0.047 0.95 0.254 1.857 100 0.598 0.046 0.90 0.542 1.727 

 200 0.182 0.017 0.95 0.139 1.293 200 0.264 0.029 0.92 0.300 1.463 

 400 0.088 0.005 0.93 0.241 0.943 400 0.098 0.009 0.92 0.482 0.765 

α 25 0.009 0.252 0.79 0.519 1.534 25 0.094 0.400 0.92 0.651 1.838 

 50 -0.017 0.152 0.78 0.218 1.176 50 0.175 0.526 0.94 0.492 1.830 

 75 -0.029 0.098 0.79 0.112 1.019 75 0.147 0.404 0.94 0.286 1.540 

 100 -0.032 0.073 0.82 0.088 0.949 100 0.146 0.098 0.94 0.248 1.458 

 200 -0.034 0.032 0.84 0.149 0.797 200 0.092 0.055 0.91 0.168 1.109 

 400 -0.023 0.006 0.86 0.248 0.716 400 0.070 0.005 0.91 0.230 0.922 

λ 25 1.703 1.394 0.92 0.333 4.727 25 0.640 1.973 0.93 0.069 1.292 

 50 1.222 0.256 0.92 1.719 2.142 50 0.316 0.964 0.90 0.574 1.057 

 75 0.942 0.103 0.93 0.178 1.913 75 0.251 0.698 0.93 0.407 2.666 

 100 0.764 0.092 0.94 0.774 1.249 100 0.179 0.511 0.89 0.376 2.402 

 200 0.448 0.063 0.93 0.319 1.004 200 0.063 0.249 0.91 0.362 1.942 

 400 0.233 0.012 0.92 0.322 1.009 400 0.013 0.040 0.92 0.426 1.658 

 

                 7. Applications 

In this section, we consider three applications to three real data sets to illustrate the flexibility of the new family of 

distribution. We also analyzed the hazard rates of these three data sets. In order to identify the shapes of data, we consider 

the graphical method based on total time on test (TTT) transformed, introduced by Barlow and Campo (1975). The 

empirical illustration of TTT transform is given by Aarset (1987). 

 

The first data set presents increasing-shaped (unimodal) hazard function while the second and third data sets present 

upside-down bathtub shaped hazard function. From Figure 3(a), the TTT plot for the data set 1 shows that hazard 

function τ (x) is concave giving an indication of increasing shape, while in Figures 4(c) and 5(e), TTT-plot for the data 

sets 2 and 3 show that the hazard rate function is first concave and then convex, giving an indication of upside-down 

bathtub shape. Hence, the WGP family could be in principle an appropriate model for fitting these data sets. 
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The Figures 8, 10 and 12, we consider kernel density estimation (a non- parametric approach) with Gaussian Filter. 

Let X1, X2, . . ., Xn be an independently identically distributed (IID) random vector of variables which follows an 

unknown distribution f. The kernel density estimator is given by 

𝑓
∧

ℎ(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

=
1

𝑛ℎ
∑𝐾 [

𝑥 − 𝑥𝑗

ℎ
]

𝑛

𝑖=1

 

where K(.) is the kernel function usually symmetric and ∫ 𝐾(𝑥)𝑑𝑥 = 1
∞

−∞
, and h > 0 is a smoothing parameter, 

also known as bandwidth. 

 

The MLEs are calculated and the goodness-of-fit statistics including the log-likelihood function evaluated at the 

MLEs, Akaike information criterion (AIC), Kolmogorov-Smirnov (K-S) and its P-value are determined to compare 

the fitted models. The required computations are carried out in the R-language. 

 

 

  

Figure 7: TTT plot for data set 1. Figure 8: Gaussian kernel density 

estimation for data set 1. 

 

The first data set (Crowder et. al [21]) refers to the failure stresses of single carbon fibers (length 1mm). The data are: 

2.247, 2.64, 2.842, 2.908, 3.099, 3.126, 3.245, 3.328, 3.355, 3.383, 3.572, 3.581, 3.681, 3.726, 3.727, 3.728, 3.783, 

3.785, 3.786, 3.896, 3.912, 3.964, 4.05, 4.063, 4.082, 4.111, 4.118, 4.141, 4.216, 4.251, 4.262, 4.326, 4.402, 4.457, 

4.466, 4.519, 4.542, 4.555, 4.614, 4.632, 4.634, 4.636, 4.678, 4.698, 4.738, 4.832, 4.924, 5.043, 5.099, 5.134, 5.359, 

5.473, 5.571, 5.684, 5.721, 5.998, 6.06. A summary of these data is: 

n = 57, x̄ = 4.2350, s = 0.8352, skewness = 0.0710, kurtosis = 2.7098. 

Based on the figures in table 1, we conclude that all the models provide the adequate fit, whereas that EW and GEE 

provides the best fit followed by WEEP and WLLP. The summary statistics and figure indicate that the first data set is 

approximately symmetric. This indicates that the new family of distributions has the ability to fit data set with 

symmetric shape. The P-P plot given in Figure 13 also supports the results of Table 3. 
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Figure 9: TTT plot for data set 2. Figure 10: Gaussian kernel density 

estimation for data set 2. 

Table 3: MLEs, their standard errors (in parentheses) and goodness of fit measures for the first data 

set. 

Distribution Estimates −ℓ AIC K-S P-value 

WGP(a, α, b) 18.626  0.669  0.239 71.972 149.944 0.119 0.366 

 (1.614)  (0.384)   (0.242)      

WLLP(c, α, s) 0.850  5.779  4.316 71.440 148.880 0.0836 0.789 

 (0.036)  (1.082)  (0.120)     

WEEP(β, α, λ) 73.665  0.718  1.090 70.368 146.736 0.0817 0.812 

 (1.403)  (0.217)  (0.294)     

GEE(α, β, δ) 17.195  33.7264  0.2234 70.656 147.313 0.0609 0.975 

 (42.158)  (10.8439)  (0.4127)     

EW(c, α, λ) 3.4586  2.6978  3.7682 70.049 146.098 0.059 0.982 

 (1.2814)  (2.1688)  (0.7208)     

The second data set corresponds to strengths of 15 cm fibres reported by Smith and Naylor (1987).  The summary statistics 

of the second data set  are: 

𝑛 =  46,   x̄=1.13, s=0.2713, skewness = 0.7935 and kurtosis = 0.5995. 

From figures in table 3, we conclude that WGP and WEEP models provide the adequate fit, whereas that GEE do 

not provide the god fit. The summary statistics and figure indicate that the first data set is approximately left skewed. 

This indicates that the new family of distributions can fit data set with left skewed characteristic. The P-P plot given in 

figure 14 also supports the results of table 3 

Table 4: MLEs, their standard errors (in parentheses) and goodness of fit measures for the second data set. 

Distribution Estimates −ℓ AIC K-S P-value 

WGP(a, α, b) 0.7325  4.6132  3.5440 13.740 33.480 0.134 0.207 

 (1.3366)  (5.8305)  (10.130)     

WLLP(c, α, s) 1.9295  2.7085  1.5454 14.149 34.299 0.141 0.166 

 (0.5286)  (0.8715)  (0.0374)     

WEEP(β, α, λ) 0.6057  5.2402  0.2471 13.734 33.469 0.134 0.208 

 (0.0320)  (0.7194)  (1.8881)     

GEE(α, β, δ) 18.814  24.6684  0.4336 24.509 55.0189 0.2186 0.0048 

 (20.375)  (7.0427)  (0.3939)     

EW(c, α, λ) 7.2846  0.6712  1.7180 14.675 35.351 0.146 0.135 

 (1.7069)  (0.2488)  (0.0860)     
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The third data set describes the 101 stress-rupture lives of 49 kevlar epoxy strands, which were subjected to constant 

sustained pressure at the 90 stress level until all had failed, so that we have complete data with exact times of failure. 

The failure times (in hours) are given in Cooray and Ananda (2008). The summary statistics of the first data set are: 

n  =  101,  x̄  =  1.0248,  s  =  1.1193,  skewness  =  3.00172  and  kurtosis  =  13.7089. 

From the figures in table 5, we verify that WGLLP, WEEP and WGP provides the best fit. A close look at the summary 

statistics and figure 15 indicate that the third data are right skewed. So, the proposed family has the ability to fit right 

skewed data. The P-P plot in figure also supports the result in table 5. 

 

Table 5: MLEs, their standard errors (in parentheses) and goodness of fit measures for the third data set. 

Distribution Estimates −ℓ AIC K-S P-value 

WGP(a, α, b) 0.7325  4.6132  3.5440 104.279 214.558 0.081 0.509 

 (1.3366)  (5.8305)  (10.130)     

WLLP(c, α, s) 1.9295  2.7085  1.5454 102.398 210.797 0.078 0.561 

 (0.5286)  (0.8715)  (0.0374)     

WEEP(β, α, λ) 0.6057  5.2402  0.2471 103.936 213.873 0.079 0.544 

 (0.0320)  (0.7194)  (1.8881)     

GEE(α, β, δ) 18.8149  24.6684  0.4336 103.936 213.873 0.079 0.544 

 (20.3751)  (7.0427)  (0.3939)     

EW(c, α, λ) 7.2846  0.6712  1.7180 102.787 211.574 0.084 0.468 

 (1.7069)  (0.2488)  (0.0860)     

 

 

  
Figure 11: TTT plot for data set 3. Figure 12: Gaussian kernel density estimation for 

data set 3. 
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Figure 13: P-P plots of WGP, WLLP, WEEP, GEE and EW models for data set 1. 

 

 
Figure 14: P-P plots of WGP, WLLP, WEEP, GEE and EW models for data set 2. 
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Figure 15: P-P plots of WGP, WLLP, WEEP, GEE and EW models for data set 3. 

 

8. Conclusions 

 

In this paper, we present a new Weibull-G Poisson (WGP) family of distributions, which extends the Weibull-G family 

by adding one extra shape parameter. Some mathematical properties of the new family including explicit expressions 

for the ordinary and incomplete moments, quantile and generating functions, mean deviations, entropies and order 

statistics are provided. The model parameters are estimated by maximum likelihood and the observed information 

matrix is determined. We perform a Monte Carlo simulation study to assess the finite sample behavior of the maximum 

likelihood estimators. We prove empirically by means of three real data sets that some special models of the WGP 

family can give better fits than other models generated from well-known families. 
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Appendix A 

The elements of the observed matrix  𝐽(𝛩)  are given below: 

𝑈𝜃𝜃 =
−𝑛

𝜃2
−

𝑛𝑒𝜃(𝑒𝜃 − 1) − 𝑛𝑒2𝜃

(𝑒𝜃 − 1)2
, 𝑈𝜃𝛼 = ∑ 𝑎𝑖

𝑛

𝑖=0

, 𝑈𝜃𝜙 = ∑𝑏𝑖

𝑛

𝑖=0

, 

 

𝑈𝛼𝛼 =
−𝑛

𝛼2
∑[𝜕𝑑𝑖/𝜕𝛼]

𝑛

𝑖=0

+ 𝜃 ∑[𝜕𝑎𝑖/𝜕𝛼]

𝑛

𝑖=0

, 

 

𝑈𝛼𝜓 = ∑
𝐺′(𝑥𝑖 ; 𝜙)

𝐺(𝑥𝑖𝜙)

𝑛

𝑖=0

+ ∑
𝐺′(𝑥𝑖 ; 𝜙)

𝐺(𝑥𝑖 ; 𝜙)

𝑛

𝑖=0

− ∑[𝜕𝑑𝑖/𝜕𝜙]

𝑛

𝑖=0

+ 𝜃 ∑[𝜕𝑎𝑖/𝜕𝜙]

𝑛

𝑖=0

 

and 

𝑈𝜙𝑘𝜙𝑘
= ∑

𝑔(𝑥𝑖 ; 𝜙)𝑔″(𝑥𝑖 ; 𝜙) − [𝑔′(𝑥𝑖 ; 𝜙)]2

𝑔(𝑥𝑖 ; 𝜙)2

𝑛

𝑖=0

+ (𝛼 − 1)∑
𝐺(𝑥𝑖𝜙)𝐺″(𝑥𝑖𝜙) − [𝐺′(𝑥𝑖 ; 𝜙)]2

𝐺(𝑥𝑖 ; 𝜙)2

𝑛

𝑖=0

 

+(𝛼 + 1)∑
𝐺(𝑥 ; 𝜙)𝐺″(𝑥𝑖 ; 𝜙) + [𝐺′(𝑥𝑖 ; 𝜙)]2

𝐺(𝑥 ; 𝜙)2

𝑛

𝑖=0

− ∑[𝜕𝑡𝑖/𝜕𝜙]

𝑛

𝑖=0

+ 𝜃 ∑[𝜕𝑏𝑖/𝜕𝜙]

𝑛

𝑖=0

. 

 

where  𝑔″(𝑥𝑖 ; 𝜙) = 𝜕2𝑔(𝑥𝑖 ; 𝜙)/𝜕𝜙𝑘
2  and  𝐺″(𝑥𝑖 ; 𝜙) = 𝜕2𝐺(𝑥𝑖 ; 𝜙)/𝜕𝜙𝑘

2 . 

 


