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Abstract

The d-dimensional fixed charge transportation problem is a generalization of fixed charge transportation. This problem
has d-type of constraints so that it can be applied to more complex problem. In the transportation problem, sometimes
there are some cases when increasing the product in shipping, the number of costs incurred is less than before in-
creasing the product. This problem is called the transportation paradox. In this research, it will be explained about
the model of d-dimensional fixed charge transportation problem and sufficient condition for the occurrence of the
paradox. Furthermore an algorithm is given in finding the paradox in the d-dimensional fixed charge transportation
problem with an example to support the theory presented.
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1. Introduction

Linear programming is a branch of mathematics. Many researches have been carried out related to this topic such as:
integer programming model for optimizing bus timetable using genetic algorithm (Wihartiko et al., 2017), frequency
determination of bus rapid transit (Mayyani et al., 2017), analyze combination method for solving nonlinear equations
for optimization (Silalahi et al., 2017), star catalog generation for satellite attitude navigation (Saifudin et al., 2015,
comparison of sensitivity analysis on linear optimization (Silalahi and Dewi, 2014), analysis of upper bound for the
iteration complexity of an interior-point method (Silalahi, 2014).
The classical transportation problem is a special case of linear programming (George et al., 2014). This problem
was first formulated by Hitchcock in 1941 (Chvatal, 1983) and usually relates to the shipping of logistics. In the
transportation problem, there are several cases that must provide fixed costs (Schrenk et al., 2011). This problem is
called fixed charge transportation problem which was first formulated by Dantzig and Hirsch in 1954 (Kumar et al.,
2010). The fixed costs can be in the form of vehicle rental costs, landing fees at the airport, set up costs for machines
in manufacturing environment, etc. In transportation problem, sometimes there are cases when increasing the product
in shipping, the number of costs incurred is less than before increasing the product (Joshi and Gupta, 2012). This
problem is called the transportation paradox (Das et al., 2015).
Many researchers have developed the paradox of transportation. Some of these are paradox in fixed charge transporta-
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tion problem (Acharya et al., 2015) and paradox in the d-dimensional transportation problem (Kautsar et al., 2018).
Sufficient conditions for the occurrence of the paradoxes were analyzed in these researches. Model of fixed charge
transportation problem is a transportation problem with 2 types of constraints. That transportation problem can be
generalized into the model of d-dimensional fixed charge transportation problem. Therefore, in this research we will
discuss sufficient condition for the occurrence of the paradox.

The remainder of the paper is organized as follows. In section 2, the model of d-dimensional fixed charge transportation
problem is presented. In section 3, we discuss the dual of d-dimensional fixed charge transportation problem. The
optimality of d-dimensional fixed charge transportation problem is presented in section 4. In section 5, the sufficient
condition for the occurrence of the paradox is discussed. In section 6, we present the algorithm paradox in the d-
dimensional fixed charge transportation problem. In section 7, numerical example is presented to support the theory
in the previous section. The last section contains conclusions and summaries of this paper.

2. The d-Dimensional Fixed Charge Transportation Problem

The model of the d-dimensional fixed charge transportation problem is a generalization of the fixed charge transporta-
tion problem. The fixed charge transportation problem focuses on 2 types of constraints, namely supply and demand
of the product. Then the fixed costs correspond to the supplying of products (Arora and Ahuja, 2000). Furthermore,
on the d-dimensional fixed charge transportation problem, the type of constraints is generalized as many as d-type
of constraints. Each type of constraint is seen as a vector type constraint and fixed costs correspond to vector type
constraints. Consider the model of d-dimensional fixed charge transportation problem as follows.

min
∑

i1,i2,...,id

ci1,i2,...,idxi1,i2,...,id +
∑

i2,i3,...,id

Fi2,i3,...,id ,

subject to ∑
i1,i2,...,id

i1=I1

xi1,i2,...,id = aI1(1), I1 = 1, 2, . . . , n1,

∑
i1,i2,...,id

ik=Ik

xi1,i2,...,id ≤ aIk(k), k = 2, 3, . . . , d; Ik = 1, 2, . . . , nk, (1)

xi1,i2,...,id ≥ 0,

where
n2∑

I2=1

aI2(2) =
n3∑

I3=1

aI3(3) = · · · =
nd∑

Id=1

aId(d) ≥
n1+1∑
I1=1

aI1(1),

xi1,i2,...,id = the number of product that corresponds to (i1, i2, . . . , id),
ci1,i2,...,id = the shipping costs of product that correspond to (i1, i2, . . . , id),
Fi2,i3,...,id = the fixed cost that corresponds to (i2, i3, . . . , id),
aIk(k) = the Ik-th element of k-th vector type constraints.

Suppose Fi2,i3,...,id have l-step, so that

Fi2,i3,...,id =

k∑
j=1

δi2,i3,...,id,jFi2,i3,...,id,j

where

δi2,i3,...,id,j =

{
1;

∑n1

i1=1 xi1,i2,...,id > Ai2,i3,...,id,j

0; others

Ai2,i3,...,id,j are constants that satisfies 0 = Ai2,i3,...,id,1 < Ai2,i3,...,id,2 < · · · < Ai2,i3,...,id,l and Fi2,i3,...,id are the
fixed costs. Furthermore the constraint in Equation (1) can be added with slack variable which the shipping cost of
product is zero. So that, the d-dimensional fixed charge transportation problem can be written as follows.
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min
∑

i1,i2,...,id

ci1,i2,...,idxi1,i2,...,id +
∑

i2,i3,...,id

Fi2,i3,...,id , (2)

subject to ∑
i1,i2,...,id

i1=I1

xi1,i2,...,id = aI1(1), I1 = 1, 2, . . . , n1, n1 + 1,

∑
i1,i2,...,id

ik=Ik

xi1,i2,...,id = aIk(k), k = 2, 3, . . . , d; Ik = 1, 2, . . . , nk,

xi1,i2,...,id ≥ 0,

where

n2∑
I2=1

aI2(2) =

n3∑
I3=1

aI3(3) = · · · =
nd∑

Id=1

aId(d) =

n1+1∑
I1=1

aI1(1).

3. The Dual of d-Dimensional Fixed Charge Transportation Problem

The dual of d-dimensional fixed charge transportation problem in Equation (2) can be obtained by multiplying the
primal constraints with dual variable, so that:

∑
i1,i2,...,id

(
d∑

k=1

uik(k)

)
xi1,i2,...,ik =

n1+1∑
I1=1

aI1(1)uI1(1) +

nk∑
Ik=1

( d∑
k=2

aIk(k)uIk(k)

)
Based on Weak Duality Theorem in Vanderbei (2014), the value of primal objective function in the minimization
problem is greater than the value of dual objective function. As a result, we obtain an inequality as follows.

∑
i1,i2,...,id

ci1,i2,...,idxi1,i2,...,id ≥
∑

i1,i2,...,id

(
d∑

k=1

uik(k)

)
xi1,i2,...,ik

⇐⇒ ci1,i2,...,id ≥
d∑

k=1

uik(k)

So that the dual of d-dimensional transportation problem in Equation (2) is

max
n1+1∑
I1=1

aI1(1)uI1(1) +

n2∑
I2=1

aI2(2)uI2(2) +

n3∑
I3=1

aI3(3)uI3(3) + · · ·+
nd∑

Id=1

aId(d)uId(d),

subject to
uI1(1) + uI2(2) + · · ·+ uId(d) ≤ ci1,i2,...,id ,

I1 = 1, 2, . . . , n1, n1 + 1,
I2 = 1, 2, . . . , n2,
I3 = 1, 2, . . . , n3,

...
Id = 1, 2, . . . , nd.

4. The Optimality of d-Dimensional Transportation Problem

Based on Strong Duality Theorem in Vanderbei (2014), the value of primal and dual objective function have the same
value. As a result, we obtain an equation as follows.
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∑
i1,i2,...,id

ci1,i2,...,idxi1,i2,...,id =
∑

i1,i2,...,id

( d∑
k=1

uik(k)

)
xi1,i2,...,ik

⇐⇒ ci1,i2,...,id =

d∑
k=1

uik(k).

Based on the basic solution definition in Eiselt and Sandblom (2018), the values of basic variable are xi1,i2,...,id > 0
and the values of the non basic variable are xi1,i2,...,id = 0. To obtain the optimal solution, Equation (3) must meet
this condition

uI1(1) + uI2(2) + · · ·+ uId(d) = cI1,I2,...,Id , ∀(I1, I2, . . . , Id) ∈ B
uI1(1) + uI2(2) + · · ·+ uId(d) ≤ cI1,I2,...,Id , ∀(I1, I2, . . . , Id) /∈ B,

where B is index set of basic solution.

5. The Sufficient Condition for The Occurrence of The Paradox

The following is given a theorem about the sufficient condition for the occurrence of the paradox.

Theorem 5.1. Suppose ∆F is a change in fixed costs, θ is the number of increase product, and v1, v2, . . . , vd is an
index with 1 ≤ v1 ≤ n1 + 1, 1 ≤ vk ≤ nk, ∀k = 2, 3, . . . , d. The sufficient condition for occurrence of the paradox
in Equation (2) if there is at least an index (v1, v2, . . . , vd) ∈ B where av1(1), av2(2), . . . , avd(d) is replaced with
av1(1) + θ, av2(2) + θ, . . . , avd(d) + θ and θ(av1(1) + av2(2) + · · ·+ avd(d)) + ∆F < 0.

Proof. Suppose Z0 is the value of objective function,
∑

i2,i3,...,id

F 0
i2,i3,...,id

is the fixed costs, x0i1,i2,...,id are the optimal

solution, and ui1(1), ui2(2), . . . , uid(d) are dual variable with ui1(1) + ui2(2) + · · ·+ uid(d) = ci1,i2,...,id , then

Z0 =
∑

i1,i2,...,id

ci1,i2,...,idx
0
i1,i2,...,id

+
∑

i2,i3,...,id

F 0
i2,i3,...,id

=
∑

i1,i2,...,id

(
ui1(1) + ui2(2) + · · ·+ uid(d)

)
x0i1,i2,...,id +

∑
i2,i3,...,id

F 0
i2,i3,...,id

=
∑

i1,i2,...,id

x0i1,i2,...,idui1(1) +
∑

i1,i2,...,id

x0i1,i2,...,idui2(2) + · · ·+
∑

i1,i2,...,id

x0i1,i2,...,iduid(d)

+
∑

i2,i3,...,id

F 0
i2,i3,...,id

=
n1+1∑
i1=1

aI1(1)uI1(1) +
n2∑

I2=1

aI2(2)uI2(2) + · · ·+
nd∑

Id=1

aId(d)uId(d) +
∑

i2,i3,...,id

F 0
i2,i3,...,id

.

Now suppose at least an index (v1, v2, . . . , vd) /∈ B where âv1(1) = av1(1) + θ, âv2(2) = av2(2) + θ, . . . , âvd(d) =

avd(d) + θ, Ẑ is value of objective function after the increase of θ, and x̂i1,i2,...,id is optimal solution after the increase
of θ, then

Ẑ =
∑

i1,i2,...,id

ci1,i2,...,id x̂i1,i2,...,id +
∑

i2,i3,...,id

F̂i2,i3,...,id

=
∑

i1,i2,...,id

(
ui1(1) + ui2(2) + · · ·+ uid(d)

)
x̂i1,i2,...,id +

∑
i2,i3,...,id

F̂i2,i3,...,id

=
∑

i1,i2,...,id

x̂i1,i2,...,idui1(1) +
∑

i1,i2,...,id

x̂i1,i2,...,idui2(2) + · · ·+
∑

i1,i2,...,id

x̂i1,i2,...,iduid(d)

+
∑

i2,i3,...,id

F̂i2,i3,...,id
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=
n1+1∑
i1=1

aI1(1)uI1(1) +
n2∑

I2=1

aI2(2)uI2(2) + · · ·+
nd∑

Id=1

aId(d)uId(d) +
∑

i2,i3,...,id

F̂i2,i3,...,id

=
n1+1∑
I1=1
I1 6=v1

aI1(1)uI1(1) + âv1(1)uv1(1) +
n2∑

I2=1
I2 6=v2

aI2(2)uI2(2) + âv2(2)uv2(2) + · · ·+

nd∑
Id=1
Id 6=vd

aId(d)uId(d) + âvd(d)uvd(d) +
∑

i2,i3,...,id

F̂i2,i3,...,id

=
n1+1∑
i1=1

aI1(1)uI1(1) + θuv1(1) +
n2∑

I2=1

aI2(2)uI2(2) + θuv2(2) + · · ·+
nd∑

Id=1

aId(d)uId(d)

+θuvd(d) +
∑

i2,i3,...,id

F 0
i2,i3,...,id

+ ∆F

= Z0 + θ
(
av1(1) + av2(2) + · · ·+ avd(d)

)
+ ∆F.

We know Z0 is the value of objective function and the value for θ
(
av1(1) + av2(2) + · · ·+ avd(d)

)
+ ∆F is negative.

As a result the value of Ẑ is lower than the value of Z0, so paradox occur.

6. Algorithm

1. Determining paradoxical pair (Z0, F 0), where Z0 is the value of objective function and F 0 is the number of
product that sent for the optimal solution X0.

2. Determining i = 1.

3. Finding index (v1, v2, . . . , vd) /∈ B that satisfy θ(av1(1) + av2(2) + · · ·+ avd
(d)) + ∆F < 0, otherwise go to

step 8.

4. Increasing the number of product by 1 unit to vector type constraints that correspond to the dual variable, then
determining new optimal solution Xi.

5. Determining new (Zi, F i).

6. Determining i = i+ 1.

7. Go to step 3

8. Write paradoxical pair (Z∗, F ∗) = (Zi, F i) for optimal solution X∗ = Xi.

7. Numerical Example

Given the d-dimensional fixed charge transportation problem as follows.

aI1(1) =

 10
7
8

 , aI2(2) =

[
20
15

]
, aI3(3) =

 13
13
9

 , aI4(4) =

[
17
18

]

cI1,I2,1,1 =

 18 7
17 20
17 15

 , cI1,I2,1,2 =

 18 8
7 20
17 15


cI1,I2,2,1 =

 17 11
8 20
17 4

 , cI1,I2,2,2 =

 17 11
7 20
17 14


cI1,I2,3,1 =

 18 19
8 19
17 14

 , cI1,I2,3,2 =

 18 19
8 19
17 14


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F1,1,I4,j =

[
15 7 5
12 4 2

]
, F1,2,I4,j =

[
14 6 4
10 5 3

]
, F1,3,I4,j =

[
10 7 5
14 6 3

]

F2,1,I4,j =

[
10 5 2
11 7 3

]
, F2,2,I4,j =

[
8 3 2
15 8 4

]
, F2,3,I4,j =

[
10 7 5
8 5 3

]
where

δI2,I3,I4,1 =

{
1;

∑3
I1=1 xI1,I2,I3,I4 > 0

0; others

δI2,I3,I4,2 =

{
1;

∑3
I1=1 xI1,I2,I3,I4 > 4

0; others

δI2,I3,I4,3 =

{
1;

∑3
I1=1 xI1,I2,I3,I4 > 7

0; others.

Based on Equation (2), vector type constraints become as follows.

aI1(1) =


10
7
8
10

 , aI2(2) =

[
20
15

]
, aI3(3) =

 13
13
9

 , aI4(4) =

[
17
18

]
.

The optimal solutions for primal problem are as follows.

x1122 = 3, x1211 = 7, x2112 = 5, x2122 = 2,
x3221 = 8, x4112 = 1, x4131 = 2, x4132 = 7.

The optimal solutions for dual problem are as follows.

u1(1) = 7, u2(1) = −3, u3(1) = 4, u4(1) = −10, u1(2) = 10, u2(2) = 0,
u1(3) = 0, u2(3) = 0, u3(3) = 0, u1(4) = 0, u2(4) = 0.

The fixed cost occur if there are basic feasible solutions (Robers and Cooper, 1976), so the fixed costs is Fi1,i2,i3,i4 =
59 and paradoxical pair is (Z0, F 0) = (240, 25). Applying step 2, 3, and 4 then selecting an index (2, 2, 1, 1) /∈ B.
Increasing the product by 1 unit to corresponding vector type constraints so

aI1(1) =


10

7 + 1
8
10

 , aI2(2) =

[
20

15 + 1

]
, aI3(3) =

 13 + 1
13
9

 , aI4(4) =

[
17 + 1

18

]
.

The optimal solutions for primal problem are as follows.

x1122 = 2, x1211 = 8, x2112 = 5, x2122 = 3,
x3221 = 8, x4112 = 1, x4131 = 2, x4132 = 7.

The optimal solutions for dual problem are as follows.

u1(1) = 7, u2(1) = −3, u3(1) = 4, u4(1) = −10, u1(2) = 10, u2(2) = 0,
u1(3) = 0, u2(3) = 0, u3(3) = 0, u1(4) = 0, u2(4) = 0.

The fixed cost is Fi1,i2,i3,i4 = 61. The change of fixed cost is ∆F = 61−59 = 2. Because dual variable that selecting
and ∆F with increasing the product by 1 unit meet Theorem 1

u2(1) + u2(2) + u1(3) + u1(4) + ∆F = −1 < 0
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then paradox exists in this problem. The new paradoxical pair (Z1, F 1) = (239, 26). Going back to step 3 until i = 3
with the optimal solutions for primal problem are as follows.

x1211 = 8, x2112 = 5, x2122 = 5, x3221 = 8,
x4112 = 1, x4131 = 2, x4132 = 7.

The optimal solutions for dual problem are as follows.

u1(1) = 7, u2(1) = −3, u3(1) = 4, u4(1) = 0, u1(2) = 0, u2(2) = 0,
u1(3) = 0, u2(3) = 0, u3(3) = 0, u1(4) = 0, u2(4) = 0.

The paradoxical pair is (Z3, F 3) = (235, 28). Because there is no index that satisfies step 3, then best paradoxical
pair is (Z∗, F ∗) = (Z3, F 3) = (235, 28).

8. Conclusion

The model of the d-dimensional fixed charge transportation problem is a generalization of the fixed charge transporta-
tion problem. Each type of constraint is seen as a vector type constraint and the fixed costs are issued if shipping
product occurs. The sufficient condition for the occurrence of the paradox is obtained with compare the value of the
objective function before and after increasing of product. The dual variables are also involved in the determination of
the value of the objective function to obtain optimal solution. The algorithm for finding paradox is done by increasing
the product by as much as one item. Then evaluate the value of the objective function, it is done repeatedly until the
paradox does not occur again. This algorithm is used to find lower costs than before, not to find the lowest cost that
can be achieved from the d-dimensional fixed charge transportation problem.
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