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Abstract

This article proposes the Bayes estimation of the parameter and reliability function for xgamma distribution
in the presence of type-I hybrid censored observations. The Bayes estimate of the parameter has been ob-
tained by assuming informative and non-informative priors using general entropy loss function. Obviously,
censoring adds difficulties in estimation procedure; hence the Bayes estimators computed with type-I hybrid
censored observation under the mentioned prior often do not assume any standard form. Therefore, Bayes
estimates are computed using Tierney-Kadane approximation and Markov Chain Monte Carlo numerical
technique. Further, different interval estimates namely asymptotic confidence interval, bootstrap confidence
interval and highest posterior density interval along with the width of the interval and coverage probability
are also discussed. The maximum likelihood estimate for the same has also been computed using non-
linear maximization iterative procedure and compared with corresponding Bayes estimates using Monte
Carlo simulations. The comparison of the estimators are made in terms of average loss over whole sample
space and corresponding length of the interval. lastly, one medical data set has been considered for the real
application of the proposed study.
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1. Introduction

In present era, the variety of probability distributions are developed and justified on the basis of failure rate
function. These distributions are generated using different methods of generalization e.g. power of the CDF
method, power of survival function, Marshall-Olkin method, logarithmic transformation, DUS transforma-
tion, mixing of two distributions etc. It has been shown that the developed distributions are good alternatives
to the baseline distributions. The xgamma distribution is one of such distributions which has been obtained
by mixing the gamma and exponential distribution with finite proportion, introduced by Sen et al. (2016).
They have discussed several properties associated with this distribution. The xgamma distribution belongs
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to the one parameter exponential family of distributions, hence it may used as an alternative of several one
parameter distributions, namely exponential, Lindley, Rayleigh models etc. Also, the xgamma model is
the finite mixture of exponential and gamma distribution; hence very flexible to analyze the data set with
constant and non-constant failure rates. The probability density function (PDF) of xgamma distribution is
given as;

f(x, β) =
β2

1 + β

(
1 +

β

2
x2
)
e−βx ;x, β > 0 (1)

and the corresponding reliability function for any mission time t > 0 is the probability that any electronic
system survives beyond the time t, which is given by;

R(t, β) =

(
1 + β + βt+ 0.5(βxt)2

1 + β

)
e−βt ; t, β > 0 (2)

In analysis of time-to-event data, censoring arises due to restrictions on time, cost and for administrative con-
venience; thus we have incomplete lifetime associated with failure of any equipments/units/products. The
observed incomplete lifetimes are termed as censored data. Several censoring schemes have been advocated
and used in analysis of different probability models with an intention to obtain constructive information us-
ing incomplete data. Type-I and Type-II censoring schemes are the two most favoured censoring schemes in
literature. The parametric inferences using type-I and type-II censoring schemes are extensively discussed
by several researchers. The mixture of Type-I and Type-II censoring scheme is called a hybrid censoring. It
was introduced by Epstein (1954) and illustrated with the truncated life test plan for exponential distribution.
The advantage of this censoring scheme is that the experiment is terminated at the combination of time T and
number of failures R whichever is achieved first. The hybrid censoring is also divided into two parts on the
basis of T andR named as Type-I hybrid censoring scheme and Type-II hybrid censoring scheme. In Type-I
hybrid censoring scheme, let n units are placed on a test, the experiment is terminated at the min(xR:n, T ),
where xR:n is the time of Rth failure in a sample of size n. The obtained observations in Type-I hybrid
censoring is random and have lifetime less or equal to T , although at the end of the experiment there will be
at least one failure. For a comprehensive detail about hybrid censoring, the readers may follow Balakrish-
nan and Kundu (2013). The details of the parametric inference based on different probability distributions
using type-I and type-II hybrid censoring schemes have been extensively studied by several researchers.
For example, Gupta and Kundu (1998) described hybrid censoring through exponential failure distribution,
Ebrahimi (1990) discussed the classical estimation for exponential distribution under hybrid censoring while
Draper and Guttman (1987) proposes the Bayes estimation procedure for the same distribution with hybrid
censoring. The estimation of the parameters of the generalized exponential distribution has been discussed
by Kundu and Pradhan (2009), Dey and Pradhan (2014) considered the generalized inverted exponential
distribution under hybrid censoring. Singh et al. (2014) have discussed the classical and Bayesian esti-
mation for Marshall-Olkin exponential distribution in presence of the type-I hybrid censored data, Also, the
case of type-I and type-II hybrid censored for inverse Lomax distribution is discussed by Yadav et al. (2016).

Bayesian estimation procedures play a crucial part while dealing with lifetime distributions under differ-
ent censoring schemes. The Bayesian estimation of flexible Weibull-Burr XII distribution using symmetric
and asymmetric loss functions under adaptive Type-II progressive censoring has been recently discussed by
Kamal and Ismail (2021) using MCMC method. Chadli and Kermoune (2021) described the classical and
Bayesian reliability estimation in a Rayleigh Pareto model with progressively Type-II right censored data.
Talhi and Aiachi (2021) performed a Bayesian analysis of the upper truncated Zeghdoudi distribution based
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on type II censored data under various loss functions.

Recently, the survival estimation of xgamma distribution has been discussed by Sen et al. (2018). Recently,
Yadav et al. (2018) have proposed maximum likelihood estimation and Bayes estimation procedures for
the parameter and reliability characteristics of xgamma distribution using hybrid type-II censored samples.
Here, the main objective of this article is to propose estimation procedures of the parameter and reliabil-
ity function of xgamma using Type-I hybrid censoring schemes. The Bayes estimates are evaluated using
Tierney & Kadane (TK) approximation technique and Markov Chain Monte Carlo (MCMC) technique un-
der the asymmetric loss function. The asymptotic confidence interval (ACI), bootstrap confidence interval
(BCI’s) and highest posterior density (HPD) credible interval have been computed for the same schemes.
The uniqueness of this study comes from the fact that, no attempt has been made for the estimation of the
parameter and reliability function for xgamma using type-I hybrid censored observation using GELF so far
till date. Thus, the current article aims to fill-up this gap.

The organization of the present paper is as follows; The introduction of the considered study is given in
Section 1. Section 2, describes the procedure of obtaining the type-I hybrid censored data and the classical
estimation procedure. Different interval estimation, namely ACI, BCIs are considered in Section 3. The
Bayes estimation procedure for the parameter and reliability function using two approximation techniques
along with credible intervals has been described in Section 4. The performances of the obtained estimators
are investigated using Monte Carlo simulations in Section 5. The application of the proposed study using
survival data is provided in Section 6. The concluding remark of the considered study is given Section 7.

2. Data and Likelihood Function

In Type-I hybrid censoring scheme, the time-to-event data is obtained by terminating the experiments at
the minimum of censoring time and number of failure. Let us consider x1, x2, · · · , xn items of size n are
put on test and T, xr:n denotes the censoring time and rth failure, respectively. Thus, either we may get
the r failures, i.e. x1:n < x2:n < · · · < xr:n when xr:n ≤ T or random number of failures, say d i.e.
x1:n < x2:n < · · · < xd:n when xr:n > T . Thus, whenever the condition of xr:n ≥ T arises the observed
number of failure will be at least one. Although, in one hand, this number is very small and directly effects
the efficiency of the estimators, but fixing time is the beauty of this scheme on the other-hand. Therefore,
under the mentioned censoring scheme, the combined likelihood function of xgamma distribution for the
above observed data set is written as;

L(β|x) =
n!

(n− k)!

β2ke−β[s+(n−k)c]

(1 + β)n

[
1 + β + βc+

(βc)2

2

]n−k r∏
i=1

(
1 +

β

2
x2i

)
(3)

where;

k =

{
r when xr:n ≤ T
d when xr:n > T

(4)

and

c =

{
xr:n when xr:n ≤ T
xd:n when xr:n > T

(5)

Bayesian Estimation for Xgamma Distribution Under Type-I Hybrid Censoring Scheme Using Asymmetric Loss Function 29



Pak.j.stat.oper.res. Vol.19 No.1 2023 pp 27-49 DOI: http://dx.doi.org/10.18187/pjsor.v19i1.2808

2.1. Classical Estimation

In classical set-up the MLE of the parameter is evaluated using the likelihood function, given in Equation
(3). The log-likelihood function is written by;

lnL(β|x) =ζ + 2k lnβ − n ln(1 + β)− β [s+ (n− k)c] + (n− k) ln

[
1 + β + βc+

(βc)2

2

]
+ lnP (β, xi : n)

(6)

The estimate of the parameter is obtained by optimizing the above equation w.r.t. to the parameter, which
yield the following likelihood equation.

2k

β
− n

1 + β
− [s+ (n− k)c] +

(n− k)(1 + c+ βc2)[
1 + β + βc+ (βc)2

2

] +

k∑
i=1

x2i:n
(2 + βx2i:n)

= 0 (7)

The above equation clearly reflects that the analytical solution is not possible due to its mathematical com-
plexity. Thus, any non-linear maximization technique can be used to determine the MLE of the parameter
β. In particular, Optim() function of R software is used here. One major drawback with N-R method is
that it can not work properly without suitable starting value; hence to overcome this difficulties hit and trial
method has been used to trace the exact starting value.

Once, the MLE of the parameter β is obtained, say β̂m; the MLE of the reliability function for mission time
parameter t can be computed by simply plugging the β̂m using the invariance property of the MLE. The
MLE of reliability function R(t) for specified mission time t > 0 is given as;

R̂(t)m =

(
1 + β̂m + β̂mt+ 0.5(β̂m t)

2

1 + β̂m

)
e−β̂m t (8)

3. Interval estimation

3.1. Asymptotic confidence interval

Since the exact distribution of β̂m can not be obtained explicitly, the asymptotic theory of MLE can be used
to construct 100(1 − α)% confidence interval for the parameter. Under certain regularity conditions it has
been proven that β̂m follows asymptotic normal distribution with mean ν = β̂m and variance σ̂2 = 1

I(β̂m)
,

where I(β̂m) is the Fisher information, obtained as;

I(β̂m) = −E
[
∂2 lnL(β|x)

∂β2

]
(9)

where,

∂2 lnL(β|x)

∂β2
= − 2k

β2 + n
(1+β)2

+ (n− k)


c2
[
1 + β + βc+ (βc)2

2

]
− (1 + c+ βc2)2[

1 + β + βc+ (βc)2

2

]2


−
∑k

i=1

x4i:n
(2 + βx2i:n)2
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A two-sided 100(1− α)% asymptotic confidence interval for β is obatined as;

[β̂L, β̂U ] ∈ β̂m ∓ Zα
2
σ̂

where, Zα
2

is the upper (1− α
2 )th quantile of a standard normal distribution.

3.2. Bootstrap Confidence Interval

The considered article deal with the type-I hybrid censored data; hence the number of observations obtained
through life testing experiments are often not very large; therefore the ACI may not be an appropriate choice.
Thus, in this section, we considered an alternative procedure suggested by Efron and Tibshirani (1986)
known as bootstrap method. The bootstrap method for finding confidence interval is the most efficient
sampling and re-sampling procedure without the need of pivotal quantity. Most importantly, it does not
suffer from the condition of having a large sample in order to perform well. Here, we discuss the different
types of bootstrap confidence interval (BCIs), namely standard bootstrap (s − boot), percentile boot (p −
boot) and students t-bootstrap (t− boot). The following steps may be used to construct the 95% BCI’s.

• Specify the value of sample size n, effective sample size m, model parameter β and censoring time
T .

• Generate x1, x2, · · · , xk i.e. k ≤ n ordered type-I hybrid censored sample from equation (1)

• Compute MLE β̂ of β using x1, x2, · · · , xk.

• Again generate type-I hybrid censored bootstrap samples x∗1, x
∗
2, · · · , x∗k from equation (1) using β̂ as

a population value and calculate the MLE β̂∗.

• Repeat step 2-3, B times and simulate β̂∗i ; i = 1, 2, · · · , B.

3.2.1. s-boot

Let β̄∗ and S∗ be the sample mean and sample standard deviation of β∗, i = 1, 2, · · · , B.

β̄∗ =
1

B

B∑
i=1

β̂∗i and S∗ =

√√√√ 1

B

B∑
i=1

(β̂∗i − β̄∗)2

respectively. Thus, 100(1− α)% s-boot confidence interval for β is given by

[β̂sL, β̂
s
U ] ∈ [β̂∗ − Zα/2.S∗, β̂∗ + Zα/2.S

∗]

3.2.2. p-boot

Let β̂∗(δ) be the δ-percentile of (β̂∗(i); i = 1, 2, · · · , B) and β̂∗(δ) is such that

1

B

B∑
i=1

I(β̂∗(i) ≤ β̂
∗(δ)) = δ : 0 ≤ δ ≤ 1

where, I(.) is the indicator function. Then 100(1− α)% p-boot confidence interval is given by(
β̂pL, β̂

p
U

)
∈
(
β̂∗[B

α
2
], β̂∗[B

1−α
2

]
)
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3.2.3. t-boot

The students t-bootstrap confidence interval is obtained by the following additional steps;

• Generate again bootstrap sample x∗∗1 , x
∗∗
2 , x

∗∗
k of size k ≤ n from equation (1) using β̂∗.

• Compute MLE of β say β̂∗∗.

• Calculate S∗∗ =
√

1
B

∑B
i=1(β̂

∗∗
i − β̄∗∗)2 where β̄∗∗ = 1

B

∑B
i=1 β̂

∗∗
i

• Compute the statistic T =
β̂∗∗ − β̄∗∗

S∗∗ . The 100(1− α)% t-boot confidence interval for β is given by(
β̂pL, β̂

p
U

)
∈
(
β̄∗∗ − tα/2.S∗∗, β̄∗∗ + tα/2.S∗∗

)
To study the different CIs, we consider their estimated average widths and coverage probability. For
each of the considered methods, the average width of the BCIs is computed based on the B different
trials. The average width and coverage probability are given by

W =

∑B
i=1 (Ui − Li)

B

P =
# (L ≤ β ≤ U)

B

where LW and UP are the 100(1− α)% CI based on B replicates.

4. Bayesian estimation

Here, the Bayes estimation of the parameter has been discussed. The Bayes procedure is carried out with
informative gamma prior and non-informative prior. The considered prior distributions are;

g1(β) ∝ βa−1e−βb ;β, a, b > 0 (10)

The above defined prior is very flexible prior in the sense of assuming variety of shape of other distribution.
It can be taken as non-informative prior by setting a, b→ 0, and resulting prior is written as

g2(β) ∝ 1

β
(11)

The accuracy of the Bayes estimates is determined by specification of proper loss function. Usually, the
most popular symmetric loss function is squared error loss function because it equally penalize the under
as well as over estimation and seems to be inappropriate in the situation where under estimation is more
serious than over estimation and vise versa. Thus, the choice of asymmetric loss function may be useful
in such scenario. The most generalized asymmetric loss function is general entropy loss function (GELF),
defined as;

LG(β, β̂) ∝

(
β̂

β

)µ
− µ ln

(
β̂

β

)
− 1 (12)

where µ is the loss parameter which allows the different shapes of the loss function. It may be noted that
when µ > 0, a positive error causes more serious consequences than a negative error and vice versa. For
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the detailed description related to the asymmetric loss function the readers may follow Zellner (1986), Basu
and Ebrahimi (1991). The loss function, defined in (12) converted to the different loss function under the
following cases;

1. If µ = −1, the GELF is converted to the squared error loss function (SELF).

2. If µ = 1, the GELF is converted to entropy loss function (ELF).

3. if µ = −2, the GELF is converted to precautionary loss function (PLF).

The Bayes estimator under GELF is given as;

β̂B =
[
Eβ
(
β−µ

)]− 1
µ

The posterior distribution using the likelihood function defined in the Equation (3) and priors distributions
defined in (10), (11) are obtained as;

Π1(β|x) = η
β2k+a−1e−β[s+(n−k)c+b]

(1 + β)n
ψ(β, c)

k∏
i=1

(
1 +

β

2
x2i

)
(13)

and

Π2(β|x) = η
β2k−1e−β[s+(n−k)c]

(1 + β)n
ψ(β, c)

k∏
i=1

(
1 +

β

2
x2i

)
(14)

Therefore, under the above mentioned loss function, the Bayes estimator for the parameter and reliability
function under both prior distributions are derived as;

β̂g1 =

[
η

∫
β

β2k+a−µ−1e−β[s+(n−k)c+b]

(1 + β)n
ψ(β, c)

k∏
i=1

(
1 +

β

2
x2i

)
dβ

]− 1
µ

(15)

β̂g2 =

[
η

∫
β

β2k−µ−1e−β[s+(n−k)c+b]

(1 + β)n
ψ(β, c)

k∏
i=1

(
1 +

β

2
x2i

)
dβ

]− 1
µ

(16)

R̂(t)g1 =

[
η

∫
β

R∗(β, t)β2k+a−µ−1e−β[s+(n−k)c+b+t]

(1 + β)n+1
ψ(β, c)

k∏
i=1

(
1 +

β

2
x2i

)
dβ

]− 1
µ

(17)

and

R̂(t)g2 =

[
η

∫
β

R∗(β, t)β2k−µ−1e−β[s+(n−k)c+t]

(1 + β)n+1
ψ(β, c)

k∏
i=1

(
1 +

β

2
x2i

)
dβ

]− 1
µ

(18)

respectively.

where, η is the normalizing constant and

R∗(β, t) = 1 + β + βt+ 0.5(βt)2

ψ(β, c) =

(
1 + β + βc+

(βc)2

2

)n−k
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.

The posterior expectation, obtained in the Equation no. ((15) - (18)) are not in an explicit form. Therefore,
the Bayes estimate of the parameter β may be obtained by using any Bayes approximation techniques. Here
we have used two approximation techniques namely TK approximation technique and MCMC technique.
The brief description of these approximation techniques are given in following sections.

4.1. Tierney-Kadane approximation technique

The TK approximation technique was initially introduced by Tierney and Kadane (1986) to approximate
the posterior expectation which appears as the ratio of two integrals. The implementation of TK technique
is straight froward. As TK suggested that the posterior expectation of any parametric function w(β) with
respect to the distribution Π1(β|x) is expressed in the following form;

I(x) =

∫
β w(β) el(β)+τ(β) dβ∫

β e
l(β)+τ(β) dβ

(19)

where, l(β) = lnL(β|x), τ(β) are the logarithm of likelihood function and prior distribution, respectively.
Let us define the following functions

∆(β) =
l(β|x) + ln g1(β)

n
(20)

∆∗(β) = ∆(β) +
lnw(β)

n
(21)

If β̂ and β̂∗ are the values which maximizes the Equations [(20), (21)] respectively. Then the function I(x)
is approximated by

I(x) =

√
|Σ∗|
|Σ|

exp
[
n
{

∆∗(β̂∗)−∆(β̂)
}]

(22)

where, |Σ| and |Σ∗| are the negative of inverse Hessian of ∆(β) and ∆∗(β) respectively computed at β̂, β̂∗.

Now in our considered case the Bayes estimator of the parameter β is obtained using the above log-likelihood
function and prior distribution.

∆(β) =
l(β|x)

n
+

(a− 1) ∗ lnβ − bβ
n

(23)

∂∆

∂β
=

1

n

{
∂l

∂β
+
a− 1

β
− b
}
,

∂2∆

∂β2
=

1

n

{
∂2l

∂β2
− a− 1

β2

}
, |Σ| = −E

[
∂2∆

∂β2

]−1

β̂

Hence, after simplification,

∂2∆

∂β2
=

1

n

−2k

β2
+

n

(1 + β)2
+ (n− k)


c2
[
1 + β + βc+ (βc)2

2

]
− (1 + c+ βc2)2[

1 + β + βc+ (βc)2

2

]2



−
k∑
i=1

x4i:n
n(2 + βx2i:n)2

− a− 1

nβ2

(24)
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To compute the approximate Bayes estimates of β using GELF, we take w(β) = β−µ, then the function
∆∗(β) will be;

∆∗(β) = ∆(β)− µ lnβ

n
(25)

∂∆∗
∂β

=
∂∆

∂β
− µ

nβ
,

∂2∆∗

∂β2
=
∂2∆

∂β2
+

µ

nβ2

using (4.13), we have;

∂2∆∗

∂β2
=

1

n

−2k

β2
+

n

(1 + β)2
+ (n− k)


c2
[
1 + β + βc+ (βc)2

2

]
− (1 + c+ βc2)2[

1 + β + βc+ (βc)2

2

]2



−
k∑
i=1

x4i:n
n(2 + βx2i:n)2

− a

nβ2

(26)

|Σ∗
β| = −E

[
∂2∆∗

∂β2

]−1

β̂∗

Thus, the desired Bayes estimate of β under GELF is obtained as;

β̂TK =

√ |Σ∗
β|
|Σ|

exp
[
n
{

∆∗(β̂∗)−∆(β̂)
}]− 1

µ

(27)

Now, the Bayes estimate of reliability function R(t) is obtained by taking;

wR(β) =

[(
1 + β + βt+ 0.5(βt)2

1 + β

)
e−βt

]−µ
Therefore, the function ∆∗

R(β) for reliability function is computed as;

∆∗
R(β) = ∆(β) +

lnwR(β)

n
(28)

then;

∂2∆∗
R

∂β2
=

1

n

−2k

β2
+

n

(1 + β)2
+ (n− k)


c2
[
1 + β + βc+ (βc)2

2

]
− (1 + c+ βc2)2[

1 + β + βc+ (βc)2

2

]2



−
k∑
i=1

x4i:n
n(2 + βx2i:n)2

− t2

n(1 + β + β t+ 0.5β2 t2)
− (1 + t+ t2 β)2

n(1 + β + β t+ 0.5β2 t2)2

(29)

|Σ∗
R| = −E

[
∂2∆∗

R

∂β2

]−1

β̂∗
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Thus, the desired Bayes estimate of R(t) under GELF is given by;

R̂(t)TK =

(√
|Σ∗
R|
|Σ|

exp
[
n
{

∆∗
R(β̂∗)−∆(β̂)

}])− 1
µ

(30)

Similarly, we can find the Baye estimates of the parameter and reliability function under non-informative
prior.

4.2. Markov Chain Monte Carlo technique

The T-K approximation technique is quite straight forward and easy to implement specially up to two pa-
rameters. But at the same time, we can not construct the interval estimate using this technique. Therefore,
here, MCMC method has been used to overcome the situation. MCMC technique is one of the best and
efficient Bayes computational techniques to obtain the Bayes estimates of any parametric function based
on generated posterior samples. Further, the 95% highest posterior density (HPD) credible intervals of the
parameter can be easily constructed using generated sequences of posterior sample. The parametric in-
ferences using MCMC techniques have been extensively discussed by several authors. The application of
the MCMC technique in different scenario may be seen in Hastings (1970), Geman and Geman (1984),
Smith and Roberts (1993), Upadhyay et al. (2001) etc. Hence, to implement the MCMC technique, the full
conditional posterior densities for β is given as;

Π1(β|x) ∝ β2k+a−1e−β[s+(n−k)c+b]

(1 + β)n

[
1 + β + βc+

(βc)2

2

]n−k r∏
i=1

(
1 +

β

2
x2i

)
(31)

The following steps is used to draw the posterior samples from the above full conditional distribution;

• set the initial values of β say β0

• set j=1

• generate posterior sample for β from (31) using normal distribution as a proposal density.

• repeat step 2, for all j = 1, 2, 3, · · · ,M and obtained β1, β2, · · · , βM . After getting the posterior
samples the Bayes estimate of the parameters, reliability function and hazard function under SELF
are the mean of the corresponding posterior samples. Therefore we have,

β̂mc ≈ E(β|x) =

 1

M

M∑
j=1

β−µj

− 1
µ

R̂(t)mc ≈

 1

M

M∑
j=1

R(t)−µj

− 1
µ

4.2.1. Credible/HPD interval

An interval based on posterior distribution, known as credible interval within which a parameter falls with
some particular probability. However, the direct evaluation of credible interval through posterior distribution
is quite difficult due to the explicit expression of posterior density. Therefore, Chen and Shao (1999) algo-
rithm has been used to construct the 100(1−α)% credible intervals for β based on MCMC samples. For this
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purpose, order the generated MCMC samples, β1, β2, ..., βM as β1 < β2 < ... < βM . Then 100(1 − α)%
credible intervals of β is

(β1, β[M(1−α)+1]), · · · , (β[Mα], βM )

Here [x] denotes the greatest integer less than or equal to x. Then, the HPD credible interval is that interval
which has the shortest length among all possible intervals. The similar algorithm may be used to obtain the
estimate using non-informative prior.

5. Simulation Study

In this section, the performances of the MLE and Bayes estimator of the parameter β and reliability func-
tion R(t) has been investigated using Monte Carlo simulations. The comparison between the estimators are
made in terms of mean square error (MSE) and length of the intervals based on 3000 replications. The MLEs
and Bayes estimates are evaluated for different variation of sample size (n), effective sample size (k) and
censoring time (T ). In particular, we took n|k as 20|16, 30|24, 40|32 and 50|40 and T ∈ (0.85, 1.0, 1.25)
for arbitrarily chosen β = 2. The MLE of the parameter is obtained using non-linear maximization tech-
nique and the estimate of the reliability function is obtained using invariance property of MLE. The Bayes
estimators are derived under gamma prior using GELF. Since, the posterior expectation takes the form of
ratio of two integrals; hence two Bayes approximation techniques, namely TK and MCMC techniques have
been used to approximate the ratio of integrals into a finite value. The choice of prior parameters are taken
as a = 4, b = 2. The Bayes estimate under non-informative prior may obtained by assuming a = b → 0.
For GELF, four choices (−2,−1, 1, 2) of loss parameter µ are taken. The negative values correspond to the
seriousness of under estimation and positive values correspond to the seriousness of over estimation. Fur-
ther, 100(1−α)% ACI, BCI and credible HPD interval estimates of the parameter have been constructed for
the same variation of censoring parameters. After performing the comprehensive simulation study, average
estimates (first row), the MSEs (second row) are recorded and reported in Tables 2-4. Table 5 represents
the average width (W)/coverage probability (P) obtained under different methods. From this extensive
simulation study, the following points have been noticed;

• The Bayes estimators obtained under non-informative prior behave more or less similar to the MLE.
Although, the Bayes estimates obtained under informative prior are more efficient. This indicates that
the Bayesian procedure with appropriate prior information provides more accurate estimates of the
parameters.

• The average MSEs of the Bayes estimates obtained by T-K approximation method are larger than the
estimates obtained via. MCMC.

• with the variation of loss parameter µ, the following trend is noticed

MSEβ̂(µ = 2) < MSEβ̂(µ = 1) < MSEβ̂(µ = −1) < MSEβ̂(µ = −2)

for the parameter β in both informative and non-informative prior information cases. However, in
case of reliability function R(t), the following pattern has been observed.

MSER̂(t)(µ = −2) < MSER̂(t)(µ = −1) < MSER̂(t)(µ = 1) < MSER̂(t)(µ = 2)

Also, among the MSEs of the estimators obtained via T-K and MCMC approximation techniques
along with the variation of loss parameter µ the differences are more or less same.
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• The MSEs of estimators decrease when the values of censoring parameters i.e. n|k, T increases for
fixed β.

• Bayes estimates of the β has least MSEs as compared to the MLE.

• It is also noticed that the Bayes HPD credible intervals obtained via. MCMC samples in both infor-
mative and non-informative prior cases have smaller length with relatively high coverage probabilities
than ACI and BCIs.

• The length of ACI is higher than the BCIs, whereas in case of BCIs, boot-p provides better result than
boot-s and boot-t. Although, the coverage probability obtained in ACI is relatively higher than the
others and approaching to the nominal values with the increasing sample sizes (n, k) and censoring
time T .

• The length of the interval evaluated for different (k, T ) are decreasing for increasing percentage of
k, T .

6. Real data example

In this section, the applicability of the proposed study has been demonstrated through a survival data set.
The data set represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli.
At first the considered survival data set was reported by Bjerkedal (1960). The applicability and suitability
for the xgamma model based on the considered data set has been illustrated by Sen et al. (2018) among
the most popular distributions namely exponential, gamma, Weibull, Lognormal and Lindley distributions
using different model selection criteria such as, AIC, BIC etc. Hence, the same data set has been taken for
the illustration purpose for this study. The survival times (in days) are as follows:

10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112, 113,
115, 116, 120, 121, 122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168, 171,
172, 176, 183, 195, 196, 197, 202, 213, 215, 216, 222, 230, 231, 240, 245, 251, 253, 254, 254, 278,
293, 327, 342, 347, 361, 402, 432, 458, 555

Summary of the above data set is given below; it is noticed that the mean survival time of 72 guinea pigs
infected by virulent tubercle bacilli decease is 176.8 days with standard deviation 103.45days.

Min. 1st Quartile Median 3rd Quartile Mean Max Sk Kurtosis Sd
10.0 108.0 149.5 224.0 176.8 555.0 1.3418 4.9910 103.45

Also, the skewness (Sk) of the data is positive, which indicate the considered data set is appropriate for
xgamma model. The same may be also noticed in estimated kernel and estimated density plots (see Figure
1).
The maximum likelihood estimate and Bayes estimate of the parameter and reliability function are computed
based on above data set using different type-I hybrid censored data. The type-I hybrid censored data set is
obtained for different variations of k and T , i.e. n = 72, k[T ] ∈ (20[80, 110], 40[150, 250], 60[100, 300]).
The summary of the observed data under different above censoring schemes are presented through box plot,
see in Figure 2.
The required numerical evaluations for the above considered schemes are carried out usingR 3.1.1 software
version. The computed MLE and Bayes estimates of the parameter and reliability function along with the
confidence/credible intervals are presented in Table 1 and Table 2 respectively. The reliability estimate is
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Figure 1: Estimated density plot, ECDF plot and PP plot for the considered data real data set.
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Figure 2: Summary of the data set for complete sample (C), and different censoring schemes.

evaluated for t = 75 days where the actual reliability is R(75) = 0.5542. In MCMC technique 10000
posterior samples are generated using normal proposal, also the convergence of the chain has been investi-
gated and observed that MCMC chains are well mixed and converges to their stationary distributions, and
approximately normally distributed. The choice of hyper parameters in case of real data set is taken as
a = 0.00001, b = 0.00001. Further, the width of the ACI, BCIs, and Bayes interval are also reported for
the same design of censoring schemes. It is also to be noted that the length of the HPD credible interval
(Bayes interval) is smaller than the length of ACI and BCIs (s-boot, p-boot & t-boot). However, the length
of the ACI and BCIs are very much close to each other and the length of the interval evaluated for different
(k, T ) are decreasing for increasing percentages of k, T , see Table 2. The similar result is observed by
extensive Monte Carlo simulation study performed in previous section.

7. Conclusion

In this article, the classical and Bayes estimation procedures for the parameter and reliability function of
xgamma distribution have been discussed based on type-I hybrid censored samples. It is obvious that cen-
soring adds complexity in estimation procedures, hence the estimators under classical and Bayesian setup
are not obtained in nice closed form. Thus, the MLE of the parameter is obtained using optim() function
in R statistical software, the MLE of reliability function is computed using invariance property. The Bayes
estimators are obtained with gamma prior under GELF and appeared in the form of ratio of two integrals,
hence T-K and MCMC techniques have been used to obtain the estimates of the parameter and reliability
function. The obtained estimators are investigated by conducting simulation study in terms of their MSEs.
It is observed that the Bayes estimators obtained with informative prior for both parameter and reliability
function have smaller MSEs as compared to the MLEs of the same; while in case of non-informative prior
the performances of all considered estimators are more or less same for all considered variations of the
censoring parameters. Further, the interval based on MLE and MCMC samples are constructed and noticed
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Figure 3: Posterior density and trace plots of the parameter and reliability function based on generated
posterior samples for real data set.
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Table 1: Real data estimates for the parameter and reliability function for the different censoring
parametric combination.

n, k T β̂ML
T-K technique (β̂TK) MCMC technique (β̂MC)

µ = −2 µ = −1 µ = 1 µ = 2 µ = −2 µ = −1 µ = 1 µ = 2

72, 20
80 0.0144 0.0152 0.0150 0.0147 0.0145 0.0152 0.0150 0.0147 0.0145

110 0.0159 0.0164 0.0163 0.0161 0.0160 0.0163 0.0162 0.0160 0.0160

72, 40
150 0.0172 0.0175 0.0175 0.0173 0.0173 0.0175 0.0175 0.0173 0.0173
250 0.0170 0.0173 0.0173 0.0171 0.0171 0.0173 0.0172 0.0171 0.0170

72, 60
100 0.0141 0.0146 0.0145 0.0143 0.0142 0.0146 0.0145 0.0143 0.0142
300 0.0171 0.0174 0.0173 0.0172 0.0172 0.0174 0.0173 0.0172 0.0172

n, k T R̂(t)ML
T-K technique (R̂(t)TK) MCMC technique (R̂(t)MC)

µ = −2 µ = −1 µ = 1 µ = 2 µ = −2 µ = −1 µ = 1 µ = 2

72, 20
80 0.8965 0.8970 0.8963 0.8949 0.8942 0.8959 0.8953 0.8940 0.8933

110 0.8715 0.8715 0.8710 0.8700 0.8695 0.8717 0.8712 0.8704 0.8699

72, 40
150 0.8494 0.8493 0.8489 0.8481 0.8477 0.8500 0.8497 0.8489 0.8485
250 0.8530 0.8529 0.8525 0.8518 0.8514 0.8534 0.8530 0.8523 0.8520

72, 60
100 0.9013 0.9012 0.9008 0.8999 0.8995 0.9017 0.9014 0.9006 0.9003
300 0.8506 0.8505 0.8502 0.8496 0.8493 0.8510 0.8508 0.8502 0.8499

Table 2: Length (L) of the ACI, BCIs and Bayes interval for different schemes.

n, k T ACI (L)
BCI (L)

Bayes (L)
s-boot p-boot t-boot

20
80 0.0088 0.0091 0.0092 0.0107 0.0083

110 0.0068 0.0073 0.0071 0.0080 0.0065

40
150 0.0058 0.0058 0.0059 0.0062 0.0055
250 0.0055 0.0056 0.0055 0.0058 0.0053

60
100 0.0071 0.0073 0.0073 0.0086 0.0067
300 0.0049 0.0050 0.0048 0.0053 0.0045
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that the average width of HPD intervals are less as compared to the average width of asymptotic confidence
interval. Finally, we believe that the methodologies discussed in the present article will be very useful for
researchers, reliability practitioners and scientists in medicine where the analysis of reliability/medical data
under censoring mechanism needs to be performed.
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Table 3: Average estimates and mean square error of the parameter using informative prior.

n, k T β̂ML
T-K technique (β̂TK) MCMC technique (β̂MC)

µ = −2 µ = −1 µ = 1 µ = 2 µ = −2 µ = −1 µ = 1 µ = 2

20, 16

0.85
1.6425 1.6648 1.6246 1.5436 1.5027 1.6463 1.6088 1.5326 1.4938
0.1763 0.1474 0.1333 0.1151 0.1110 0.1444 0.1324 0.1170 0.1139

1.00
1.6377 1.6574 1.6213 1.5484 1.5116 1.6426 1.6089 1.5406 1.5059
0.1608 0.1369 0.1243 0.1072 0.1028 0.1347 0.1238 0.1090 0.1053

1.25
1.6261 1.6433 1.6120 1.5489 1.5171 1.6325 1.6034 1.5445 1.5146
0.1371 0.1193 0.1088 0.0939 0.0895 0.1176 0.1084 0.0951 0.0911

30, 24

0.85
1.6238 1.6412 1.6141 1.5596 1.5322 1.6332 1.6081 1.5574 1.5318
0.1182 0.1071 0.0990 0.0870 0.0833 0.1062 0.0990 0.0883 0.0849

1.00
1.5762 1.5950 1.5710 1.5225 1.4981 1.5882 1.5659 1.5210 1.4983
0.0933 0.0849 0.0800 0.0736 0.0722 0.0846 0.0802 0.0746 0.0734

1.25
1.5676 1.5840 1.5631 1.5212 1.5001 1.5786 1.5594 1.5206 1.5011
0.0815 0.0751 0.0712 0.0658 0.0645 0.0748 0.0713 0.0666 0.0653

40, 32

0.85
1.5714 1.5881 1.5679 1.5272 1.5068 1.5830 1.5643 1.5267 1.5077
0.0781 0.0726 0.0689 0.0638 0.0626 0.0723 0.0690 0.0645 0.0633

1.00
1.5533 1.5689 1.5508 1.5145 1.4962 1.5645 1.5479 1.5144 1.4975
0.0647 0.0604 0.0577 0.0542 0.0534 0.0602 0.0578 0.0547 0.0540

1.25
1.5501 1.5635 1.5478 1.5163 1.5005 1.5598 1.5454 1.5164 1.5018
0.0570 0.0538 0.0515 0.0484 0.0476 0.0536 0.0516 0.0488 0.0487

50, 40

0.85
1.5418 1.5566 1.5405 1.5080 1.4917 1.5527 1.5378 1.5079 1.4928
0.0558 0.0525 0.0505 0.0482 0.0471 0.0524 0.0507 0.0486 0.0482

1.00
1.5456 1.5587 1.5441 1.5150 1.5003 1.5553 1.5419 1.5151 1.5015
0.0507 0.0482 0.0464 0.0440 0.0434 0.0481 0.0465 0.0443 0.0437

1.25
1.5422 1.5534 1.5408 1.5156 1.5029 1.5506 1.5390 1.5157 1.5040
0.0433 0.0416 0.0400 0.0380 0.0374 0.0414 0.0401 0.0382 0.0377
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Table 4: Average estimates of the parameter and corresponding MSEs under non-informative prior.

n, k T β̂ML
T-K technique (β̂TK) MCMC technique (β̂MC)

µ = −2 µ = −1 µ = 1 µ = 2 µ = −2 µ = −1 µ = 1 µ = 2

20, 16

0.85
1.6425 1.7004 1.6542 1.5610 1.5139 1.6761 1.6336 1.5468 1.5026
0.1763 0.2226 0.2011 0.1716 0.1638 0.2127 0.1949 0.1707 0.1646

1.00
1.6377 1.6823 1.6415 1.5593 1.5178 1.6630 1.6254 1.5491 1.5103
0.1608 0.1803 0.1632 0.1395 0.1329 0.1733 0.1590 0.1392 0.1339

1.25
1.6261 1.6634 1.6287 1.5587 1.5234 1.6494 1.6174 1.5526 1.5197
0.1371 0.1526 0.1388 0.1188 0.1126 0.1473 0.1356 0.1183 0.1130

30, 24

0.85
1.6238 1.6201 1.5907 1.5316 1.5019 1.6097 1.5827 1.5281 1.5004
0.1182 0.1174 0.1095 0.0990 0.0965 0.1151 0.1084 0.0994 0.0973

1.00
1.5762 1.6044 1.5784 1.5261 1.4997 1.5958 1.5720 1.5238 1.4994
0.0933 0.1001 0.0942 0.0863 0.0845 0.0983 0.0932 0.0865 0.0849

1.25
1.5676 1.5913 1.5690 1.5242 1.5017 1.5847 1.5643 1.5231 1.5023
0.0815 0.0868 0.0821 0.0757 0.0740 0.0854 0.0813 0.0757 0.0743

40, 32

0.85
1.5714 1.6207 1.5989 1.5552 1.5332 1.6145 1.5946 1.5543 1.5340
0.0781 0.0865 0.0809 0.0726 0.0699 0.0849 0.0800 0.0726 0.0701

1.00
1.5533 1.5739 1.5548 1.5163 1.4970 1.5687 1.5512 1.5159 1.4981
0.0647 0.0683 0.0651 0.0610 0.0601 0.0674 0.0647 0.0611 0.0602

1.25
1.5501 1.5803 1.5631 1.5286 1.5113 1.5757 1.5600 1.5283 1.5124
0.0570 0.0652 0.0622 0.0581 0.0569 0.0643 0.0618 0.0580 0.0570

50, 40

0.85
1.5418 1.5676 1.5511 1.5180 1.5014 1.5633 1.5482 1.5179 1.5026
0.0558 0.0599 0.0573 0.0538 0.0528 0.0591 0.0569 0.0537 0.0529

1.00
1.5456 1.5620 1.5468 1.5162 1.5009 1.5581 1.5442 1.5162 1.5021
0.0507 0.0530 0.0510 0.0482 0.0476 0.0524 0.0506 0.0482 0.0476

1.25
1.5422 1.5561 1.5430 1.5167 1.5035 1.5529 1.5409 1.5168 1.5046
0.0433 0.0451 0.0435 0.0412 0.0405 0.0446 0.0432 0.0411 0.0405
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Table 6: Average estimates of the reliability function and corresponding MSEs with informative prior.

n, k T R̂(t)ML
T-K technique (R̂(t)TK) MCMC technique (R̂(t)MC)

µ = −2 µ = −1 µ = 1 µ = 2 µ = −2 µ = −1 µ = 1 µ = 2

20,16

0.85
0.5186 0.5387 0.5294 0.5090 0.4978 0.5420 0.5333 0.5144 0.5042
0.0125 0.0083 0.0090 0.0110 0.0126 0.0085 0.0091 0.0109 0.0122

1
0.5225 0.5403 0.5320 0.5138 0.5040 0.5427 0.5349 0.5181 0.5091
0.0115 0.0080 0.0086 0.0103 0.0116 0.0082 0.0087 0.0102 0.0113

1.25
0.5234 0.5392 0.5318 0.5162 0.5077 0.5406 0.5338 0.5193 0.5116
0.0101 0.0072 0.0077 0.0092 0.0102 0.0073 0.0078 0.0091 0.0100

30,24

0.85
0.5308 0.5432 0.5369 0.5235 0.5164 0.5441 0.5383 0.5259 0.5194
0.0080 0.0061 0.0064 0.0074 0.0080 0.0062 0.0065 0.0073 0.0079

1
0.5371 0.5478 0.5422 0.5303 0.5240 0.5482 0.5430 0.5320 0.5263
0.0066 0.0052 0.0054 0.0061 0.0065 0.0052 0.0054 0.0060 0.0065

1.25
0.5294 0.5396 0.5346 0.5241 0.5186 0.5399 0.5352 0.5256 0.5205
0.0070 0.0056 0.0058 0.0066 0.0071 0.0056 0.0059 0.0066 0.0071

40,32

0.85
0.5374 0.5464 0.5416 0.5316 0.5264 0.5468 0.5424 0.5332 0.5284
0.0056 0.0046 0.0048 0.0053 0.0056 0.0046 0.0048 0.0053 0.0056

1
0.5370 0.5451 0.5408 0.5318 0.5272 0.5454 0.5414 0.5332 0.5289
0.0051 0.0042 0.0044 0.0049 0.0052 0.0043 0.0044 0.0049 0.0051

1.25
0.5402 0.5472 0.5434 0.5357 0.5317 0.5473 0.5439 0.5368 0.5331
0.0048 0.0041 0.0043 0.0046 0.0049 0.0042 0.0043 0.0046 0.0048

50, 40

0.85
0.5399 0.5470 0.5431 0.5351 0.5310 0.5472 0.5436 0.5363 0.5325
0.0048 0.0041 0.0042 0.0046 0.0048 0.0041 0.0043 0.0046 0.0048

1
0.5408 0.5471 0.5437 0.5365 0.5328 0.5473 0.5441 0.5375 0.5341
0.0045 0.0039 0.0040 0.0043 0.0045 0.0039 0.0040 0.0043 0.0045

1.25
0.5421 0.5476 0.5446 0.5384 0.5353 0.5478 0.5450 0.5393 0.5364
0.0036 0.0032 0.0033 0.0035 0.0037 0.0032 0.0033 0.0035 0.0036
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Table 7: Average estimates of the reliability function and corresponding MSEs with non-informative
prior.

n, k T R̂(t)ML
T-K technique (R̂(t)TK) MCMC technique (R̂(t)MC)

µ = −2 µ = −1 µ = 1 µ = 2 µ = −2 µ = −1 µ = 1 µ = 2

20,16

0.85
0.5186 0.5349 0.5244 0.5013 0.4884 0.5388 0.5291 0.5080 0.4965
0.0125 0.0102 0.0111 0.0139 0.0160 0.0103 0.0111 0.0135 0.0152

1
0.5225 0.5378 0.5283 0.5077 0.4964 0.5406 0.5319 0.5131 0.5029
0.0115 0.0093 0.0101 0.0125 0.0142 0.0094 0.0101 0.0121 0.0135

1.25
0.5234 0.5344 0.5263 0.5087 0.4992 0.5363 0.5287 0.5127 0.5041
0.0101 0.0085 0.0092 0.0112 0.0126 0.0086 0.0092 0.0109 0.0121

30,24

0.85
0.5308 0.5391 0.5321 0.5174 0.5095 0.5402 0.5338 0.5203 0.5132
0.0080 0.0071 0.0076 0.0088 0.0097 0.0072 0.0076 0.0087 0.0094

1
0.5371 0.5494 0.5433 0.5305 0.5237 0.5502 0.5447 0.5330 0.5268
0.0066 0.0059 0.0062 0.0070 0.0075 0.0060 0.0062 0.0069 0.0074

1.25
0.5294 0.5458 0.5406 0.5295 0.5236 0.5463 0.5414 0.5313 0.5260
0.0070 0.0058 0.0060 0.0067 0.0072 0.0058 0.0060 0.0067 0.0077

40,32

0.85
0.5374 0.5439 0.5388 0.5281 0.5224 0.5443 0.5396 0.5298 0.5247
0.0056 0.0054 0.0057 0.0063 0.0068 0.0055 0.0057 0.0063 0.0066

1
0.5370 0.5427 0.5381 0.5285 0.5235 0.5430 0.5388 0.5300 0.5255
0.0051 0.0045 0.0047 0.0053 0.0057 0.0045 0.0047 0.0052 0.0055

1.25
0.5402 0.5456 0.5417 0.5335 0.5293 0.5458 0.5422 0.5347 0.5309
0.0048 0.0043 0.0044 0.0048 0.0051 0.0043 0.0044 0.0048 0.0050

50, 40

0.85
0.5399 0.5456 0.5416 0.5331 0.5287 0.5458 0.5421 0.5344 0.5304
0.0048 0.0040 0.0042 0.0046 0.0049 0.0040 0.0042 0.0045 0.0048

1
0.5408 0.5498 0.5462 0.5388 0.5349 0.5500 0.5467 0.5399 0.5364
0.0045 0.0044 0.0044 0.0040 0.0042 0.0044 0.0046 0.0044 0.0049

1.25
0.5421 0.5505 0.5474 0.5410 0.5377 0.5507 0.5478 0.5420 0.5390
0.0036 0.0033 0.0034 0.0036 0.0038 0.0034 0.0034 0.0036 0.0037
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