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Abstract  

 

This article proposes a new version of the technique of order preference by similarity to an ideal solution 

(TOPSIS) to solve fuzzy multi-attribute group decision making (MAGDM) problems using trapezoidal interval 

type-2 fuzzy sets (IT2FSs). The traditional TOPSIS ranks the alternatives according to their relative degree of 

closeness to the ideal solutions. On the other hand, TOPSIS based on similarity measure ranks the alternatives 
according to their total degree of similarity to the ideal solutions. This study extends TOPSIS using similarity 

measure using map distance to IT2FSs. First, the similarity measure based on map distance for interval-valued 

fuzzy sets (IVFSs) is extended to encompass IT2FSs due to the deficiency in IT2FSs similarity measures. Then, 

TOPSIS using similarity measure is applied. Hence, fuzzy MAGDM problems can be handled in a more flexible 

intelligent manner and avoiding defuzzification with its drawbacks. An illustrative example is given to explain 

the approach. Then, a practical problem in assessing thermal energy storage technologies in solar power systems 

is solved, where the weights of the attributes and the performance of the qualitative attributes are linguistic 

variables modeled by IT2FSs. The reliability of two normalization techniques is examined and the impact of the 

theoretical and empirical reference points on the solution is investigated. 
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1. Introduction  

Choosing the best option from a set of possible alternatives is one of the most challenging problems in decision-

making. The decision depends on the experts’ opinions and evaluations of the multiple attributes of the alternatives 

(Chen and Lee, 2010). Multi-attribute group decision making (MAGDM) provides an efficacious frame for 
preference by evaluating and ranking the multiple attributes. The challenge arises not only from the multiple 

conflicting attributes but also from the uncertainty and ambiguity faced when evaluating the attributes’ weights and 

the alternatives. The fuzzy set theory proved to be a perfect tool in dealing with vagueness and imprecision. 

Type-2 fuzzy sets (T2FSs) have been utilized whenever the uncertainties’ level is relatively high, the system’s 

complexity increases and type-1 fuzzy sets (T1FSs) fail to express such high complexity and uncertainty (Cheng et 

al., 2016). For example, autonomous mobile robots that navigate in a changing dynamic environment need to cope 

with large amounts of uncertainties that are inherent in natural environments. T1FSs cannot fully handle such 

uncertainties. It is not reasonable to use an exact membership function to express something uncertain. Hence, 

T2FSs can handle these uncertainties by employing a fuzzy membership function producing a better performance 

(Hagras, 2004). They provide more parameters and more design degrees of freedom, thus reducing the effect of 

imprecise information. Ever since their introduction, T2FSs have been successfully applied in various areas of 
applications, e.g. fuzzy logic systems, neural networks, and genetic algorithms (Sepúlveda et al., 2007).  

While T1FSs have one membership function, T2FSs have two membership functions, a primary membership 

function and a secondary membership function. However, T2FSs are difficult to comprehend and utilize due to their 

complex structure and heavy computations (Zheng et al., 2010). Therefore, simpler types are utilized namely, 

interval type-2 fuzzy sets (IT2FSs), and interval-valued fuzzy sets (IVFSs). These types have been intensively used 

due to their reduced computational requirements (Hagras, 2004).   
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An IT2FS is a T2FS with a secondary membership function that is equal to one. An IT2FS has two 

membership functions, an upper membership function and a lower membership function, each of which is a T1FS. 

The reference points and the membership values, or simply the heights, of the upper and the lower membership 

functions, are used to define an IT2FS. While IT2FSs are characterized by two heights for each membership 

function, IVFSs have a single height for each membership function. Hence, IVFSs are a special case of IT2FSs 
when the two heights are equal.  

The technique of order preference by similarity to an ideal solution (TOPSIS) is a well-known method for 

solving MAGDM problems. TOPSIS is useful and practical in selecting and ranking the alternatives. It was initially 

proposed by Hwang and Yoon (1981) for real-valued data. TOPSIS method selects the alternative whose distance 

from the positive ideal solution is the shortest, and whose distance from the negative ideal solution is the largest. 

Chen (2000) extended TOPSIS to fuzzy data using T1FSs. Ashtiani et al. (2009) developed TOPSIS for triangular 

IVFSs. Chen and Lee (2010) modified the technique to handle IT2FSs.  In most of the proposed traditional fuzzy 

TOPSIS methods the weighted ratings are defuzzified to determine the ideal solutions and to compute the closeness 

coefficient.  

The major flaw in the traditional fuzzy TOPSIS is the loss of information due to defuzzification (Ashtiani et 

al., 2009). Losing important information may provide wrong results (Dymova et al., 2015). Some modifications 

were proposed to improve the performance of TOPSIS under defuzzification. Ilieva (2016) defuzzified IT2FSs into 
two crisp values and then computed their average value. Wu et al. (2018) employed Wu and Mendel’s centroid 

method for IVFSs to calculate the distances between each alternative and the ideal solutions. Other modifications 

have been introduced to TOPSIS to avert defuzzification. Ashtiani et al. (2009) modified TOPSIS using triangular 

IVFSs. They calculated the distances between the alternatives and the ideal solutions by the normalized Euclidean 

distance. Rashid et al. (2014) modified TOPSIS using trapezoidal IVFSs. They used a heuristic expression to 

calculate the distance between trapezoidal IVFSs. Dymova et al. (2015) introduced an interval type-2 fuzzy TOPSIS 

using α-cuts representation to avoid the limitations and drawbacks of the existing methods. Sharaf (2018) modified 

TOPSIS for IVFSs by using the degree of similarity for comparison instead of the relative degree of closeness to 

maintain fuzziness in the preference technique. Recently, Mohamadghasemi (2020) corrected some drawbacks in the 

TOPSIS method proposed by Dymova et al. (2015) to eliminate its limitations. 

In this article, TOPSIS is extended to IT2FSs using similarity measure based on map distance. First, the 
similarity measure based on map distance for IVFSs is extended to IT2FSs due to the deficiency of IT2FSs 

similarity measures. Then, TOPSIS using similarity measure is applied. By this way, the flexibility of the method is 

increased and defuzzification with its flaws is surpassed. An illustrative example and a practical problem in 

assessing thermal energy storage technologies in solar power systems are solved to illustrate the method. The 

reliability of two normalization techniques is examined and the impact of the theoretical and empirical reference 

points on the solution is investigated. 

The main contribution of the article can be summarized as follows 

i. Handling fuzzy MAGDM problems in a more flexible intelligent manner by utilizing IT2FSs. 

ii. Extending similarity measure based on map distance for IVFSs to encompass IT2FSs. 

iii. Providing a simple reliable MAGDM methodology for ranking thermal energy storage technologies 

(TES) in concentrated solar power systems (CSP).  

The article is organized as follows. IT2FSs and their operations are defined in section 2. The extension of the 
similarity measure based on map distance to IT2FSs is presented in section 3. The proposed TOPSIS method is 

given in section 4. In section 5, a numerical example and a practical example in solar power systems are solved 

using the proposed method. Finally, the conclusion and discussion are given in section 6. 

 

2. Preliminaries 

Definition 2.1.1. (Dymova et al., 2015):  A type-2 fuzzy set is given by: 

Ã = ∫ ∫ 𝜇𝐴(𝑥, 𝑢) (𝑥, 𝑢)⁄

∀𝑢∈𝐽𝑥⊆[0,1]∀𝑥∈𝑿

, 

 

(1) 

 where 𝜇𝐴(𝑥, 𝑢) is a type-2 membership function and ∫∫ denotes the union over all admissible 𝑥 and 𝑢. 

 When 𝜇𝐴(𝑥, 𝑢) = 1, a T2FS reduces to an IT2FS.                                     

Definition 2.1.2. (Kahraman et al., 2014): Let �̃�𝐿  and �̃�𝑈  be two trapezoidal fuzzy sets. A trapezoidal IT2FS is 

given by: 
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�̃� = [�̃�𝐿 , �̃�𝑈 ] = [(𝑎1
𝐿 , 𝑎2

𝐿 , 𝑎3
𝐿 , 𝑎4

𝐿; 𝑤1
𝐿 , 𝑤2

𝐿), (𝑎1
𝑈 , 𝑎2

𝑈 , 𝑎3
𝑈 , 𝑎4

𝑈;  𝑤1
𝑈 , 𝑤2

𝑈)], (2) 

 

              

where 𝑎1
𝐿 , 𝑎2

𝐿 , 𝑎3
𝐿 , 𝑎4

𝐿 , 𝑎1
𝑈 , 𝑎2

𝑈 , 𝑎3
𝑈 , 𝑎𝑛𝑑 𝑎4

𝑈 ∈ 𝑅 are the reference points of the IT2FS, and 𝑤1
𝐿 , 𝑤2

𝐿 , 𝑤1
𝑈𝑎𝑛𝑑 𝑤2

𝑈 ∈ [0,1] 
are the membership values. When 𝑤1

𝐿 = 𝑤2
𝐿 and  𝑤1

𝑈 =  𝑤2
𝑈,  an IT2FS reduces to an IVFS.  

The aggregation operations for the IT2FSs �̃� and �̃� are given as follows.  

Definition 2.1.3. (Chen and Lee, 2010) 

 

�̃� ⊕ �̃� = [
(𝑎1

𝐿 + 𝑏1
𝐿 , 𝑎2

𝐿 + 𝑏2
𝐿 , 𝑎3

𝐿 + 𝑏3
𝐿 , 𝑎4

𝐿 + 𝑏4
𝐿;𝑚𝑖𝑛(𝑤1𝐴

𝐿 , 𝑤1�̃�
𝐿 ),𝑚𝑖𝑛(𝑤2𝐴

𝐿 , 𝑤2�̃�
𝐿 )) ,

(𝑎1
𝑈 + 𝑏1

𝑈 , 𝑎2
𝑈 + 𝑏2

𝑈 , 𝑎3
𝑈 + 𝑏3

𝑈 , 𝑎4
𝑈 + 𝑏4

𝑈;  𝑚𝑖𝑛(𝑤1𝐴
𝑈 , 𝑤1�̃�

𝑈 ),𝑚𝑖𝑛(𝑤2�̃�
𝑈 ,𝑤2�̃�

𝑈 ))
]. 

 

(3) 

                     

�̃� ⊗ �̃� = [
(𝑎1

𝐿𝑏1
𝐿 , 𝑎2

𝐿𝑏2
𝐿 , 𝑎3

𝐿𝑏3
𝐿 , 𝑎4

𝐿𝑏4
𝐿;𝑚𝑖𝑛(𝑤1𝐴

𝐿 , 𝑤1�̃�
𝐿 ),𝑚𝑖𝑛(𝑤2�̃�

𝐿 ,𝑤2�̃�
𝐿 )) ,

(𝑎1
𝑈𝑏1

𝑈 , 𝑎2
𝑈𝑏2

𝑈 , 𝑎3
𝑈𝑏3

𝑈 , 𝑎4
𝑈𝑏4

𝑈;  𝑚𝑖𝑛(𝑤1𝐴
𝑈 , 𝑤1�̃�

𝑈 ),𝑚𝑖𝑛(𝑤2𝐴
𝑈 , 𝑤2�̃�

𝑈 ))
]. 

 

(4) 

         

𝑘. �̃� = �̃�. 𝑘 =

{
[(𝑘. 𝑎1

𝐿 , 𝑘. 𝑎2
𝐿 , 𝑘. 𝑎3

𝐿 , 𝑘. 𝑎4
𝐿;𝑤1𝐴

𝐿 , 𝑤2𝐴
𝐿 ), (𝑘. 𝑎1

𝑈 , 𝑘. 𝑎2
𝑈 , 𝑘. 𝑎3

𝑈 , 𝑘. 𝑎4
𝑈; 𝑤1�̃�

𝑈 , 𝑤2𝐴
𝑈 )]; 𝑖𝑓 𝑘 ≥ 0,

[(𝑘. 𝑎4
𝐿 , 𝑘. 𝑎3

𝐿 , 𝑘. 𝑎2
𝐿 , 𝑘. 𝑎1

𝐿;𝑤1𝐴
𝐿 , 𝑤2𝐴

𝐿 ), (𝑘. 𝑎4
𝑈 , 𝑘. 𝑎3

𝑈 , 𝑘. 𝑎2
𝑈 , 𝑘. 𝑎1

𝑈;𝑤1𝐴
𝑈 , 𝑤2�̃�

𝑈  )]; 𝑖𝑓 𝑘 ≤ 0,
     

 

(5) 

where 𝑘  is an arbitrary real number. 

 

3. A similarity measure for IT2FSs 

Similarity measures attracted researchers’ attention due to their wide applications in clustering, case-based 

reasoning, and pattern recognition (Beg and Rashid, 2017). A similarity measure between two fuzzy sets, denoted by 

𝑆(�̃�, �̃�), is an indication of the extent to which the fuzzy sets are similar. Similarity measures for T1FSs were 

comprehensively studied. A few studies proposed similarity measures for IVFSs. These similarity measures suffer 

from several disadvantages. They may give counter-intuitive results; they cannot find the degree of similarity 

between two disjoint sets, or 𝑆(�̃�, �̃�) ≠ 1 even when the fuzzy sets are the same (Wu and Mendel, 2008).  

To benefit from the shape and to avoid the disadvantages and complications of the previous methods, some 

similarity measures were developed for trapezoidal IVFSs. Chen and Chen (2008) developed a similarity measure 

based on the center of gravity of the lower and the upper fuzzy numbers. The similarity measure of Wei and Chen 

(2009) used the geometric distance, the perimeter, the height and the center of gravity. Chen and Chen (2009) 

introduced a similarity measure that uses the difference of the spreads and the heights of the upper fuzzy numbers, 

the degree of similarity and the gravities on the X-axis and the gravity on the Y-axis between IVFSs. Chen and Kao 

(2010) developed a similarity measure based on the standard deviation operator; while Chen (2011) proposed a 

similarity measure based on the quadratic mean operator. Chen et al. (2013) introduced a similarity measure based 

on the map distance, to overcome flaws of the previously mentioned methods, e.g. they cannot give the correct 
degree of similarity between two interval-valued fuzzy numbers in some cases. The results showed that their method 

outperforms the existing methods (Chen et al., 2013).  

On the contrary, similarity measures for trapezoidal IT2FSs didn’t receive attention. Due to the deficiency in 

similarity measures for trapezoidal IT2FSs, the similarity measure of Chen et al. (2013) based on map distance for 

trapezoidal IVFSs is extended to trapezoidal IT2FSs being the most convenient similarity measure.  

The degree of similarity between two IT2FSs �̃� and �̃� based on map distance can be calculated as follows. 

Step 1: Compute the distance values ∆𝑎𝑖 and ∆𝑏𝑖. 
             For the IT2FSs �̃� and �̃�, the distance values between the lower and  the upper fuzzy sets are  given by: 

∆𝑎𝑖 = |𝑎𝑖
𝑈−𝑎𝑖

𝐿|  and ∆𝑏𝑖 = |𝑏𝑖
𝑈−𝑏𝑖

𝐿|,where 𝑖 = 1,2,3,4. 

Step 2: Compute 𝑆(�̃�∆ , �̃�∆). 
a) Find the standard deviations ∆𝑆𝑎 and ∆𝑆𝑏 between the upper and lower fuzzy sets.  

�̅�𝑈 = (𝑎1
𝑈 + 𝑎2

𝑈+𝑎3
𝑈+𝑎4

𝑈) 4⁄ , �̅�𝐿 = (𝑎1
𝐿 + 𝑎2

𝐿+𝑎3
𝐿+𝑎4

𝐿) 4⁄ , 
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𝑆𝐴𝑈 = √
∑ (𝑎𝑖

𝑈−�̅�𝑈)24
𝑖=1

3
,  𝑆𝐴𝐿 = √

∑ (𝑎𝑖
𝐿−�̅�𝐿)24

𝑖=1

3
, ∆𝑆𝑎 = |𝑆𝐴𝑈 −  𝑆𝐴𝐿|. 

�̅�𝑈 = (𝑏1
𝑈 + 𝑏2

𝑈+𝑏3
𝑈+𝑏4

𝑈) 4⁄ , �̅�𝐿 = (𝑏1
𝐿 + 𝑏2

𝐿+𝑏3
𝐿+𝑏4

𝐿) 4⁄ , 

𝑆�̃�𝑈 = √
∑ (𝑏𝑖

𝑈−�̅�𝑈)24
𝑖=1

3
,  𝑆�̃�𝐿 = √

∑ (𝑏𝑖
𝐿−�̅�𝐿)24

𝑖=1

3
, ∆𝑆𝑏 = |𝑆�̃�𝑈 −  𝑆𝐵𝐿|. 

b) Find the map distance between the upper and lower fuzzy sets. 

                     𝑇∆ = [(2 −
1+max{|∆𝑎2−∆𝑎1|,|∆𝑏2−∆𝑏1|}

1+min{|∆𝑎2−∆𝑎1|,|∆𝑏2−∆𝑏1|}
) + (2−

1+max{|∆𝑎4−∆𝑎3|,|∆𝑏4−∆𝑏3|}

1+min{|∆𝑎4−∆𝑎3|,|∆𝑏4−∆𝑏3|}
)] 2⁄ . 

c) Find 𝑆(�̃�∆,  �̃�∆) ∈ [0, 1].  

𝑆(�̃�∆, �̃�∆) = [1 −
√∑ (∆𝑎𝑖−∆𝑏𝑖)

24
𝑖=1

2
] × [1 −√

|∆𝑆𝑎−∆𝑆𝑏|

2
] × [1 −

|𝑤
1�̃�
𝐿 −𝑤

1�̃�
𝐿 |+|𝑤

2�̃�
𝐿 −𝑤

2�̃�
𝐿 |

|𝑤
1�̃�
𝑈 +𝑤

1�̃�
𝑈 |+|𝑤

2�̃�
𝑈 +𝑤

2�̃�
𝑈 |
] × 𝑇∆ . 

 

(6) 

Step 3: Compute 𝑆(�̃�𝑈 , �̃�𝑈). 

a)  Find the map distance between the upper trapezoidal fuzzy sets. 

                   𝑇𝑈 = [(2 −
1+max{|𝑎2

𝑢−𝑎1
𝑢|,|𝑏2

𝑢−𝑏1
𝑢|}

1+min{|𝑎2
𝑢−𝑎1

𝑢|,|𝑏2
𝑢−𝑏1

𝑢|}
) + (2 −

1+max{|𝑎4
𝑢−𝑎3

𝑢|,|𝑏4
𝑢−𝑏3

𝑢|}

1+min{|𝑎4
𝑢−𝑎3

𝑢|,|𝑏4
𝑢−𝑏3

𝑢|}
)] 2⁄ . 

b) Find  𝑆(�̃�𝑈 , �̃�𝑈) ∈ [0,1].  

𝑆(�̃�𝑈 , �̃�𝑈) = [1 −
√∑ (𝑎𝑖

𝑢−𝑏𝑖
𝑢)24

𝑖=1

2
] × [1 −√

|𝑆
�̃�𝑈
−𝑆
�̃�𝑈
|

2
] × [

min(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+min(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )

max(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+max(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )
] × 𝑇𝑈.    

 

(7) 

Step 4: Compute 𝑆(�̃�, �̃�). 
 

𝑆(�̃�, �̃�) =
 𝑆(�̃�𝑈 , �̃�𝑈) × (1 +  𝑆(�̃�∆, �̃�∆))

2
 

 

(8) 

      As the value of 𝑆(�̃�, �̃�) increases, the degree of similarity between �̃� and �̃� increases.                        

       

The extended similarity measure satisfies the following properties:  

Property 1 (Reflexivity): Two IT2FSs �̃� and  �̃� are identical if and only if  𝑆(�̃�, �̃�) = 1. 

Property 2 (Symmetry): 𝑆(�̃�, �̃�) = 𝑆( 𝐵,̃ �̃�). 

Property 3 (Transitivity): If �̃� ≤ �̃� ≤ �̃�, then 𝑆(�̃�, �̃�) ≥ 𝑆( 𝐴,̃ �̃�). 

Property 4 (Overlap): If two IT2FSs partially overlap, 𝑆(�̃�, �̃�) > 0. 

Property 5: If �̃� and  �̃� are real numbers, then 𝑆(�̃�, �̃�) = 1 − |𝑎 − 𝑏|. 

The proofs of these properties are given in the appendix. 

 

4. TOPSIS for IT2FSs 

TOPSIS main idea is to select the alternative whose distance from the positive ideal solution is the minimum and its 

distance from the negative ideal solution is the maximum. The main aim of the proposed TOPSIS is to maintain 

fuzziness in information and avoid defuzzification. First, the degree of similarity between each attribute of an 
alternative and the ideal solution is calculated. Second, the similarity matrix is formed. Then, the total degree of 

similarity for all the attributes of an alternative is used for preference. The best candidate is the one corresponding to 

the one norm of the similarity matrix. In this section TOPSIS with similarity measure for IVFSs is extended to 

IT2FSs. The steps are as follows. 

Consider a MAGDM in the presence of 𝑘 decision-makers 𝐷1, 𝐷2,… , 𝐷𝑘, with a set of 𝑛 alternatives 𝑋 =
{x1, x2, … , x𝑛} and a set of 𝑚 attributes 𝐹 = {𝑓1, 𝑓2 , … , 𝑓𝑚}. The set of attributes is divided into two sets, the set of 

benefits "𝐹𝑏" and the set of costs  "𝐹𝑐", such that 𝐹𝑏 ∩ 𝐹𝑐 = ∅. 
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Step 1: Formation of the decision matrix and the average decision matrix,  

�̃�p =

        x1 x2       xn

𝑓1
𝑓2
⋮
𝑓𝑚(

 
 
𝑓11
p

𝑓12
p

𝑓21
p

𝑓22
p ⋯

𝑓1n
p

𝑓2n
p

⋮ ⋱ ⋮
𝑓m1
p

𝑓m2
p ⋯ 𝑓mn

p

)

 
 , and  �̅̃� = (𝑓𝒊𝒋)𝑚×𝑛

 , 

               where 𝑓𝒊𝒋 = (
�̃�𝑖𝑗
1⨁𝑓𝑖𝑗

2⊕…⊕𝑓𝑖𝑗
𝑘

𝑘
), 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛  and 1 ≤ 𝑝 ≤ 𝑘.    

Step 2: Formation of the weighting matrix and the average weighting matrix,  
               𝑓1   𝑓2       𝑓𝑚

�̃�𝑝 = [w̃1
𝑝
w̃2
𝑝
… w̃𝑚

𝑝 ],  �̅̅̅̅̃�p = (w̃𝒊)1×𝑚
 

where �̃�𝒊 = (
w̃𝑖
1⊕w̃𝑖

2⊕…⊕w̃𝑖
𝑝

𝑘
), 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑝 ≤ 𝑘. 

Step 3: Formation of the normalized average decision matrix �̅̃� = (�̃�𝒊𝒋)𝑚×𝑛
.  

             Normalization keeps the IT2FSs ∈ [0, 1].  The normalized ratings �̃�𝒊𝒋 is given by 

�̃�𝒊𝒋 = [(
𝑓1𝑖𝑗
𝐿

𝑓4𝑗
+ ,

𝑓2𝑖𝑗
𝐿

𝑓4𝑗
+ ,

𝑓3𝑖𝑗
𝐿

𝑓4𝑗
+ ,

𝑓4𝑖𝑗
𝐿

𝑓4𝑗
+ ;𝑤1

𝐿 , 𝑤2
𝐿) , (

𝑓1𝑖𝑗
𝑈

𝑓4𝑗
+ ,

𝑓2𝑖𝑗
𝑈

𝑓4𝑗
+ ,

𝑓3𝑖𝑗
𝑈

𝑓4𝑗
+ ,

𝑓4𝑖𝑗
𝑈

𝑓4𝑗
+ ;  𝑤1

𝑈 , 𝑤2
𝑈)], where 𝑖 = 1,… ,𝑚, 𝑗 ∈ 𝐹𝑏  and 𝑓4𝑗

+ = max
𝑖
𝑓4𝑖𝑗
𝑈 . 

�̃�𝒊𝒋 = [(
𝑓1𝑗
−

𝑓4𝑖𝑗
𝐿 ,

𝑓1𝑗
−

𝑓3𝑖𝑗
𝐿 ,

𝑓1𝑗
−

𝑓2𝑖𝑗
𝐿 ,

𝑓1𝑗
−

𝑓1𝑖𝑗
𝐿 ;𝑤1

𝐿 , 𝑤2
𝐿) , (

𝑓1𝑗
−

𝑓4𝑗
𝑈 ,

𝑓1𝑗
−

𝑓3𝑖𝑗
𝑈 ,

𝑓1𝑗
−

𝑓2𝑖𝑗
𝑈 ,

𝑓1𝑗
−

𝑓1𝑗
𝑈 ;  𝑤1

𝑈 , 𝑤2
𝑈)], where 𝑖 = 1, … ,𝑚, 𝑗 ∈ 𝐹𝑐 and 𝑓1𝑗

− = min
𝑖
𝑓1𝑖𝑗
𝑈 . 

Step 4: Formation of the weighted normalized decision matrix  

�̃�w =

       x1  x2        x𝑛
𝑓1
𝑓2
⋮
𝑓𝑚

(

�̃�11 �̃�12
�̃�21 �̃�22

⋯
�̃�1𝑛
�̃�2𝑛

⋮ ⋱ ⋮
�̃�𝑚1 �̃�𝑚2 ⋯ �̃�𝑚𝑛

)
,  where �̃�𝑖𝑗 = w̃𝑖⊗ �̃�𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. 

Step 5: Set the fuzzy positive ideal solution (FPIS)  �̃�+ and the fuzzy negative ideal solution (FNIS) �̃�− as, 

            �̃�+ = [(1,1,1,1; 1,1), (1,1,1,1; 1,1)] and �̃�− = [(0,0,0,0; 1,1), (0,0,0,0; 1,1)]. 

Step 6: Formation of the similarity matrix  𝐒 = (𝑆𝑖𝑗) . 

             Find the degree of similarity between �̃�𝑖𝑗 and the ideal solutions using the similarity measure based on map 

             distance for IT2FSs. 

𝑆𝑖𝑗
+ = 𝑆(�̃�𝑖𝑗 , �̃�

+) =
 𝑆(�̃�𝑖𝑗

𝑈,�̃�+
𝑈
)×(1+ 𝑆(�̃�𝑖𝑗

∆ ,�̃�+
∆
))

2
 , 𝑖𝑓 𝑓𝑖 ∈ 𝐹𝑏 

𝑆𝑖𝑗
− = 𝑆(�̃�𝑖𝑗 , �̃�

−) =
 𝑆(�̃�𝑖𝑗

𝑈,�̃�−
𝑈
)×(1+ 𝑆(�̃�𝑖𝑗

∆ ,�̃�−
∆
))

2
  , 𝑖𝑓 𝑓𝑖 ∈ 𝐹𝑐. 

 Step 7: Find the total degree of similarity of each alternative  

𝑆(𝑋𝑗) = ∑ 𝑠𝑖𝑗
𝑚
𝑖=1 , for 𝑗 = 1,… , 𝑛.  

As the value of 𝑆(𝑋𝑗) increases, the preference for the alternative 𝑋𝑗  increases. The alternative corresponding to the 

 similarity matrix one norm ‖𝐒‖1 is the best candidate, where 

‖𝐒‖1 = max
1≤𝑗≤𝑛

(∑ |𝑠𝑖𝑗|
𝑚
𝑖=1 ). 

 

5. Examples 

In this section, two examples are solved. The first explains the proposed TOPSIS, the second is a practical example 

for assessing thermal energy storage in solar power systems.  

5.1. Numerical Example 

This example is from Chen and Lee (2010). Since the linguistic terms used by Chen and Lee (2010) are IVFSs, these 

terms are redefined using IT2FSs. A company intends to buy cars and three alternatives are available. The decision-



Pak.j.stat.oper.res.  Vol.17  No. 3 2021 pp 559-575  DOI: http://dx.doi.org/10.18187/pjsor.v17i3.2798 

 
An interval type-2 fuzzy TOPSIS for multiple attribute group decision making applied to solar power systems 564 

 

makers 𝐷1,𝐷2, and 𝐷3 rate the cars using four attributes: safety (𝑓1), price ( 𝑓2), appearance(𝑓3), and 

performance(𝑓4). The safety, the appearance and the performance are the benefit attributes, while the price is the 

cost attribute. The set of alternatives is 𝑋 = {x1, x2 , x3}, and the set of attributes is 𝐹 = {𝑓1, 𝑓2 , 𝑓3, 𝑓4}. The decision-
makers use the linguistic terms shown in Table 1. The problem’s data are shown in the solution steps. For more 

details see Chen and Lee (2010). 

Table 1: Linguistic terms and their corresponding IT2FSs for example 1. 

Linguistic terms IT2FSs 

Very Low (VL) [(0.01,0.02,0.03,0.04;0.5,0.6)(0,0.02,0.03,0.05;0.9,1)] 

Low(L) [(0.1,0.15,0.2,0.25;0.5,0.6)(0.05,0.15,0.2,0.3;0.9,1)] 

Medium Low (ML) [(0.2,0.25,0.3,0.35;0.5,0.6)(0.15,0.25,0.3,0.4;0.9,1)] 

Medium (M) [(0.35,0.4,0.45,0.5;0.5,0.6)(0.3,0.4,0.45,0.55;0.9,1)] 

Medium High (MH) [(0.55,0.6,0.65,0.7;0.5,0.6)(0.5,0.6,0.65,0.75;0.9,1)] 

High (H) [(0.75,0.8,0.85,0.9;0.5,0.6)(0.7,0.8,0.85,0.95;0.9,1)] 

Very High (VH) [(0.875,0.9,0.95,1.0;0.5,0.6)(0.85,0.9,0.95,1.0;0.9,1)] 

 

Step 1: a) Formation of the decision matrices and the average decision matrix.  

D̃1 =

        x1 x2  x3  
𝑓1
𝑓2
𝑓3
𝑓4

(

MH H VH
H MH VH
VH H M
VH H H

) , D̃2 =

      x1 x2  x3 
𝑓1
𝑓2
𝑓3
𝑓4

(

H MH H
VH H VH
H VH MH
H VH VH

), D̃3 =

         x1 x2  x3     
𝑓1
𝑓2
𝑓3
𝑓4

(

MH H MH
H VH H
H VH MH
H H VH

). 

D̅̃ =

     x1                                                   x2                                                         x3 

𝑓1

𝑓2

𝑓3

𝑓4
(

 
 
 
 
 
 
[
(0.62,0.67,0.72,0.77; 0.5,0.6)
(0.57,0.67,0.72,0.82; 0.9,1)

] [
(0.68,0.73,0.78,0.83; 0.5,0.6)
(0.63,0.73,0.78,0.88; 0.9,1)

] [
(0.73,0.77,0.82,0.87; 0.5,0.6)
(0.68,0.77,0.82,0.90; 0.9,1)

]

[
(0.79,0.83,0.88,0.93; 0.5,0.6)
(0.75,0.83,0.88,0.97; 0.9,1)

] [
(0.73,0.77,0.82,0.87; 0.5,0.6)
(0.68,0.77,0.82,0.90; 0.9,1)

] [
(0.83,0.87,0.92,0.97; 0.5,0.6)
(0.80,0.87,0.92,0.98; 0.9,1)

]

[
(0.79,0.83,0.88,0.93; 0.5,0.6)
(0.75,0.83,0.88,0.97; 0.9,1)

] [
(0.83,0.87,0.92,0.97; 0.5,0.6)
(0.80,0.87,0.92,0.98; 0.9,1)

] [
(0.48,0.53,0.58,0.63; 0.5,0.6)
(0.43,0.53,0.58,0.68; 0.9,1)

]

[
(0.79,0.83,0.88,0.93; 0.5,0.6)
(0.75,0.83,0.88,0.97; 0.9,1)

] [
(0.79,0.83,0.88,0.93; 0.5,0.6)
(0.75,0.83,0.88,0.97; 0.9,1)

] [
(0.83,0.87,0.92,0.97; 0.5,0.6)
(0.80,0.87,0.92,0.98; 0.9,1)

]
)

 
 
 
 
 
 

 

                    

 Step 2: a) Formation of the weighting matrices and the average weighting matrix. 

                   
            𝑓1   𝑓2 𝑓3 𝑓4
W̃1 = (VH H M VH),

            𝑓1   𝑓2 𝑓3   𝑓4
 W̃2 = (H VH MH H),

            𝑓1   𝑓2 𝑓3   𝑓4
 W̃3 = (VH VH MH H).

   

    
         𝑓1                                                   𝑓2                                                         𝑓3                                                          𝑓4   

W̅̃ = ([
(0.83,0.87,0.92,0.97; 0.5,0.6)
(0.80,0.87,0.92,0.98; 0.9,1)

] [
(0.83,0.87,0.92,0.97; 0.5,0.6)
(0.80,0.87,0.92,0.98; 0.9,1)

] [
(0.48,0.53,0.58,0.63; 0.5,0.6)
(0.43,0.53,0.58,0.68; 0.9,1)

] [
(0.79,0.83,0.88,0.93; 0.5,0.6)
(0.75,0.83,0.88,0.97; 0.9,1)

]) ,
 

                    

Step 3: The IT2FSs∈ [0,1], hence normalization is not required.  

Step 4: Formation of the weighted decision matrix.  

D̃w =

      x1                                                       x2                                                      x3  

𝑓1

𝑓2

𝑓3

𝑓4 (

 
 
 
 
 
 
[
(0.51,0.58,0.66,0.74; 0.5,0.6)
(0.46,0.58,0.66,0.80; 0.9,1)

] [
(0.57,0.64,0.72,0.81; 0.5,0.6)
(0.51,0.64,0.72,0.87; 0.9,1)

]

[
(0.66,0.72,0.81,0.90; 0.5,0.6)
(0.60,0.72,0.81,0.95; 0.9,1)

] [
(0.60,0.66,0.75,0.84; 0.5,0.6)
(0.55,0.66,0.75,0.89; 0.9,1)

]

[
(0.60,0.66,0.75,0.84; 0.5,0.6)
(0.55,0.66,0.75,0.89; 0.9,1)

]

[
(0.69,0.75,0.84,0.93; 0.5,0.6)
(0.64,0.75,0.84,0.97; 0.9,1)

]

[
(0.38,0.44,0.52,0.59; 0.5,0.6)
(0.33,0.44,0.52,0.66; 0.9,1)

] [
(0.40,0.46,0.53,0.61; 0.5,0.6)
(0.35,0.46,0.53,0.67; 0.9,1)

] [
(0.23,0.28,0.34,0.40; 0.5,0.6)
(0.19,0.28,0.34,0.47; 0.9,1)

]

[
(0.63,0.69,0.78,0.87; 0.5,0.6)
(0.56,0.69,0.78,0.93; 0.9,1)

] [
(0.63,0.69,0.78,0.87; 0.5,0.6)
(0.56,0.69,0.78,0.93; 0.9,1)

] [
(0.66,0.72,0.81,0.91; 0.5,0.6)
(0.60,0.72,0.81,0.95; 0.9,1)

]
)

 
 
 
 
 
 

,   

                

Step 5: Set the FPIS and the FNIS as �̃�+ = [(1,1,1,1; 1,1)(1,1,1,1; 1,1)] and  �̃�− = [(0,0,0,0; 1,1), (0,0,0,0; 1,1)].              

Step 6: Formation of the similarity matrix (𝑆𝑖𝑗) . 
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                  x1 x2  x3  

Safety
             Price
Appearence
Performance(

 

𝑆11
+  𝑆12

+ 𝑆13
+

𝑆21
− 𝑆22

− 𝑆23
−

𝑆31
+ 𝑆32

+ 𝑆33
+

𝑆41
+ 𝑆42

+ 𝑆43
+ )

   =   

                          x1           x2        x3   
Safety

             Price
Appearence
Performance

(

0.2868 0.3085 0.3340
0.1051 0.1355 0.0957
0.2259 0.2390 0.1593
0.3287 0.3287 0.3541

). 

 
Step 7: Find the total degree of similarity of each alternative to the ideal solutions. 

𝑆(𝑋1) = 0.9465, 𝑆(𝑋2) = 1.0117 and  𝑆(𝑋3) = 0.9431. 

              From the results, 𝑆(𝑋2) > 𝑆(𝑋1) > 𝑆(𝑋3), the ranking is 𝑋2 > 𝑋1 > 𝑋3 . Then, the best alternative is 𝑋2.  

According to Chen and Lee (2010), the preferred order of the alternatives is 𝑋2 > 𝑋1 > 𝑋3. Hence the result of the 

proposed TOPSIS coincides with the results of Chen and Lee (2010).  

 

5.2. Practical Example  

The commercial utilization of solar thermal power and the construction of large-scale industrial plants started in the 

1980s. The variability of energy production due to night-time and cloudy weather is one of these systems’ 

limitations (Cavallaro, 2010). To overcome this limitation, solar power plants are coupled with thermal energy 

storage (TES) that guarantees energy supply even in the absence of solar radiation. TES is the key component for a 

power plant to improve its dispatchability. TES has several advantages compared with other storage technologies, 

e.g. mechanical or chemical. They are lower in costs and higher in efficiency (Kuravi et al., 2013). 
Solar energy is converted into electricity employing a concentrated solar power (CSP) plant composed of four 

elements: a concentrator, a high-temperature solar receiver, a fluid transport system and a power generation bloc. It 

is estimated that the CSP will contribute up to 11% of the global electricity production in the year 2050 (Pelay et al., 

2017). 

The first part (the concentrator) is a mirror designed to intercept solar radiation and concentrate it in a focal 

point. The second and third parts are the receiver and the heat exchanger that are linked to the solar concentrator. 

The heat transfer fluid (HTF) that circulates inside the heat exchanger absorbs the heat generated by solar radiation. 

The fourth part is another heat exchanger that transfers the accumulated thermal energy to another fluid, usually 

steam that drives a turbine or generator set-up (Cavallaro, 2010).  

 TES is integrated with the system in three possible ways. A two tank indirect system in which two HTF are 

used. The first HTF collects the solar thermal energy from the solar receivers in the solar field. The second HTF acts 
as the primary heat storage medium that is kept in two separate tanks having different temperatures. A two tank 

direct system, in which a single HTF is used in the solar field and the primary storage media. A Single tank 

thermocline system, in which a single HTF and a single insulated thermocline tank are utilized (Alva et al., 2016). 

The working temperature of mineral oil lies between 290˚C and 390˚C. Yet, it is highly inflammable. Also, in 

case of any accidental leakage from the plant pollution may occur. The working temperature of molten salt (a 

mixture of sodium nitrate and potassium nitrate) lies between 290 ˚C and 550˚C. They are non-polluting and not 

inflammable. Molten salt has several advantages. It increases energy performance and reduces electricity production 

costs. It is non-toxic and eco-compatible. It keeps the temperature of steam close to the temperature required by the 

Rankine cycle turbines to work at high efficiency. The main disadvantage is that molten salt solidifies at relatively 

high temperatures, between 120 ˚C and 221 ˚C. Thus, it is essential to maintain them in the liquid state in the pipes 

(Cavallaro, 2010).  

The following example is adapted from Cavallaro (2010). The linguistic terms assigned to the performance of 
the attributes and their weights are redefined using IT2FSs (while keeping them in the given ranges as possible)  

which are more flexible in dealing with uncertainties and model them with greater accuracy. In this example, seven 

TES are tested and compared. These examined systems are as follows.  

x1. VP-1 NS: uses Therminol VP-1 as a HTF with no heat storage. Therminol VP-1 is characterized by a low 

freezing point (12 ºC) and is stable up to 400 ºC.  

x2. VP-1 TT: Therminol VP-1 serves as a HTF and for heat storage with two tanks, hot and cold, at a pressure 

of 66 bar.  

x3. VP-1 TC: uses Therminol VP-1 in a single thermocline tank at a pressure of 66 bar.  

x4. MS-TT 450: uses molten salt for heat transfer and heat storage with two tanks, hot and cold, with a 

maximum attainable temperature of 450˚C.  

x5. MS-TC 450: uses molten salt in a thermocline tank with a maximum attainable temperature of 450˚C.  

x6. MS-TT 500: it is similar to MS-TT 450 but with a maximum attainable temperature of 500˚C. 
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x7. MS-TC 500: it is similar to MS-TC 450 but with a maximum attainable temperature of 500˚C. 

Ten attributes are chosen, related to technical, economical, and environmental reasons. The attributes can be 

summarized as follows.  

𝑓1 . Investment costs (M US$): the costs of purchasing mechanical equipment, engineering services, 
technological installations, drilling and any other required construction work.  

𝑓2 . Operating and maintenance costs (k US$/year): the costs of materials, transportation, wages, and other 

costs related to the plant. 

𝑓3 . Levelized electricity cost (US$/MW  h): the industrial production cost of the electricity generated by the 

plant.  
𝑓4. Levelized electricity cost reduction (%): the ability of each plant to reduce the industrial cost of production. 

𝑓5 .Thermal storage cost (M US$): the cost of building the heat storage system including the steel tanks, the 

fluid circulation system and pumps.  
𝑓6 . Electricity production (GW h): the level of electricity production of the plant.  

𝑓7 . State of knowledge of technology: the reliability of the utilized technology.  

𝑓8 . Environmental risk: the risk to the environment arising from accidental leakage of the HTF from tanks and 

hydraulic plants. 

𝑓9 . Land use (𝑚2): the area occupied by the plant. 

𝑓10 . Freezing point: the assessment of the freezing level of the HTF. The high freezing point of the molten salt 

leads to complications related to freezing protection.  

Seven attributes are quantitative {𝑓1, 𝑓2 , 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓9}, while the rest three attributes {𝑓7 , 𝑓8, 𝑓10} are 
qualitative. The quantitative data is from Kearney et al. (2004), the qualitative data is from Cavallaro (2010). The 

level of uncertainty for the qualitative attributes is higher than that of the quantitative since quantitative attributes are 

easier to measure. IT2FSs are used to represent the linguistic assessment of the performance of the alternatives for 

the qualitative attributes and the weights of these attributes. The attributes {𝑓1 , 𝑓2, 𝑓3 , 𝑓5, 𝑓8 , 𝑓10} are cost attributes, 

the attributes {𝑓4, 𝑓6 , 𝑓7} are benefit attributes.  

Due to the different units of measurements and scales, the crisp data are normalized. Several normalization 

techniques can be applied. According to Brauers and  Zavadskas (2006), the technique of Van Delft and Nijkamp 

(1977) is a robust normalization technique. Hence, this technique is chosen to transform the quantitative values of 

the attributes to the interval [0,1]. The dimensionless performance for the attributes is given by 

𝑥𝑖𝑗
𝑁 =

𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑗=1

, 𝑥𝑖𝑗 ∈ 𝐹𝑏 
 

(9) 

                       

𝑥𝑖𝑗
𝑁 = 1−

𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑗=1

, 𝑥𝑖𝑗 ∈ 𝐹𝑐 , 
 

(10) 

where 𝑥𝑖𝑗 represents the quantitative performance of the alternative “j” for attribute “ i”. This transformation change 

cost attributes to benefit attributes, and the similarity is measured with the positive ideal solution. The IT2FSs 

corresponding to the linguistic assessments are given in Table 2.  

Table 2: Linguistic terms and their corresponding IT2FSs for example 2. 

Linguistic terms IT2FSs 

Very Low (VL) [(0.05,0.1,0.2,0.3;0.7,0.8)(0.0,0.1,0.2,0.35;0.9,1)] 

Low (L) [(0.25,0.3,0.4,0.5;0.7,0.8)(0.2,0.3,0.4,0.55;0.9,1)] 

Medium (M) [(0.35,0.4,0.5,0.6;0.7,0.8)(0.3,0.4,0.5,0.65;0.9,1)] 

High (H) [(0.45,0.5,0.6,0.7;0.7,0.8)(0.4,0.5,0.6,0.75;0.9,1)] 

Very High (VH) [(0.55,0.7,0.8,0.85;0.7,0.8)(0.5,0.7,0.8,1.0;0.9,1)] 

 

The steps of interval type-2 fuzzy TOPSIS are given as follows 

Step 1: Formation of the decision matrix (𝑓𝑖𝑗).  
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�̃� =

             x1                x2                  x3                  x4                  x5                x6                 x7           
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6
𝑓7
𝑓8
𝑓9
𝑓10
(

 
 
 
 
 
 
 

110,291 175,251 169,546 171,405 159,556 164,583 156,158
3583 H4088 4088 4282 4282 4282 4282
139.7 131.5 128.1 119.9 113.9 115.1 111.0
0 5.9 8.3 14.2 18.5 17.6 20.6
0 21,330 15,897 19,674 8390 14,141 6117

107.5 169.2 169.1 183.9 182.9 185.7 184.4
H H L M VL M VL
H H H L L L L

270,320 427,280 427,280 425,100 425,100 425,100 425,100
L L L H H H H )

 
 
 
 
 
 
 

.                           

Step 2: Formation of the weighting matrix.                   

               𝑓1  𝑓2  𝑓3  𝑓4  𝑓5    𝑓6 𝑓7 𝑓8  𝑓9 𝑓10
  �̃� =  (VH M H VH H H VH H M M).

 

Step 3: Normalize the quantitative data. The qualitative data does not need normalization, IT2FSs ∈ [0,1].  
             The normalized data is given in Table 3. 

Table 3: Normalized quantitative data for example 2.  

Attribute 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 
Investment costs 0.7385 0.5845 0.5981 0.5937 0.6217 0.6098 0.6298 
Operating and maintenance costs 0.6724 0.6262 0.6262 0.6085 0.6085 0.6085 0.6085 

Levelized electricity cost 0.5712 0.5964 0.6068 0.6320 0.6504 0.6467 0.6593 

Levelized electricity Cost reduction 0.0000 0.1587 0.2233 0.3820 0.4977 0.4735 0.5542 

Thermal storage cost 1.0000 0.4304 0.5755 0.4747 0.7760 0.6224 0.8367 

Electricity production 0.2377 0.3741 0.3739 0.4066 0.4044 0.4106 0.4077 

Land Use 0.7491 0.6035 0.6035 0.6055 0.6055 0.6055 0.6055 

 

Step 4: Formation of the weighted decision matrix               

�̃�𝒘 =

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝑓6

𝑓7

𝑓8

𝑓9

𝑓10
(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x1         x2        x3

[
(0.41, 0.52, 0.59, 0.62; 0.7, 0.8)
(0.37, 0.52, 0.59, 0.74; 0.9, 1)

] [
(0.32, 0.41, 0.47, 0.50; 0.7, 0.8)
(0.29, 0.41, 0.47, 0.58; 0.9, 1)

] [
(0.33, 0.42, 0.48, 0.51; 0.7, 0.8)
(0.3, 0.42, 0.48, 0.60; 0.9, 1)

]

[
(0.24, 0.27, 0.34, 0.40; 0.7, 0.8)
(0.20, 0.27, 0.34, 0.44; 0.9, 1)

] [
(0.22, 0.25, 0.31, 0.39; 0.7, 0.8)
(0.19, 0.25, 0.31, 0.41; 0.9, 1)

] [
(0.22, 0.25, 0.31, 0.39; 0.7, 0.8)
(0.9, 0.25, 0.31, 0.41; 0.9, 1)

]

[
(0.26, 0.29, 0.34, 0.40; 0.7, 0.8)
(0.23, 0.29, 0.34, 0.43; 0.9, 1)

] [
(0.27, 0.30, 0.36, 0.42; 0.7, 0.8)
(0.24, 0.30, 0.36, 0.45; 0.9, 1)

] [
(0.27, 0.30, 0.36, 0.43; 0.7, 0.8)
(0.24, 0.30, 0.36, 0.46; 0.9, 1)

]

[
(0.00, 0.00, 0.00, 0.00; 0.7, 0.8)
(0.00, 0.00, 0.00, 0.00;  0.9, 1)

] [
(0.09, 0.11, 0.13, 0.14; 0.7, 0.8)
(0.08, 0.11, 0.13, 0.16; 0.9, 1)

] [
(0.13, 0.16, 0.18, 0.19;  0.7,0.8)
(0.11, 0.16, 0.18, 0.22; 0.9, 1)

]

[
(0.45, 0.50, 0.60 0.70; 0.7, 0.8)
(0.40, 0.50, 0.60, 0.75;  0.9, 1)

] [
(0.19, 0.22, 0.26, 0.30; 0.7, 0.8)
(0.17, 0.22, 0.26, 0.33; 0.9, 1)

] [
(0.26, 0.29, 0.35, 0.40; 0.7 0.8)
(0.23, 0.29, 0.35, 0.43;  0.9, 1)

]

[
(0.11, 0.12, 0.14, 0.17; 0.7, 0.8)
(0.10, 0.12, 0.14, 0.18; 0.9, 1)

] [
(0.17, 0.19, 0.22, 0.26; 0.7, 0.8)
(0.15, 0.19, 0.22, 0.28; 0.9, 1)

] [
(0.17, 0.19, 0.22, 0.26; 0.7, 0.8)
(0.15, 0.19, 0.22, 0.28; 0.9, 1)

]

[
(0.25, 0.35, 0.48, 0.60; 0.7,0.8)
(0.20, 0.35, 0.48, 0.75; 0.9, 1)

] [
(0.25, 0.35, 0.48, 0.60; 0.7,0.8)
(0.20, 0.35, 0.48, 0.75; 0.9, 1)

] [
(0.14, 0.21, 0.32, 0.43; 0.7,0.8)
(0.10, 0.32, 0.55, 0.90; 0.9,1)

]

[
(0.20, 0.25, 0.36, 0.49; 0.7,0.8)
(0.16, 0.25, 0.36, 0.56; 0.9,1)

] [
(0.20, 0.25, 0.36, 0.49; 0.7,0.8)
(0.16, 0.25, 0.36, 0.56; 0.9,1)

] [
(0.20, 0.25, 0.36, 0.49; 0.7,0.8)
(0.16, 0.25, 0.36, 0.56; 0.9,1)

]

[
(0.26, 0.32, 0.37, 0.45; 0.7 0.8)
(0.22, 0.32, 0.37, 0.49; 0.9, 1)

] [
(0.21, 0.24, 0.30, 0.36; 0.7, 0.8)
(0.18, 0.24, 0.30, 0.39; 0.9, 1)

] [
(0.21, 0.24, 0.30, 0.36; 0.7, 0.8)
(0.18, 0.24, 0.30, 0.39; 0.9, 1)

]

[
(0.09, 0.12, 0.20, 0.30; 0.7, 0.8)
(0.06, 0.12, 0.20, 0.36; 0.9,1)

] [
(0.09, 0.12, 0.20, 0.30; 0.7, 0.8)
(0.06, 0.12, 0.20, 0.36; 0.9,1)

] [
(0.09, 0.12, 0.20, 0.30; 0.7, 0.8)
(0.06, 0.12, 0.20, 0.36; 0.9,1)

]
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 x4        x5        x6       x7

[
(0.33, 0.42, 0.48, 0.50; 0.7, 0.8)
(0.30, 0.42, 0.48, 0.60; 0.9, 1)

] [
(0.34, 0.44, 0.50, 0.53; 0.7, 0.8)
(0.31, 0.44, 0.50, 0.62; 0.9, 1)

] [
(0.34, 0.43, 0.49, 0.52; 0.7, 0.8)
(0.31, 0.43, 0.49, 0.61; 0.9, 1)

] [
(0.35, 0.44, 0.50, 0.54; 0.7, 0.8)
(0.31, 0.44, 0.50, 0.63; 0.9, 1)

]

[
(0.21, 0.24, 0.30, 0.37; 0.7, 0.8)
(0.18, 0.24, 0.30, 0.4; 0.9, 1)

] [
(0.21, 0.24, 0.30, 0.37; 0.7, 0.8)
(0.18, 0.24, 0.30, 0.40; 0.9, 1)

] [
(0.21, 0.24, 0.30, 0.37; 0.7, 0.8)
(0.18, 0.24, 0.30, 0.40; 0.9, 1)

] [
(0.21, 0.24, 0.30, 0.37; 0.7, 0.8)
(0.18, 0.24, 0.30, 0.4; 0.9, 1)

]

[
(0.28, 0.32, 0.38, 0.44; 0.7, 0.8)
(0.25, 0.32, 0.38, 0.47; 0.9, 1)

] [
(0.29, 0.33, 0.39, 0.46; 0.7, 0.8)
(0.26, 0.33, 0.39, 0.49; 0.9, 1)

] [
(0.29, 0.32, 0.39, 0.46; 0.7, 0.8)
(0.26, 0.32, 0.39, 0.49; 0.9 1)

] [
(0.30, 0.33, 0.40, 0.46; 0.7, 0.8)
(0.26, 0.33, 0.40, 0.50; 0.9, 1)

]

[
(0.21, 0.27, 0.31, 0.32; 0.7, 0.8)
(0.19, 0.27, 0.31, 0.38; 0.9, 1)

] [
(0.27, 0.35, 0.40, 0.42; 0.7, 0.8)
(0.25, 0.35, 0.40, 0.50; 0.9, 1)

] [
(0.26, 0.33, 0.38, 0.40; 0.7, 0.8)
(0.24, 0.33, 0.38, 0.47; 0.9, 1)

] [
(0.30, 0.39, 0.44, 0.47; 0.7, 0.8)
(0.28, 0.39, 0.44, 0.55; 0.9, 1)

]

[
(0.21, 0.24, 0.28, 0.33; 0.7, 0.8)
(0.19, 0.24, 0.28, 0.36; 0.9, 1)

] [
(0.35, 0.39, 0.47, 0.54; 0.7, 0.8)
(0.31,0.39,0.47,0.58; 0.9,1)

] [
(0.28, 0.31, 0.37, 0.44; 0.7, 0.8)
(0.25, 0.31, 0.37, 0.47; 0.9, 1)

] [
(0.38, 0.42, 0.50, 0.59; 0.7, 0.8)
(0.33, 0.42, 0.50, 0.63; 0.9, 1)

]

[
(0.18, 0.20, 0.24, 0.28; 0.7, 0.8)
(0.16, 0.20, 0.24, 0.31; 0.9, 1)

] [
(0.18, 0.20, 0.24, 0.28; 0.7,0.8)
(0.16, 0.20, 0.24, 0.30; 0.9, 1)

] [
(0.18, 0.21, 0.25, 0.29; 0.7 0.8)
(0.16, 0.21, 0.25, 0.31; 0.9, 1)

] [
(0.18, 0.20, 0.24, 0.29; 0.7 0.8)
(0.16, 0.20, 0.24, 0.31;  0.9, 1)

]

[
(0.19, 0.28, 0.40, 0.51; 0.7,0.8)
(0.15, 0.28, 0.40, 0.65; 0.9,1)

] [
(0.03, 0.07, 0.16, 0.26; 0.7,0.8)
(0.00, 0.07, 0.16, 0.35; 0.9,1)

] [
(0.19, 0.28, 0.40, 0.51; 0.7,0.8)
(0.15, 0.28, 0.40, 0.65; 0.9,1)

] [
(0.03, 0.07, 0.16, 0.26; 0.7,0.8)
(0.00, 0.07, 0.16, 0.35; 0.9,1)

]

[
(0.11,0.15, 0.24, 0.35; 0.7, 0.8)
(0.08, 0.15, 0.24, 0.41; 0.9,1)

] [
(0.11,0.15, 0.24, 0.35; 0.7, 0.8)
(0.08, 0.15, 0.24, 0.41; 0.9,1)

] [
(0.11,0.15, 0.24, 0.35; 0.7, 0.8)
(0.08, 0.15, 0.24, 0.41; 0.9,1)

] [
(0.11,0.15, 0.24, 0.35; 0.7, 0.8)
(0.08, 0.15, 0.24, 0.41; 0.9,1)

]

[
(0.21, 0.24, 0.30, 0.36; 0.7, 0.8)
(0.18, 0.24, 0.30, 0.39; 0.9, 1)

] [
(0.21, 0.24, 0.30, 0.36; 0.7, 0.8)
(0.18, 0.24, 0.30, 0.39; 0.9, 1)

] [
(0.21, 0.24, 0.30, 0.36; 0.7, 0.8)
(0.18, 0.24, 0.30, 0.39; 0.9, 1)

] [
(0.21, 0.24, 0.30, 0.36; 0.7, 0.8)
(0.18, 0.24, 0.30, 0.39; 0.9, 1)

]

[
(0.16, 0.20, 0.30, 0.42; 0.7,0.8)
(0.12, 0.20, 0.30, 0.49; 0.9,1)

] [
(0.16, 0.20, 0.30, 0.42; 0.7,0.8)
(0.12, 0.20, 0.30, 0.49; 0.9,1)

] [
(0.16, 0.20, 0.30, 0.42; 0.7,0.8)
(0.12, 0.20, 0.30, 0.49; 0.9,1)

] [
(0.16, 0.20, 0.30, 0.42; 0.7,0.8)
(0.12, 0.20, 0.30, 0.49; 0.9,1)

]
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Step 5: Set �̃�+ = [(1,1,1,1; 1,1)(1,1,1,1; 1,1)] and  �̃�− = [(0,0,0,0; 1,1)(0,0,0,0; 1,1)].  

Step 6: Formation of the similarity matrix (𝑆𝑖𝑗). 
             𝑥1     𝑥2   𝑥3   𝑥4      𝑥5     𝑥6      𝑥7  

𝐒 =

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6
𝑓7
𝑓8
𝑓9
𝑓10 (

 
 
 
 
 
 
 
 
 

𝑆11
+ 𝑆12

+ 𝑆13
+ 𝑆14

+ 𝑆15
+ 𝑆16

+ 𝑆17
+

𝑆21
+ 𝑆22

+ 𝑆23
+ 𝑆24

+ 𝑆25
+ 𝑆26

+ 𝑆27
+

𝑆31
+ 𝑆32

+ 𝑆33
+ 𝑆34

+ 𝑆35
+ 𝑆36

+ 𝑆37
+

𝑆41
+ 𝑆42

+ 𝑆43
+ 𝑆44

+ 𝑆45
+ 𝑆46

+ 𝑆47
+

𝑆51
+ 𝑆52

+ 𝑆53
+ 𝑆54

+ 𝑆55
+ 𝑆56

+ 𝑆57
+

𝑆61
+ 𝑆62

+ 𝑆63
+ 𝑆44

+ 𝑆65
+ 𝑆66

+ 𝑆67
+

𝑆71
+ 𝑆72

+ 𝑆73
+ 𝑆74

+ 𝑆75
+ 𝑆76

+ 𝑆77
+

𝑆81
− 𝑆82

− 𝑆83
− 𝑆84

− 𝑆85
− 𝑆86

− 𝑆87
−

𝑆91
+ 𝑆92

+ 𝑆93
+ 𝑆94

+ 𝑆95
+ 𝑆96

+ 𝑆97
+

𝑆01
− 𝑆02

− 𝑆03
− 𝑆04

− 𝑆05
− 𝑆06

− 𝑆07
− )

 
 
 
 
 
 
 
 
 

    

 

               𝑥1             𝑥2       𝑥3           𝑥4                𝑥5            𝑥6            𝑥7 

𝐒 =

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6
𝑓7
𝑓8
𝑓9
𝑓10
(

 
 
 
 
 
 
 

0.2546 0.2257 0.2287 0.2287 0.238 0.2337 0.2354
0.1783 0.1548 0.1548 0.1663 0.1663 0.1663 0.1663
0.1936 0.1998 0.2022 0.2081 0.2123 0.2115 0.2143
0.0000 0.0847 0.1127 0.1706 0.2044 0.1979 0.2186
0.2773 0.1562 0.1964 0.1685 0.2389 0.2059 0.2505
0.0956 0.1397 0.1396 0.1493 0.1487 0.1505 0.1496
0.1592 0.1592 0.1209 0.1419 0.0669 0.1419 0.0669
0.3029 0.3029 0.3029 0.3857 0.3857 0.3857 0.3857
0.1917 0.1654 0.1654 0.1657 0.1657 0.1657 0.1657
0.4219 0.4219 0.4219 0.3430 0.3430 0.3430 0.3430)

 
 
 
 
 
 
 

. 

  Step 7: Find the total degree of similarity of each alternative to the ideal solution. 

𝑆(𝑥1) = 2.0759, 𝑆(𝑥2) = 2.0250, 𝑆(𝑥3) = 2.0585, 𝑆(𝑥4) = 2.1269, 𝑆(𝑥5) = 2.1657, 𝑆(𝑥6) =
2.1996, and 𝑆(𝑥7) = 2.1961. 

The results show that the ranking is as follows 

 MS − TT 500 > MS − TC 500 > MS − TC 450 > MS − TT 450 > VP − 1NS > VP − 1TC > VP − 1TT.  
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Then, the best TES is  MS − TT 500.  

The final ranking according to Cavallaro (2010) is  

MS − TT 500 > MS − TC 500 > VP − 1NS > MS− TC 450 > MS − TT 450 > VP − 1TT > VP − 1TC. 

Comparing the results in both techniques, the best TES is MS − TT 500, molten salt for heat transfer and heat 

storage with two tanks with a maximum temperature of 500˚C, followed by MS − TC 500, molten salt placed in a 

thermocline tank with a maximum temperature of 500˚C. The worst TES are VP − 1TC  and VP − 1TT in both 

techniques but in a different order. Regarding the moderately-performing TES, despite MS − TC 450 is better than 

MS − TT 450 in the two methods, their position to VP − 1NS is different. While VPI − NS is worse than MS −
TC 450 and MS− TT 450 in the proposed technique, it’s better than them in Cavallaro (2010).  

The proposed technique is implemented by normalizing the crisp quantitative variables first, then multiplying 

them by fuzzy weights. The other alternative is to multiply by fuzzy weights then normalize. The proposed 
technique is resolved by multiplying by fuzzy weights then normalizing to investigate which normalization method 

is more appropriate.  

For a weighted performance rating of an alternative “j” for the “ ith” attribute, the formula given in Step 3 is 

used. It turned out that this implementation fails in solving this problem since the rating of the first alternative for 

the fifth attribute “thermal storage cost” is “zero” which results in a division by zero. Therefore, it can be concluded 

that when handling crisp quantitative data in a fuzzy environment, normalization of the crisp ratings of the 

alternatives for the attributes should be carried out before forming the weighted decision matrix to avoid division by 

zero in case of a zero rating. 

In this implementation, theoretical reference points were utilized. Alternatively, the empirical reference points 

could be utilized. Hence, the proposed technique is resolved using the empirical reference point which can be 

obtained as follows. 

𝑣𝐵
+ = 𝑣𝐶

− = [
(max

𝑗
𝑥1𝑖𝑗
𝐿 ,max

𝑗
𝑥2𝑖𝑗
𝐿 , max

𝑗
𝑥3𝑖𝑗
𝐿 ; max

𝑗
𝑥4𝑖𝑗
𝐿 ;max

𝑗
𝑤1𝑖𝑗
𝐿 , max

𝑗
𝑤2𝑖𝑗
𝐿 )

(max
𝑗
𝑥1𝑖𝑗
𝑈 ,max

𝑗
𝑥2𝑖𝑗
𝑈 , max

𝑗
𝑥3𝑖𝑗
𝑈 ; max

𝑗
𝑥4𝑖𝑗
𝑈 ;max

𝑗
𝑤1𝑖𝑗
𝑈 , max

𝑗
𝑤2𝑖𝑗
𝑈 )
] , 

       

𝑣𝐵
− = 𝑣𝐶

+ [
(min

𝑗
𝑥1𝑖𝑗
𝐿 ,min

𝑗
𝑥2𝑖𝑗
𝐿 , min

𝑗
𝑥3𝑖𝑗
𝐿 ; min

𝑗
𝑥4𝑖𝑗
𝐿 ; min

𝑗
𝑤1𝑖𝑗
𝐿 , min

𝑗
𝑤2𝑖𝑗
𝐿 )

(min
𝑗
𝑥1𝑖𝑗
𝑈 ,min

𝑗
𝑥2𝑖𝑗
𝑈 , min

𝑗
𝑥3𝑖𝑗
𝑈 ; min

𝑗
𝑥4𝑖𝑗
𝑈 ; min

𝑗
𝑤1𝑖𝑗
𝑈 , min

𝑗
𝑤2𝑖𝑗
𝑈 )
] , where 𝑗 = 1,… , 𝑛. 

      

The results using empirical reference point are  

𝑆(𝑥1) = 7.1191, 𝑆(𝑥2) = 6.2927, 𝑆(𝑥3) = 6.1319, 𝑆(𝑥4) = 6.4291, 𝑆(𝑥5) = 6.5599, 𝑆(𝑥6) =
6.7244, and 𝑆(𝑥7) = 6.8262. 

Then, the ranking is  

VP − 1NS > MS − TC 500 > MS − TT500 > MS − TC 450 > MS − TT 450 > VP − 1TT > VP − 1TC. 

This ranking is quite different from the previous. VP − 1NS occupies first place, MS − TT 500 recedes to third 

place, MS − TC 500 retains second place. The rank of TES using molten salt at 450 ºC is the same with respect to 

each other while VP − 1TT  and VP − 1TC are still the worst.  
Using the empirical reference points gives VP-1NS the priority in six attributes out of ten being the reference 

point itself. For example, for the seventh attribute “state of knowledge of technology”, the difference in the 

similarity measures of VP-1NS and MS − TT 500 using the theoretical reference point is ∆𝑆 = 0.0923, which 

increases to ∆𝑆 = 0.5347 when using the empirical reference point. Then, using the empirical reference points is 

more discriminating since it increases the difference in the ranking metric of the alternatives. On the other hand, 

when using the theoretical reference point the alternatives are equally treated being measured from the same 

reference point. Therefore, further investigations are required on the impact of using theoretical and empirical 

reference points on the solution of reference point techniques, e.g. TOPSIS and VIKOR, when using IT2FSs.  

From the previous, we have two candidates VP − 1NS  and MS − TT 500 the alternatives in first place using 
the theoretical and empirical reference points. Taking a closer look at the two alternatives and the evaluation 

attributes for further investigations. It is observed that VP − 1NS  utilize Therminol VP-1 as a HTF with no heat 

storage. Meanwhile, MS − TT 500 utilize molten salts for dual functions, i.e. heat transfer and heat storage. Hence, 

the two alternatives are examined using the proposed TOPSIS after eliminating the fifth attribute “thermal storage 

cost” which gives VP − 1NS an advantage over MS − TT 500 when using the empirical reference point. The results 

revealed that MS − TT 500 is ranked first employing the theoretical and the empirical reference point. It can be 
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concluded that VP − 1NS is ranked first using the empirical reference point due to the lack of one feature “thermal 

energy storage” since it has a very high vapor pressure (> MPa at 400 ºC) which makes it practically difficult to 

store in any significant quantity. Accordingly, MS − TT 500 is the best option that combines heat transfer and heat 

storage. 
In this particular example, the alternatives are close in the ranking metric. In Cavallaro (2010) the difference 

between the closeness coefficients of the first and final rank is 0.095. In the proposed TOPSIS the difference 

between the total degrees of similarity of the first and final rank is 0.1746. Here, qualitative attributes play a crucial 

role since they might be the decisive attributes in ranking. The assessment of the experts involved in the decision-

making process and their weights is a vital process that must be handled carefully.  

6. Conclusion and discussion 

In this article, TOPSIS using similarity measure was extended to encompass IT2FSs. First, the similarity measure 

based on map distance for IVFSs was extended to IT2FSs. Then, the solution steps follow. The similarity matrix is 

formed and the alternative corresponding to the one norm of the similarity matrix is the best choice. Consequently, 

the flexibility and effectiveness of handling MAGDM problems are increased, and defuzzification with its flaws is 

avoided. Two examples were given to illustrate the MAGDM process of the proposed method. In the two examples, 

linguistic variables are expressed as IT2FSs. In the first example, the data are all qualitative. The result of the 

proposed TOPSIS coincides with the results from which the example is adopted. In the second example, the weights 

of the attributes are qualitative, while the ratings of the attributes are both crisp quantitative and qualitative. The top-

ranked TES coincides with that of  Cavallaro (2010) with slight differences in the ranking of the other alternatives.  
The study investigated two important aspects in the implementation of TOPSIS using IT2FSs, the 

normalization of the crisp qualitative variables and the ideal solutions utilized. It turned out that normalization of the 

crisp ratings of the alternatives for the attributes should be carried out before forming the weighted decision matrix 

to avoid division by zero in in case of a zero rating. Regarding the ideal solutions, the results revealed that the 

solution might be affected by the utilized ideal solutions, which is a limitation of the method. Using the empirical 

reference points is more discriminating since it increases the difference between the ranking metric of the 

alternatives. Meanwhile, the theoretical reference points treat the alternative equally being measured from the same 

reference point. Despite the result of the theoretical reference points appears to be more reliable, still further 

investigations are required on the impact of using theoretical and empirical reference points on the solution of 

reference point techniques, e.g. TOPSIS and VIKOR, using IT2FSs.  

The study also revealed that when the alternatives are close in the quantitative ratings, the qualitative ratings 
play a crucial role since they might be the decisive attributes in ranking. The selection of the experts involved in the 

decision making process and their weights is a vital process that must be handled carefully.  

From the previous, future research would study the effect of theoretical and empirical reference points on the 

solution of reference point techniques using IT2FSs and which one is more reliable. Similar studies can be 

performed for other types of fuzzy sets, e.g. intuitionistic (IFSs) and Pythagorean fuzzy sets (PFSs).  

Finally, Cavallaro et al. (2019) evaluated CSP using TOPSIS in an intuitionistic fuzzy environment. In the 

study, all the attributes including investment costs, levelized cost of energy, potential reduction of costs, and land 

use were evaluated using linguistic terms. Future research in evaluating CSP would focus on the following aspects.  

▪ Which is more accurate, evaluating all the attributes using qualitative data or using both qualitative and fuzzy 

quantitative data?  

▪ Which is more reliable in defining qualitative data: IT2FSs, IFSs, or both depending on the nature of 

attributes, e.g. IT2FSs for costs and IFSs for environmental risk? 
▪ In the case of different types of fuzzy data, to what extent information fusion can be effective and successful? 
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Appendix 

The proposed similarity measure satisfies the following properties.  

Let �̃� and  �̃� be IT2FSs given by  �̃� = [(𝑎1
𝐿 , 𝑎2

𝐿 , 𝑎3
𝐿 , 𝑎4

𝐿;𝑤1𝐴
𝐿 , 𝑤2𝐴

𝐿 )(𝑎1
𝑈 , 𝑎2

𝑈 , 𝑎3
𝑈 , 𝑎4

𝑈; 𝑤1𝐴
𝑈 , 𝑤2𝐴

𝑈 )] 

and  �̃� = [(𝑏1
𝐿 , 𝑏2

𝐿 , 𝑏3
𝐿 , 𝑏4

𝐿; 𝑤1�̃�
𝐿 , 𝑤2�̃�

𝐿 )(𝑏1
𝑈 , 𝑏2

𝑈 , 𝑏3
𝑈 , 𝑏4

𝑈; 𝑤1�̃�
𝑈 , 𝑤2�̃�

𝑈 )] 

Property 1(Reflexivity) .  �̃� and  �̃� are identical if and only if  𝑆(�̃�, �̃�) = 1. 

Proof. (i) Let �̃� and  �̃� be identical, then 𝑎1
𝐿 = 𝑏1

𝐿 , 𝑎2
𝐿 = 𝑏2

𝐿 , 𝑎3
𝐿 = 𝑏3,

𝐿 𝑎4
𝐿 = 𝑏4

𝐿 , 𝑎1
𝑈 = 𝑏1

𝑈 , 𝑎2
𝑈 = 𝑏2

𝑈 , 𝑎3
𝑈 = 𝑏3

𝑈 , 𝑎4
𝑈 =

𝑏4
𝑈 , 𝑤1𝐴

𝐿 = 𝑤1�̃�
𝐿 , 𝑤2𝐵

𝐿 = 𝑤2𝐴
𝐿 , 𝑤1𝐴

𝑈 = 𝑤1𝐵
𝑈  𝑎𝑛𝑑  𝑤2�̃�

𝑈  = 𝑤2𝐵
𝑈 .  

Step 1: Calculating the distance values ∆𝑎𝑖 and ∆𝑏𝑖. 
∆𝑎𝑖 = |𝑎𝑖

𝑈−𝑎𝑖
𝐿|  and ∆𝑏𝑖 = |𝑏𝑖

𝑈−𝑏𝑖
𝐿|,where 𝑖 = 1,2,3,4. 

Since 𝑎𝑖
𝑈 = 𝑏𝑖

𝑈, and 𝑎𝑖
𝐿 = 𝑏𝑖

𝐿, then  ∆𝑎𝑖 = ∆𝑏𝑖. 
Step 2: Calculating the degree of similarity 𝑆(�̃�∆, �̃�∆). 
a)  Calculating the standard deviations ∆𝑆𝑎 and ∆𝑆𝑏 . 
�̅�𝑈 = (𝑎1

𝑈 + 𝑎2
𝑈+𝑎3

𝑈+𝑎4
𝑈) 4 = (𝑏1

𝑈 + 𝑏2
𝑈+𝑏3

𝑈+𝑏4
𝑈) 4⁄ = �̅�𝑈⁄ ,  

�̅�𝐿 = (𝑎1
𝐿 + 𝑎2

𝐿+𝑎3
𝐿+𝑎4

𝐿) 4⁄ = (𝑏1
𝐿 + 𝑏2

𝐿+𝑏3
𝐿+𝑏4

𝐿) 4⁄ = �̅�𝐿 , 

                           𝑆𝐴𝑈 = √
∑ (𝑎𝑖

𝑈−�̅�𝑈)24
𝑖=1

3
= √

∑ (𝑏𝑖
𝑈−�̅�𝑈)24

𝑖=1

3
= 𝑆�̃�𝑈 ,  𝑆𝐴𝐿 = √

∑ (𝑎𝑖
𝐿−�̅�𝐿)24

𝑖=1

3
= √

∑ (𝑏𝑖
𝐿−�̅�𝐿)24

𝑖=1

3
=  𝑆�̃�𝐿 .                          

∆𝑆𝑎 = |𝑆𝐴𝑈 −  𝑆𝐴𝐿| = |𝑆�̃�𝑈 −  𝑆𝐵𝐿| = ∆𝑆𝑏.                             

b) Calculating the map distance between the upper and lower fuzzy sets. 

                     𝑇∆ = [(2 −
1+max{|∆𝑎2−∆𝑎1|,|∆𝑏2−∆𝑏1|}

1+min{|∆𝑎2−∆𝑎1|,|∆𝑏2−∆𝑏1|}
) + (2−

1+max{|∆𝑎4−∆𝑎3|,|∆𝑏4−∆𝑏3|}

1+min{|∆𝑎4−∆𝑎3|,|∆𝑏4−∆𝑏3|}
)] 2⁄ . 

                     Since |∆𝑎2 − ∆𝑎1| = |∆𝑏2− ∆𝑏1| and |∆𝑎4 − ∆𝑎3| = |∆𝑏4 − ∆𝑏3|,  

                     Then 
1+max{|∆𝑎2−∆𝑎1|,|∆𝑏2−∆𝑏1|}

1+min{|∆𝑎2−∆𝑎1|,|∆𝑏2−∆𝑏1|}
= 1 and 

1+max{|∆𝑎4−∆𝑎3|,|∆𝑏4−∆𝑏3|}

1+min{|∆𝑎4−∆𝑎3|,|∆𝑏4−∆𝑏3|}
= 1. 

𝑇∆ = [(2 − 1) + (2 − 1)] 2 = 1⁄ . 

c) Calculating  𝑆(�̃�∆,  �̃�∆). 

𝑆(�̃�∆, �̃�∆) = [1 −
√∑ (∆𝑎𝑖−∆𝑏𝑖)

24
𝑖=1

2
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2
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0

2
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0
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] × 1 = 1.  

Step 3: Calculating  𝑆(�̃�𝑈 , �̃�𝑈). 
a) Calculating the map distance between the upper trapezoidal fuzzy sets. 

                   Since |𝑎2
𝑢 − 𝑎1

𝑢| = |𝑏2
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                   then  max{|𝑎2
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                         . 

b) Calculating the degree of similarity  𝑆(�̃�𝑈 , �̃�𝑈).  

   Since 𝑤1𝐴
𝑈 = 𝑤1�̃�
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Step 4: Calculating the degree of similarity 𝑆(�̃�, �̃�). 
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                                  𝑆(�̃�, �̃�) =
 𝑆(𝐴𝑈,�̃�𝑈)×(1+ 𝑆(𝐴∆,�̃�∆))

2
=
1×(1+1)

2
= 1.      □    

(ii) Let 𝑺(�̃�, �̃�) = 𝟏. 

 Since 𝑆(�̃�∆,  �̃�∆) ∈ [0, 1] and 𝑆(�̃�𝑈 , �̃�𝑈) ∈ [0,1],  

then 𝑆(�̃�, �̃�) = 1 implies that  𝑆(�̃�𝑈 , �̃�𝑈) = 1 and 𝑆(�̃�∆,  �̃�∆) = 1. 

𝑆(�̃�𝑈 , �̃�𝑈) = 1 ,  
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Since the product of the four terms is equal to one, and each term has a maximum value of one, then each term of 

the four terms cannot be less than one, i.e. must be equal to one. 

Then,  √∑ (𝑎𝑖
𝑢 − 𝑏𝑖

𝑢)24
𝑖=1 = 0 ⇒ 𝑎𝑖
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1�̃�
𝑈 )+max(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )
= 1 ⇒ 𝑤1𝐴

𝑈 = 𝑤1�̃�
𝑈  𝑎𝑛𝑑 𝑤2𝐴

𝑈 = 𝑤2�̃�
𝑈 . 

Then,  �̃�𝑈𝑎𝑛𝑑 �̃�𝑈 are identical.  

𝑆(�̃�∆,  �̃�∆) = [1 −
√∑ (∆𝑎𝑖−∆𝑏𝑖)

24
𝑖=1

2
] × [1 −√

|∆𝑆𝑎−∆𝑆𝑏|

2
] × [1 −

|𝑤
1�̃�
𝐿 −𝑤

1�̃�
𝐿 |+|𝑤

2�̃�
𝐿 −𝑤

2�̃�
𝐿 |

|𝑤
1�̃�
𝑈 +𝑤

1�̃�
𝑈 |+|𝑤

2�̃�
𝑈 +𝑤

2�̃�
𝑈 |
] × 𝑇∆ = 1 ,    

Since the product of the four terms is equal to one, and each term has a maximum value of one, then each term of 

the four terms must be equal to one. 

    √∑ (∆𝑎𝑖 − ∆𝑏𝑖)
24

𝑖=1 = 0 ⇒ ∆𝑎𝑖 = ∆𝑏𝑖 ⇒ |𝑎𝑖
𝑈−𝑎𝑖

𝐿|  = |𝑏𝑖
𝑈−𝑏𝑖

𝐿| , 

     since 𝑎𝑖
𝑈 = 𝑏𝑖

𝑈, then 𝑎𝑖
𝐿 = 𝑏𝑖

𝐿, and ∆𝑆𝑎 = ∆𝑆𝑏 and 𝑇∆ = 1 directly follows. 
|𝑤
1�̃�
𝐿 −𝑤

1�̃�
𝐿 |+|𝑤

2�̃�
𝐿 −𝑤

2�̃�
𝐿 |

|𝑤
1�̃�
𝑈 +𝑤

1�̃�
𝑈 |+|𝑤

2�̃�
𝑈 +𝑤

2�̃�
𝑈 |
= 0 ⇒  |𝑤1𝐴

𝐿 −𝑤1�̃�
𝐿 | + |𝑤2𝐴

𝐿 −𝑤2�̃�
𝐿 | = 0 ⇒ 𝑤1𝐴

𝐿 = 𝑤1�̃�
𝐿  𝑎𝑛𝑑 𝑤2𝐴

𝐿 = 𝑤2�̃�
𝐿 . 

Since 𝑎𝑖
𝐿 = 𝑏𝑖

𝐿 and 𝑤1𝐴
𝐿 = 𝑤1�̃�

𝐿  𝑎𝑛𝑑 𝑤2𝐴
𝐿 = 𝑤2�̃�

𝐿 , then �̃�𝐿𝑎𝑛𝑑 �̃�𝐿 are identical. 

Since  �̃�𝑈𝑎𝑛𝑑 �̃�𝑈 are identical and �̃�𝐿𝑎𝑛𝑑 �̃�𝐿 are identical, then �̃� and  �̃� are identical.    ▄ 

Property 2 (Symmetry).   𝑆(�̃�, �̃�) = 𝑆(𝐵,̃ �̃�). 
Proof. 

Since (∆𝑎𝑖 − ∆𝑏𝑖)
2 = (∆𝑏𝑖 − ∆𝑎𝑖)

2, |∆𝑆𝑎 − ∆𝑆𝑏| = |∆𝑆𝑏 − ∆𝑆𝑎|, |𝑤1𝐴
𝐿 −𝑤1�̃�

𝐿 | = |𝑤1�̃�
𝐿 −𝑤1𝐴

𝐿 |,  

|𝑤2𝐴
𝐿 −𝑤2�̃�

𝐿 | = |𝑤2�̃�
𝐿 − 𝑤2𝐴

𝐿 |, |𝑤1𝐴
𝑈 +𝑤1�̃�

𝑈 | = |𝑤1�̃�
𝑈 + 𝑤1𝐴

𝑈 |, |𝑤2𝐴
𝑈 + 𝑤2�̃�

𝑈 | = |𝑤2�̃�
𝑈 +𝑤2𝐴

𝑈 |, 

max{|∆𝑎2 − ∆𝑎1|, |∆𝑏2 − ∆𝑏1|} = max{|∆𝑏2 − ∆𝑏1|, |∆𝑎2 − ∆𝑎1|},  
min{|∆𝑎2 − ∆𝑎1|, |∆𝑏2− ∆𝑏1|} = min{|∆𝑏2 − ∆𝑏1|, |∆𝑎2 − ∆𝑎1|}, 
max{|∆𝑎4 − ∆𝑎3|, |∆𝑏4 − ∆𝑏3|} = max{|∆𝑏4 − ∆𝑏3|, |∆𝑎4 − ∆𝑎3|}, 
min{|∆𝑎4 − ∆𝑎3|, |∆𝑏4− ∆𝑏3|} = min{|∆𝑏4 − ∆𝑏3|, |∆𝑎4 − ∆𝑎3|}, 
then, 

 𝑆(�̃�∆, �̃�∆) = [1 −
√∑ (∆𝑎𝑖−∆𝑏𝑖)

24
𝑖=1

2
] × [1 −√

|∆𝑆𝑎−∆𝑆𝑏|

2
] × [1 −

|𝑤
1�̃�
𝐿 −𝑤

1�̃�
𝐿 |+|𝑤

2�̃�
𝐿 −𝑤

2�̃�
𝐿 |

|𝑤
1�̃�
𝑈 +𝑤

1�̃�
𝑈 |+|𝑤

2�̃�
𝑈 +𝑤

2�̃�
𝑈 |
] × 𝑇∆  

= [1 −
√∑ (∆𝑏𝑖−∆𝑎𝑖)

24
𝑖=1

2
] × [1 −√

|∆𝑆𝑏−∆𝑆𝑎|

2
] × [1 −

|𝑤
1�̃�
𝐿 −𝑤

1�̃�
𝐿 |+|𝑤

2�̃�
𝐿 −𝑤2𝐴

𝐿 |

|𝑤
1�̃�
𝑈 +𝑤

1�̃�
𝑈 |+|𝑤

2�̃�
𝑈 +𝑤

2�̃�
𝑈 |
] × 𝑇∆ = 𝑆(�̃�∆, �̃�∆).      

Since  (𝑎𝑖
𝑢 − 𝑏𝑖

𝑢)2 = (𝑏𝑖
𝑢 − 𝑎𝑖

𝑢)2,  |𝑆𝐴𝑈 − 𝑆�̃�𝑈| = |𝑆�̃�𝑈 − 𝑆𝐴𝑈| , 

min(𝑤1�̃�
𝑈 ,𝑤1�̃�

𝑈 ) = min(𝑤1�̃�
𝑈 ,𝑤1𝐴

𝑈 ), min(𝑤2�̃�
𝑈 , 𝑤2�̃�

𝑈 ) = min(𝑤2�̃�
𝑈 ,𝑤2𝐴

𝑈 ), 

max(𝑤1�̃�
𝑈 , 𝑤1�̃�

𝑈 ) = max(𝑤1�̃�
𝑈 ,𝑤1𝐴

𝑈 ), max(𝑤2𝐴
𝑈 , 𝑤2�̃�

𝑈 ) = max(𝑤2�̃�
𝑈 , 𝑤2�̃�

𝑈 ), 

max{|𝑎2
𝑢 − 𝑎1

𝑢|, |𝑏2
𝑢 − 𝑏1

𝑢|} = max{|𝑏2
𝑢 − 𝑏1

𝑢|, |𝑎2
𝑢 − 𝑎1

𝑢|} , 
min{|𝑎2

𝑢 − 𝑎1
𝑢|, |𝑏2

𝑢 − 𝑏1
𝑢|} = min{|𝑏2

𝑢 − 𝑏1
𝑢|, |𝑎2

𝑢 − 𝑎1
𝑢|},      

max{|𝑎4
𝑢 − 𝑎3

𝑢|, |𝑏4
𝑢 − 𝑏3

𝑢|} = max{|𝑏4
𝑢 − 𝑏3

𝑢|, |𝑎4
𝑢 − 𝑎3

𝑢|}, 
min{|𝑎4

𝑢 − 𝑎3
𝑢|, |𝑏4

𝑢 − 𝑏3
𝑢|} = min{|𝑏4

𝑢 − 𝑏3
𝑢|, |𝑎4

𝑢 − 𝑎3
𝑢|}, then 
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𝑆(�̃�𝑈 , �̃�𝑈) = [1 −
√∑ (𝑎𝑖

𝑢−𝑏𝑖
𝑢)24

𝑖=1

2
] × [1 −√

|𝑆
�̃�𝑈
−𝑆
�̃�𝑈
|

2
] × [

min(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+min(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )

max(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+max(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )
] × 𝑇𝑈  

= [1 −
√∑ (𝑏𝑖

𝑢−𝑎𝑖
𝑢)24

𝑖=1

2
] × [1 −√

|𝑆𝐵−𝑆𝐴𝑈
|

2
] × [

min(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+min(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )

max(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+max(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )
] × 𝑇𝑈 = 𝑆(�̃�𝑈 , �̃�𝑈).  

𝑆(�̃�, �̃�) =
 𝑆(𝐴𝑈, �̃�𝑈)×(1+ 𝑆(𝐴∆,�̃�∆))

2
=
 𝑆(�̃�𝑈, �̃�𝑈)×(1+ 𝑆(�̃�∆, �̃�∆))

2
= 𝑆(𝐵,̃ �̃�).             ▄ 

Property 3 (Transitivity): If �̃� ≤ �̃� ≤ �̃�, then 𝑆(�̃�, �̃�) ≥ 𝑆( 𝐴,̃ �̃�).  
i.e. If three IT2FSs have the same shape, then the degree of similarity between two nearby ITFSs should be larger 

than the degree of similarity between two further away IT2FSs. 

Proof. Suppose �̃�, �̃�𝑎𝑛𝑑 �̃� have the same shape and �̃� ≤ �̃� ≤ �̃� such that  

�̃� = [(𝑎1
𝐿 , 𝑎2

𝐿 , 𝑎3
𝐿 , 𝑎4

𝐿;𝑤1𝐴
𝐿 , 𝑤2𝐴

𝐿 ) (𝑎1
𝑈 , 𝑎2

𝑈 , 𝑎3
𝑈 , 𝑎4

𝑈;𝑤1𝐴
𝑈 , 𝑤2𝐴

𝑈 )], �̃� =

[(𝑏1
𝐿 , 𝑏2

𝐿 , 𝑏3
𝐿 , 𝑏4

𝐿;𝑤1�̃�
𝐿 ,𝑤2�̃�

𝐿 ) (𝑏1
𝑈 , 𝑏2

𝑈 , 𝑏3
𝑈 , 𝑏4

𝑈; 𝑤1�̃�
𝑈 , 𝑤2�̃�

𝑈 )], 𝑏𝑖
𝐿 = 𝑎𝑖

𝐿 + 𝑑 𝑎𝑛𝑑 𝑏𝑖
𝑈 = 𝑎𝑖

𝑈 + 𝑑  and 

�̃� = [(𝑐1
𝐿 , 𝑐2

𝐿 , 𝑐3
𝐿 , 𝑐4

𝐿; 𝑤1�̃�
𝐿 ,𝑤2𝐶

𝐿 )(𝑐1
𝑈 , 𝑐2

𝑈 , 𝑐3
𝑈 , 𝑐4

𝑈;𝑤1𝐶
𝑈 , 𝑤2�̃�

𝑈 )], 𝑐𝑖
𝐿 = 𝑎𝑖

𝐿 + 2𝑑 𝑎𝑛𝑑 𝑐𝑖
𝑈 = 𝑎𝑖

𝑈 + 2𝑑.  

Since �̃� 𝑎𝑛𝑑 �̃� have the same shape, then 𝑆(�̃�∆, �̃�∆) = 1 and the degree of similarity reduces to  

𝑆(�̃�, �̃�) =
 𝑆(𝐴𝑈, �̃�𝑈)×(1+ 𝑆(𝐴∆,�̃�∆))

2
= 𝑆(�̃�𝑈 ,  �̃�𝑈). 

√∑ (𝑎𝑖
𝑢 − 𝑏𝑖

𝑢)24
𝑖=1 = √∑ (𝑎𝑖

𝑢 − 𝑎𝑖
𝑢 − 𝑑)24

𝑖=1 = 2𝑑.  

Substituting 𝑏𝑖
𝑈 = 𝑎𝑖

𝑈 + 𝑑  and 

 �̅�𝑈 = (𝑏1
𝑈 + 𝑏2

𝑈+𝑏3
𝑈+𝑏4

𝑈) 4⁄ = (𝑎1
𝑈 + 𝑑 + 𝑎2

𝑈+𝑑 + 𝑎3
𝑈+𝑑 + 𝑏4

𝑈 + 𝑑) 4⁄ = �̅�𝑈 + 𝑑 in  

𝑆�̃�𝑈 = √
∑ (𝑏𝑖

𝑈−�̅�𝑈)24
𝑖=1

3
,  gives 𝑆�̃�𝑈 = √

∑ (𝑎𝑖
𝑈+𝑑−�̅�𝑈−𝑑)24

𝑖=1

3
= √

∑ (𝑎𝑖
𝑈−�̅�𝑈)24

𝑖=1

3
= 𝑆𝐴𝑈 . 

Since �̃� 𝑎𝑛𝑑 �̃� have the same shape, then  𝑤1𝐴
𝑈 = 𝑤1�̃�

𝑈 𝑎𝑛𝑑 𝑤2𝐴
𝑈 = 𝑤2�̃�

𝑈  and  

min(𝑤1𝐴
𝑈 , 𝑤1�̃�

𝑈 ) +min(𝑤2𝐴
𝑈 , 𝑤2�̃�

𝑈 )

max(𝑤1𝐴
𝑈 , 𝑤1�̃�

𝑈 ) +max(𝑤2𝐴
𝑈 , 𝑤2�̃�

𝑈 )
= 1. 

Since |𝑏2
𝑢 − 𝑏1

𝑢| = |𝑎2
𝑢 + 𝑑 − 𝑎1

𝑢 − 𝑑| = |𝑎2
𝑢 − 𝑎1

𝑢| and |𝑏4
𝑢 − 𝑏3

𝑢| = |𝑎4
𝑢 + 𝑑 − 𝑎3

𝑢 − 𝑑| = |𝑎4
𝑢 − 𝑎3

𝑢|,  
then  𝑇𝑈 = 1. 

𝑆(�̃�𝑈 , �̃�𝑈) = [1 −
√∑ (𝑎𝑖

𝑢−𝑏𝑖
𝑢)24

𝑖=1

2
] × [1 −√

|𝑆
�̃�𝑈
−𝑆
�̃�𝑈
|

2
] × [

min(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+min(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )

max(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+max(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )
] × 𝑇𝑈, 

                  = [1 −
2𝑑

2
] × [1 − √

0

2
] × 1 × 1 = 1 − 𝑑.  

 Then, 𝑆(�̃�, �̃�) = 1 − 𝑑.       

Similarly, since �̃� 𝑎𝑛𝑑 �̃� have the same shape, then 𝑆(�̃�∆, �̃�∆) = 1 and the degree of similarity reduces to 

 𝑆(�̃�𝑈 ,  �̃�𝑈). 

√∑ (𝑎𝑖
𝑢 − 𝑐𝑖

𝑢)24
𝑖=1 = √∑ (𝑎𝑖

𝑢 − 𝑎𝑖
𝑢 − 2𝑑)24

𝑖=1 = 4𝑑.  

Substituting 𝑐𝑖
𝑈 = 𝑎𝑖

𝑈 + 2𝑑  and 

 𝑐̅𝑈 = (𝑐1
𝑈 + 𝑐2

𝑈+𝑐3
𝑈+𝑐4

𝑈) 4⁄ = (𝑎1
𝑈 + 2𝑑 + 𝑎2

𝑈+2𝑑 + 𝑎3
𝑈+2𝑑 + 𝑏4

𝑈 + 2𝑑) 4⁄ = �̅�𝑈 + 2𝑑 

Substituting in 𝑆𝐶𝑈 = √
∑ (𝑐𝑖

𝑈−𝑐̅𝑈)24
𝑖=1

3
,  gives 𝑆𝐶𝑈 = √

∑ (𝑎𝑖
𝑈+2𝑑−�̅�𝑈−2𝑑)24

𝑖=1

3
= √

∑ (𝑎𝑖
𝑈−�̅�𝑈)24

𝑖=1

3
= 𝑆𝐴𝑈 . 

Since �̃� 𝑎𝑛𝑑 �̃� have the same shape, then  𝑤1�̃�
𝑈 = 𝑤1𝐶

𝑈 𝑎𝑛𝑑 𝑤2𝐴
𝑈 = 𝑤2�̃�

𝑈  and  

min(𝑤1�̃�
𝑈 , 𝑤1𝐵�̃�

𝑈 ) + min(𝑤2𝐴
𝑈 , 𝑤2�̃�

𝑈 )

max(𝑤1�̃�
𝑈 , 𝑤1�̃�

𝑈 ) +max(𝑤2𝐴
𝑈 , 𝑤2�̃�

𝑈 )
= 1. 

Since |𝑐2
𝑢 − 𝑐1

𝑢| = |𝑎2
𝑢 + 2𝑑 − 𝑎1

𝑢 − 2𝑑| = |𝑎2
𝑢 − 𝑎1

𝑢| and |𝑐4
𝑢 − 𝑐3

𝑢| = |𝑎4
𝑢 + 2𝑑 − 𝑎3

𝑢 − 2𝑑| = |𝑎4
𝑢 − 𝑎3

𝑢|,  
then  𝑇𝑈 = 1. 

𝑆(�̃�𝑈 , �̃�𝑈) = [1 −
√∑ (𝑎𝑖

𝑢−𝑐𝑖
𝑢)24

𝑖=1

2
] × [1− √

|𝑆
�̃�𝑈
−𝑆
�̃�𝑈
|

2
] × [

min(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+min(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )

max(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+max(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )
] × 𝑇𝑈, 
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                  = [1 −
4𝑑

2
] × [1 − √

0

2
] × 1 × 1 = 1 − 2𝑑. 

Then, 𝑆(�̃�, �̃�) = 1 − 2𝑑. 

Since 𝑆(�̃�, �̃�) = 1 − 𝑑 and 𝑆(�̃�, �̃�) = 1 − 2𝑑, then 𝑆(�̃�, �̃�) > 𝑆(�̃�, �̃�).  ▄ 

Property 4 (Overlap): If two IT2FSs partially overlap, 𝑆(�̃�, �̃�) > 0. 

Since  𝑆(�̃�, �̃�) =
 𝑆(𝐴𝑈,�̃�𝑈)×(1+ 𝑆(𝐴∆,�̃�∆))

2
,  then 𝑆(�̃�, �̃�) = 0 if  𝑆(�̃�𝑈 , �̃�𝑈) = 0. 

𝑆(�̃�𝑈 , �̃�𝑈) = 0 if  
√∑ (𝑎𝑖

𝑢−𝑏𝑖
𝑢)24

𝑖=1

2
= 1, √

|𝑆
�̃�𝑈
−𝑆
�̃�𝑈
|

2
= 1, or 𝑇𝑈 = 0. 

It can be shown that  √
|𝑆
�̃�𝑈
−𝑆

�̃�𝑈
|

2
≠ 1 as follows. 

 𝑆𝑖𝑛𝑐𝑒 0 ≤ 𝑎𝑖
𝑢 ≤ 1 𝑎𝑛𝑑  0 ≤ �̅�𝑈 ≤ 1, 𝑡ℎ𝑒𝑛 𝑆𝐴𝑈 = √

∑ (𝑎𝑖
𝑈−�̅�𝑈)24

𝑖=1

3
< 1.2.   

Similarly, 𝑠𝑖𝑛𝑐𝑒 0 ≤ 𝑏𝑖
𝑢 ≤ 1, 𝑎𝑛𝑑 0 ≤ �̅�𝑈 ≤ 1, 𝑡ℎ𝑒𝑛 𝑆�̃�𝑈 = √

∑ (𝑏𝑖
𝑈−�̅�𝑈)24

𝑖=1

3
< 1.2.  

Then, |𝑆𝐴𝑈 − 𝑆�̃�𝑈| < 1.2 and √
|𝑆
�̃�𝑈
−𝑆
�̃�𝑈
|

2
≠ 1. 

It can be also shown that 𝑇𝑈 ≠ 0. 

Since max{|𝑎2
𝑢 − 𝑎1

𝑢|, |𝑏2
𝑢 − 𝑏1

𝑢|} < 1 and min{|𝑎2
𝑢 − 𝑎1

𝑢|, |𝑏2
𝑢 − 𝑏1

𝑢|} < 1, 

then  
1+max{|𝑎2

𝑢−𝑎1
𝑢|,|𝑏2

𝑢−𝑏1
𝑢|}

1+min{|𝑎2
𝑢−𝑎1

𝑢|,|𝑏2
𝑢−𝑏1

𝑢|}
< 2.  

Similarly, since max{|𝑎4
𝑢 − 𝑎3

𝑢|, |𝑏4
𝑢 − 𝑏3

𝑢|} < 1 and min{|𝑎4
𝑢 − 𝑎3

𝑢|, |𝑏4
𝑢 − 𝑏3

𝑢|} < 1, 

then 
1+max{|𝑎4

𝑢−𝑎3
𝑢|,|𝑏4

𝑢−𝑏3
𝑢|}

1+min{|𝑎4
𝑢−𝑎3

𝑢|,|𝑏4
𝑢−𝑏3

𝑢|}
< 2. 

 𝑇𝑈 = [(2 −
1+max{|𝑎2

𝑢−𝑎1
𝑢|,|𝑏2

𝑢−𝑏1
𝑢|}

1+min{|𝑎2
𝑢−𝑎1

𝑢|,|𝑏2
𝑢−𝑏1

𝑢|}
) + (2−

1+max{|𝑎4
𝑢−𝑎3

𝑢|,|𝑏4
𝑢−𝑏3

𝑢|}

1+min{|𝑎4
𝑢−𝑎3

𝑢|,|𝑏4
𝑢−𝑏3

𝑢|}
)] 2⁄  ≠ 0. 

If  
√∑ (𝑎𝑖

𝑢−𝑏𝑖
𝑢)24

𝑖=1

2
= 1⇒ ∑ (𝑎𝑖

𝑢 − 𝑏𝑖
𝑢)2 = 44

𝑖=1 .  

Since 0 ≤ 𝑎𝑖
𝑢 ≤ 1 and 0 ≤ 𝑏𝑖

𝑢 ≤ 1, ∑ (𝑎𝑖
𝑢 − 𝑏𝑖

𝑢)2 = 44
𝑖=1 ⇒ either 𝑎𝑖

𝑢 = 0 𝑎𝑛𝑑 𝑏𝑖
𝑢 = 1 ∀𝑖 or 𝑎𝑖

𝑢 = 1 𝑎𝑛𝑑 𝑏𝑖
𝑢 =

0 ∀𝑖, then the  IT2FSs does not overlap. ▄ 

Property 5. If �̃� and  �̃� are real numbers, then 𝑆(�̃�, �̃�) = 1 − |𝑎 − 𝑏|. 

Proof. If �̃� is a real number, then 

 𝑎1
𝐿 = 𝑎2

𝐿 = 𝑎3
𝐿 = 𝑎4

𝐿 = 𝑎1
𝑈 = 𝑎2

𝑈 = 𝑎3
𝑈 = 𝑎4

𝑈 = 𝑎, and 𝑤1𝐴
𝐿 = 𝑤2𝐴

𝐿 = 𝑤1𝐴
𝑈 = 𝑤2𝐴

𝑈 = 1.  

Similarly, if �̃� is a real number, then 

 𝑏1
𝐿 = 𝑏2

𝐿 = 𝑏3
𝐿 = 𝑏4

𝐿 = 𝑏1
𝑈 = 𝑏2

𝑈 = 𝑏3
𝑈 = 𝑏4

𝑈 = 𝑏 and  𝑤1�̃�
𝐿 = 𝑤2𝐵

𝐿 = 𝑤1𝐵
𝑈 = 𝑤2𝐵

𝑈 = 1.  

𝑇∆ = [(2−
1+max{|∆𝑎2−∆𝑎1|,|∆𝑏2−∆𝑏1|}

1+min{|∆𝑎2−∆𝑎1|,|∆𝑏2−∆𝑏1|}
) + (2 −

1+max{|∆𝑎4−∆𝑎3|,|∆𝑏4−∆𝑏3|}

1+min{|∆𝑎4−∆𝑎3|,|∆𝑏4−∆𝑏3|}
)] 2 = [(2 −

1+0

1+0
) + (2−

1+0

1+0
)] 2⁄ = 1.⁄   

𝑆(�̃�∆, �̃�∆) = [1 −
√∑ (∆𝑎𝑖−∆𝑏𝑖)

24
𝑖=1

2
] × [1 −√

|∆𝑆𝑎−∆𝑆𝑏|

2
] × [1 −

|𝑤
1�̃�
𝐿 −𝑤

1�̃�
𝐿 |+|𝑤

2�̃�
𝐿 −𝑤

2�̃�
𝐿 |

|𝑤
1�̃�
𝑈 +𝑤

1�̃�
𝑈 |+|𝑤

2�̃�
𝑈 +𝑤

2�̃�
𝑈 |
] × 𝑇∆     

                 = [1 −
0

2
] × [1 − √

0

2
] × [1 −

0

4
] × 1 = 1. 

𝑇𝑈 = [(2 −
1+max{|𝑎2

𝑢−𝑎1
𝑢|,|𝑏2

𝑢−𝑏1
𝑢|}

1+min{|𝑎2
𝑢−𝑎1

𝑢|,|𝑏2
𝑢−𝑏1

𝑢|}
) + (2 −

1+max{|𝑎4
𝑢−𝑎3

𝑢|,|𝑏4
𝑢−𝑏3

𝑢|}

1+min{|𝑎4
𝑢−𝑎3

𝑢|,|𝑏4
𝑢−𝑏3

𝑢|}
)] 2⁄ = [(2 −

1+0

1+0
) + (2−

1+0

1+0
)] 2⁄ = 1 . 

𝑆(�̃�𝑈 , �̃�𝑈) = [1 −
√∑ (𝑎𝑖

𝑢−𝑏𝑖
𝑢)24

𝑖=1

2
] × [1 −√

|𝑆
�̃�𝑈
−𝑆
�̃�𝑈
|

2
] × [

min(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+min(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )

max(𝑤
1�̃�
𝑈 ,𝑤

1�̃�
𝑈 )+max(𝑤

2�̃�
𝑈 ,𝑤

2�̃�
𝑈 )
] × 𝑇𝑈  

                  = [1 −
√∑ (𝑎−𝑏)24

𝑖=1

2
] × [1 −√

0

2
] × [

1+1

1+1
] × 1 = 1 − |𝑎 − 𝑏|.   

𝑆(�̃�, �̃�) =
(1−|𝑎−𝑏|) ×(1+ 1)

2
= 1− |𝑎 − 𝑏|.   ▄ 


