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Abstract

In this article, we define a new four-parameter model called Marshall-Olkin extended power Lomax distribution and
study its properties. Limiting distributions of sample maxima and sample minima are derived. The reliability of
a system when both stress and strength follows the new distribution is discussed and associated characteristics are
computed for a simulated data. Finally, utilizing maximum likelihood estimation, the goodness of the distribution is
tested for a real data.
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1. Background

Probability distributions are very useful models for characterizing variability in lifetime data. Lomax (1954) intro-
duced an ingenious distribution namely, the Lomax distribution (also known as Pareto distribution of the second kind)
which is used in business, economics, and actuarial modeling. It is very similar to the Pareto distribution and it was
used by Lomax (1954) to fit in business failure data. Also, Rady et al. (2016) introduced power Lomax distribu-
tion. They discovered that the power Lomax distribution offer better fit on bladder cancer data than classical Lomax
distribution. The survival function and probability density function (pdf) of power Lomax distribution are given by

F̄ (x, θ, λ) =

[
1 +

(x
λ

)β]−γ
, x, β, γ, λ > 0 (1)

and

f(x, θ, λ) = βγλ−βxβ−1

[
1 +

(x
λ

)β]−γ−1

, x, β, γ, λ > 0 (2)

On the other hand, Marshall and Olkin (1997) introduced a well known tool for obtaining more flexible distributions
which is obtained by adding a new parameter α > 0 to an existing distribution. Let F̄ (x) be the survival function of a
continuous random variable X . Then by the technique of Marshall and Olkin (1997), we get another survival function
Ḡ(x, α) given by

Ḡ(x, α) =
αF̄ (x)

1− ᾱF̄ (x)
;−∞ < x <∞;α > 0, ᾱ = 1− α. (3)

The family of such distributions will be referred to as the Marshall-Olkin Extended (MOE) family. If g(x, α) and
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r(x, α) are the pdf and hazard rate function (hrf) corresponding to Ḡ, then we have,

g(x, α) =
αf(x)

[1− ᾱF̄ (x)]2
;−∞ < x <∞, α > 0, ᾱ = 1− α (4)

and

h(x, α) =
r(x)

1− ᾱF̄ (x)
(5)

where f(x) and r(x) are the pdf and the hrf corresponding to F̄ (x).

The rest of the paper is organized as follows. Section 2 introduces the MOE power Lomax distribution and presents
features of the distribution. Section 3 focuses on limiting distribution of the sample extremes. Section 4 specifies
stress-strength analysis and illustrates with respect to a simulated data. Section 5 proposes parameter estimation of
the distribution by the method of maximum likelihood estimation. Section 6 deals with the application of the new
distribution to a real data set. Finally, Section 7 summarizes the findings of the research.

2. MOE Power Lomax Distribution

Motivated by the advantages of Lomax distribution, we introduce and study a new distribution called MOE power
Lomax (MOEPL) distribution. The model inherits desirable properties from Lomax distribution. By inserting (1) in
(3), the survival function of MOEPL distribution is given by

Ḡ(x, α, β, γ, λ) =
α[

1 +
(
x
λ

)β]γ − ᾱ , x, α, β, γ, λ > 0 (6)

The corresponding pdf is given by

g(x, α, β, γ, λ) =
αβγλ−βxβ−1

[
1 +

(
x
λ

)β]γ−1

{[
1 +

(
x
λ

)β]γ − ᾱ}2 , x, α, β, γ, λ > 0 (7)

In addition, the hrf of the MOEPL distribution becomes

h(x, α, β, γ, λ) =
γβxβ−1

xβ + λβ
{

1− ᾱ
[
1 +

(
x
λ

)β]−γ} , x, α, β, γ, λ > 0 (8)

The plots of pdf and hrf for selected parameters of α, β, γ and λ are shown in Figures 1. From Figure 1, we can
conclude that α is a scale parameter. From Figure 2, we note that hrf of MOEPL can be monotone, non-monotone,
unimodality and upside down bathtub shapes.

The quantile function of X follows MOEPL distribution, it can be expressed as

Q(u) = λ
{[

(1− p)−1α+ ᾱ
] 1
γ − 1

} 1
β

where u is generated from the Uniform(0, 1) distribution. The rth ordinary moment of X is given by

µ
′

r = E(Xr) = r

∫ ∞
0

xr−1F̄ (x)dx
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Figure 1: Graphs of pdf of the MOEPL distribution for different values of α,β,γ and λ
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Figure 2: Graphs of hrf of the MOEPL distribution for different values of α,β,γ and λ
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Hence the rth moment of MOEPL distribution, by giving substitution y =
[
1 +

(
x
λ

)β]γ
is given by

µ
′

r = r

∫ ∞
0

xr−1 α[
1 +

(
x
λ

)β]γ − ᾱdx
=

rαλr

βγ

r−β
β∑
i=0

∫ ∞
1

(−1)i+
r−β
β
( r−β

β

i

)
y
i+1
γ −1

y − ᾱ
dy

Thus µ
′

r cannot be expressed in a simple closed form but it can be calculated numerically.

3. Limiting Distributions of Sample Extremes

Consider the sample X1, X2 , . . . , Xn of size n from MOEPL distribution. Let X1:n = min(X1, X2, . . . ,Xn) be the
sample minima and Xn:n = max(X1, X2, . . . ,Xn) be the sample maxima. Also note that the extreme order statistics
X1:n and Xn:n represents the life of series and parallel systems.

Theorem 3.1. Let X1, X2, . . . , Xn be a random sample of size n from MOEPL distribution. Then

(i) lim
n→∞

P (X1:n ≤ b∗nt) = 1− e−t, t > 0, where b∗n = λ
[
( nα
n−1 + ᾱ)

1
γ − 1

] 1
β

(ii) lim
n→∞

P (Xn:n ≤ an + bnt) = e−t, t < 0, where an = 0 and bn = λ
(

[(n− 1)α+ 1]
1
γ − 1

) 1
β

.

Proof. (i) We use the following asymptotic result by Arnold et al. (1992) for X1:n by which

lim
n→∞

P (X1:n ≤ a∗n + b∗nt) = 1− e−t
c

, t > 0, c > 0,

(of the Weibull type) where a∗n = F−1(0) and b∗n = F−1
(

1
n

)
− F−1(0) if and only if F−1(0) is finite and for all

t > 0 and c > 0

lim
ε→0+

F (F−1(0) + εt)

F (F−1(0) + ε)
= tc

For the MOEPL distribution, we have G−1(0) = 0 is finite and also

lim
ε→0+

G(εt)

G(ε)
= tβ

Thus we obtain that c = β, a∗n = 0 and b∗n = λ
[
( nα
n−1 + ᾱ)

1
γ − 1

] 1
β

.
(ii) For the maximal order statistics Xn:n we have

lim
n→∞

P (Xn:n ≤ an + bnt) = e−(−t)l , t < 0, l > 0,

(of the Fréchet type) where an = 0, bn = F−1
(
1− 1

n

)
if and only if F−1(1) = ∞ and there exists a constant l > 0

such that

lim
x→∞

1− F (xt)

1− F (x)
= t−l

For MOEPL distribution, we have G−1(1) =∞ and

lim
x→∞

1−G(xt)

1−G(x)
= t−βγ

Thus we obtain that l = βγ, an = 0 and bn = λ
(

[(n− 1)α+ 1]
1
γ − 1

) 1
β

.
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Remarks 1: For the power Lomax distribution (α = 1) the norming constants are b∗n = λ
[
( n
n−1 )

1
γ − 1

] 1
β

and

bn = λ
(
n

1
γ − 1

) 1
β

.

Remarks 2: If the limiting distributions of the random variables (X1:n − a∗n)/b∗n and (Xn:n − an)/bn are denoted by
G∗(t) and G(t), then with regard to the fact that (Arnold et al., 1992) for any finite i > 1, the limiting distributions of
the random variable (Xi:n − a∗n)/b∗n is given by

lim
n→∞

P (Xi:n ≤ a∗n + b∗nt) = 1−
i−1∑
j=0

(1−G∗(t)) [−log(1−G∗(t))]j

j!

and the limiting distributions of the random variable (Xn−i+1:n − an)/bn is given by

lim
n→∞

P (Xn−i+1:n ≤ an + bnt) =

i−1∑
j=0

G(t)
(− logG(t))

j

j!
.

From Theorem 3.1, for any finite i > 1 the limiting distributions of the ith order statistics from the MOEPL distribution
is given by

lim
n→∞

P (X1:n ≤ b∗nt) = 1−
i−1∑
j=0

e−t
β tβj

j!

= 1− P (W < i)

and matching limiting distributions of the (n− i+ 1)th order statistics from the MOEPL distribution is given by

lim
n→∞

P (Xn−i+1:n ≤ an + bnt) =

i−1∑
j=0

e−t
−βγ t−βγj

j!

= P (Z < i)

where W and Z follows the Poisson distribution with means tβ and t−γβ .

4. Stress-Strength Analysis and Estimation of Reliability

The reliability of a component in terms of the probability that the random variable X representing stress experienced
by the component exceeds Y , representing the strength of the component. It has been calculated by using the equation
R = P (Y > X). The component fails when the stress exceeds strength, and vice versa. Several aspects of stress-
strength theory has been discussed by Kotz et al. (2003). The problem when two independent random variables
representing strength (X) and stress (Y ) follow the same Marshall-Olkin extended distributions then the reliability of
the system has been discovered by Gupta et al. (2010). Gupta et al. (2010) has showed that Marshall-Olkin extended
distributions with tilt parameters α1 and α2 the R can be expressed as follows

R =
α1

α2

(α1

α2
− 1)2

[
− ln

α1

α2
+
α1

α2
− 1

]
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In order to estimate the expression for R it is enough to find maximum likelihood estimates (MLEs) of α1 and α2 .
The log likelihood equation is given by

LL = m logα1 + n logα2 + (m+ n)logβ + (m+ n)logγ − β(m+ n) log λ

+(β − 1)

(
m∑
i=1

log xi +

n∑
i=1

log xi

)
− 2

m∑
i=1

{
1− ᾱ1

[
1 +

(xi
λ

)β]−γ}

−2

n∑
i=1

{
1− ᾱ2

[
1 +

(xi
λ

)β]−γ}

Then the MLEs of α1 and α2 are the solutions of the non-linear equations

∂LL

∂α1
=

m

α1
−

m∑
i=1

2
[
1 +

(
xi
λ

)β]−γ{
1− ᾱ1

[
1 +

(
xi
λ

)β]−γ}
∂LL

∂α2
=

n

α2
−

n∑
i=1

2
[
1 +

(
xi
λ

)β]−γ{
1− ᾱ2

[
1 +

(
xi
λ

)β]−γ}
Using the property of MLE for m→∞, n→∞ we have

√
m(α̂1 − α1),

√
n(α̂2 − α2)

d→ N2(0, diag{ 1
a11 ,

1
a22}

where a11 = lim
m,n→∞

1

m
I11 =

1

3α2
1

and a22 = lim
m,n→∞

1

n
I22 =

1

3α2
2

Also the Information matrix enfolds the following components

I11 = −E
(
∂2LL

∂α2
1

)

= −E

−mα2
1

+ 2

m∑
i=1

[
1 +

(
x
λ

)β]−2γ

{
1− ᾱ

[
1 +

(
x
λ

)β]−γ}2


=

m

α2
1

− 2α1m

∫ ∞
α

dt

t4

=
m

3α2
1

Similarly I22 = −E
(
∂2LL
∂α2

1

)
= − n

3α2
2

and I12 = I21 = −E
(
∂2LL
∂α1α2

)
= 0

Now due to Gupta et al. (2010), R (for 95% confidence interval) is given by

R̂∓ 1.96 α̂1b1(α̂1, α̂2)
√

3
m + 3

n , where

b1(α1, α2) = ∂R
∂α1

= α2

(α1−α2)3

[
−2(α1 − α2) + (α1 + α2) ln α1

α2

]
and

b2(α1, α2) = ∂R
∂α2

= α1

(α1−α2)3

[
2(α1 − α2)− (α1 + α2) ln α1

α2

]
= −α1

α2
b1(α1, α2)
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Table 1: The values of b and AMSE of the simulated estimates of R for β = 9, γ = 4 and λ = 3
b AMSE

(α1, α2) (α1, α2)

(m,n) (0.5,0.8) (0.9,1.2) (0.8,0.5) (1.2,0.9) (0.5,0.8) (0.9,1.2) (0.8,0.5) (1.2,0.9)

(20,20) 0.0789 0.0501 -0.0797 -0.0499 0.0079 0.0042 0.0080 0.0042
(20,25) 0.0777 0.0482 -0.0815 -0.0517 0.0075 0.0039 0.0081 0.0042
(20,30) 0.0770 0.0468 -0.0827 -0.0535 0.0073 0.0036 0.0082 0.0043

(25,20) 0.0817 0.0593 -0.0785 -0.0485 0.0082 0.0063 0.0077 0.0039
(25,25) 0.0793 0.0584 -0.0799 -0.0499 0.0076 0.0058 0.0077 0.0039
(25,30) 0.0780 0.0576 -0.0815 -0.0505 0.0073 0.0057 0.0078 0.0038

(30,20) 0.0823 0.0528 -0.0759 -0.0476 0.0082 0.0042 0.0071 0.0037
(30,25) 0.0806 0.0507 -0.0782 -0.0483 0.0077 0.0038 0.0073 0.0036
(30,30) 0.0793 0.0493 -0.0795 -0.0499 0.0075 0.0036 0.0074 0.0036

4.1. Simulation Study

Here, we conduct a simulation study to evaluate performance of estimate of R. The simulation was performed using
MATLAB. We simulate N = 10, 000 sets of X-samples and Y -samples from the MOEPL with parameters α1, β, γ, λ
and α2, β, γ, λ respectively. We set the sample of sizes at m = 20, 25, 30 and n = 20, 25, 30. It is possible to obtain
measures like average bias of the estimate (b), average mean square error of the estimate (AMSE), average confidence
interval (ACI) of the estimate and coverage probability (CP) which are useful to check the validity of the estimate of
R. These measures are calculated based on following equations

1) The equation of b of the simulated N estimates of R is given by:

1

N

N∑
i=1

(R̂i −R)

2) ASME of the simulated N estimates of R is given by:

1

N

N∑
i=1

(R̂i −R)2

3) ACI of the asymptotic 95% confidence intervals of R is given by:

1

N

N∑
i=1

2(1.96)α̂1i b1i(α̂α1i, α̂α2i)

√
3

m
+

3

n

4) The CP of the N simulated confidence intervals are given by the proportion of such interval that include the
parameter R.

From Table 1, we can conclude that, b is positive when α1 < α2 and b is negative when α1 > α2. Furthermore, in both
cases the b decreases as the sample size increases and AMSE is almost symmetric with respect to (α1, α2). Besides,
Table 2 specifies the symmetric property in the case of ACI. The CP is close to the nominal value in all cases and so
that it is slightly greater than 0.95. From this it is obvious that numerical values of b, AMSE, ACI and CP do not show
much difference for distinct parameter combinations.
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Table 2: The values of ACL and CP of the simulated 95% confidence intervals of R for β = 9, γ = 4 and λ = 3

ACL CL
(α1, α2) (α1, α2)

( m,n) (0.5,0.8) (0.9,1.2) (0.8,0.5) (1.2,0.9) (0.5,0.8) (0.9,1.2) (0.8,0.5) (1.2,0.9)

(20,20) 0.3557 0.3557 0.3557 0.3556 0.9805 0.9878 0.9881 0.9877
(20,25) 0.3377 0.3375 0.3373 0.3376 0.9784 0.9883 0.9845 0.9880
(20,30) 0.3251 0.3248 0.3250 0. 0.3226 0.9705 0.9884 0.9794 0.9854

(25,20) 0.3377 0.3344 0.3376 0.3375 0.9733 0.9593 0.9761 0.9879
(25,25) 0.3186 0.3152 0.3185 0.3212 0.9709 0.9520 0.9698 0.9861
(25,30) 0.3051 0.3019 0.3051 0.3051 0.9728 0.9472 0.9660 0.9857

(30,20) 0.3250 0.3050 0.3250 0.3250 0.9680 0.9864 0.9795 0.9884
(30,25) 0.3051 0.3023 0.3082 0.3044 0.9672 0.9855 0.9716 0.9874
(30,30) 0.2911 0.2910 0.2899 0.2910 0.9652 0.9867 0.9744 0.9868

5. Estimation

MLEs are important point estimators in statistical inference. We estimate the MLEs of the model parameters from
complete samples. Let X1, X2, ..., Xn is a random sample of size n from the MOEPL distribution with parameters
α, β, γ and λ. Let Φ = (α, β, γ, λ)T be the p× 1 parameter vector.

For determining the MLEs of α, β, γ and λ, the log-likelihood function is given as

logl(Φ) = nlog(αβγ)− βlogγ − (γ + 1)

n∑
i=1

log
[
1 +

(xi
λ

)β]

+(β − 1)

n∑
i=1

logxi − 2

n∑
i=1

log

{
1− ᾱ

[
1 +

(xi
λ

)β]−γ}

The components of the score vector,

U(Φ) = ∂ log l
∂Φ =

(
Uα = ∂ log l

∂α , Uβ = ∂ log l
∂β , Uγ = ∂ log l

∂γ , Uλ = ∂ log l
∂λ

)T
are given by

Uα =
n

α
−

n∑
i=1

2[
1 +

(
xi
λ

)β]γ − ᾱ
Uβ =

n

β
+

n∑
i=1

logxi − 2

n∑
i=1

(γ + 1)(xiλ )β logxiλ[
1 +

(
xi
λ

)β] − 2

n∑
i=1

~αγ
[
1 +

(
xi
λ

)β]−γ−1

(xiλ )β logxiλ

1− ᾱ
[
1 +

(
xi
λ

)β]−γ
Uγ =

n

γ
−

n∑
i=1

log
[
1 +

(xi
λ

)β]
− 2

n∑
i=1

ᾱ
[
1 +

(
xi
λ

)β]−γ
log
[
1 +

(
xi
λ

)β]
1− ᾱ

[
1 +

(
xi
λ

)β]−γ
Uλ = −nβ

λ
+ (γ + 1)

n∑
i=1

βλ−β−1xi[
1 +

(
xi
λ

)β] − 2

n∑
i=1

ᾱγxβi β
[
1 +

(
xi
λ

)β]−γ−1

λβ
{

1− ᾱ
[
1 +

(
xi
λ

)β]−γ}
Setting the nonlinear system of equations Uα = 0, Uβ = 0, Uγ = 0 and Uλ = 0 and solving them simultaneously
yields the MLEs of Φ̂.
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6. Data Analysis

This section concentrates on application of the proposed model to a real life data set. We compare the performance of
the MOEPL distribution with the other generalized Lomax model on a real data set already in the literature. The data
set represents the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant pressure at the 90% stress
level until all had failed. For previous studies on the data sets, see, Barlow et al. (1984) and Andrews and Herzberg
(1985). The data are:

0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696,
0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766,
1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275,
1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460,
2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143,
4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.

We compare the results of MOEPL distribution with following generalizations of Lomax distribution which are gen-
eralized by using different generators:

1. beta generalized Lomax (BGL) distribution (Eugene et al., 2002)

2. Exponentiated exponential Poisson Lomax (EEPL) distributions (Ristić and Nadarajah, 2013)

3. Exponentiated generalized Lomax distributions (EGL) (Cordeiro et al., 2013)

4. Exponentiated Lomax(EL) distribution (Gupta et al., 1998)

5. Exponentiated Kumaraswamy Lomax (EKumL) distributions (Lemonte et al., 2013)

6. Gamma uniform Lomax (GUL) distributions (Torabi and Montazeri, 2012)

7. Weibull Lomax (WL) distributions (Alzaatreh et al., 2013)

We apply these distributions to the above data set and estimate the parameters by the maximum likelihood method.
We also calculate various measures like values of −log-likelihood (−logL), AIC (Akaike Information Criterion), BIC
(Bayesian Information Criterion), the values of the Kolmogorov-Smirnov (K-S) statistic and the corresponding p-
values.
The results of comparison are summarized in Table 3. From these results we can observe that MOEPL distribution
provide smallest −logL, AIC, BIC and K-S statistics values and highest p-value as compare to other distributions. On
the basis of the results obtained, it is concluded that the MOEPL distribution is very suitable for this data set than the
other generalize Lomax distributions.

7. Conclusions

In this article, we introduce a new generalization of the Lomax distribution which can be quite flexible in analyzing
continuous data in different areas. It is proved to be an important alternative model to other existing generalizations
of Lomax distributions. We provide the asymptotic distributions of the extreme values. Additionally stress-strength
analysis is carried out and the validity of the estimate of reliability so obtained is studied through simulation studies.
As expected, when α1 < α2 the bias is positive and when α1 > α2 the bias is negative. Also the absolute bias and
MSEs decreases as sample size increases and the length of the confidence interval is also symmetric with respect to
α1, α2 and decreases as the sample size increases. The applicability of the model is verified by applying to a real data
set. The MOEPL distribution provides better fit than other considered extended Lomax distributions.
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Table 3: Estimated values, −logL, AIC, BIC, K-S statistics and p-value for data set

Distribution Estimates −logL AIC BIC K-S p-value

MOEPL(α, β,γ,λ) α̂=36.1174 120.0236 248.0471 257.3701 0.0711 0.8112
β̂= 0.8599
θ̂= 4.9302
λ̂= 1.4578

BGL( a,b,r,s) â=1.7303 122.2238 252.4477 261.7706 0.09241574 0.5056
b̂=5.6522
r̂= 0.0325
ŝ= 4.7672

EEPL( a,b,r,s) â=0.9279 122.2238 248.7956 258.1185 0.08077 0.6739
b̂=3.9078
r̂= 0.1588
ŝ= 7.5082

EGL( a,b,r,s) â=5.6646 122.2889 252.5777 261.9007 0.0905 0.5317
b̂=1.7711
r̂= 0.0231
ŝ= 5.6646

EL( a,r,s) â= 1.8383 122.3927 250.7855 257.7777 0.0886 0.5587
r̂= 0.0452
ŝ= 17.2241

EKumL( a,b,c,r,s) â=2.1141 121.7866 253.5733 265.227 0.0917 0.5149
b̂=9.4417
ĉ=0.7465
r̂= 0.1557
ŝ= 1.2897

GUL( a,r,s) â= 1.6068 122.2416 250.4833 257.4755 0.0994 0.4140
r̂= 0.7700
ŝ= 1.0378

WL( a,b,r,s) â= 1.5794 121.8335 251.6671 260.99 0.09207 0.5104
b̂= 0.5398
r̂= 0.1856
ŝ= 1.6692
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