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Abstract

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone
family of distributions. We have studied some statistical properties of the proposed distribution
including quantile function, moment generating function, probability generating function, raw mo-
ments, incomplete moments, probability, weighted moments, Rayeni and q − th entropy. We have
obtained numerical values of the various measures to see the effect of model parameters. Distribu-
tion of order statistics for the proposed model has also been obtained. The estimation of the model
parameters has been done by using maximum likelihood method. The effectiveness of proposed
model is analyzed by means of a real data sets. Finally, some concluding remarks are given.
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1. Introduction

In some situations, it is found that the classical distributions are not suitable for the
data sets related to the field of engineering, financial, biomedical, and environmental
sciences. The extension of classical models is, therefore, continually needed to obtain
suitable model for applications in these areas. Researchers have obtained several ex-
tended models for use in these situations but still the room is available to obtain new
models with much wider applicability.
The Weibull distribution is not a suitable model to explain the non-monotone haz-
ard rate function (hrf), such as unimodal, U-shaped or bathtub form. Hence, there
are many generalizations of the Weibull distribution in the literature. Some notable
models are, exponentiated Weibull distribution by Mudholkar and Srivastava (1993),
extended Weibull distribution by Ghitany et al. (2005), beta Weibull distribution
by Lee et al. (2007), the flexible Weibull distribution by Bebbington et al. (2007),
Kumaraswamy Weibull distribution by Cordeiro et al. (2010), truncated Weibul-
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l distribution by Zhang and Xie (2011), The Topp-Leone Generated Weibull dis-
tribution by Aryal et al. (2016), Generalized weibull distributions by Lai, (2014),
The Kumaraswamy-transmuted exponentiated modified Weibull distribution by Al-
Babtain et al. (2017), Generalized Flexible Weibull Distribution by Ahmad and Iqbal
(2017), A reduced new modified Weibull distribution by Almalki (2018), and the
transmuted exponentiated additive Weibull distribution by Nofal et al. Nofal et al..
Nasiru (2015) proposed a new Weighted Weibull (WW) distribution and discussed
its statistical properties using Azzalani’s family of weighted distributions by Azzalini
(1985). The density (pdf) and distribution function (cdf) of the WW distribution are
given by

f(x) = (1 + λγ)αγxγ−1e−αx
γ(1+λγ); x, α, λ > 0, (1)

and

F (x) = 1− e−αxγ(1+λγ) x, α, λ > 0, (2)

where, α is a scale parameter and λ and γ are shape parameters. The corresponding
survival function of the WW distribution is given by

F̄ (x) = e−αx
γ(1+λγ). (3)

Note that the WW distribution reduces to Weibull distribution for λ = 0 .
Topp-Leone family of distributions is proposed by Al-Shomrani et al. (2016). The cdf
of the proposed family is given by

FTL−G(t) = [G(t)]b[2−G(t)]b = [1− (Ḡ(t))2]b :, xε<, b > 0 (4)

and the corresponding pdf is obtained as

fTL−R(t) = 2bg(t)Ḡ(t)[1− (Ḡ(t))2]b−1, b > 0. (5)

where g(t) = G′(t) and Ḡ(t) = 1−G(t).
In this paper a new generalization of the WW distribution, the Topp Leone Weight-
ed Weibull (TLWW) distribution, is obtained. The aim of this generalization is to
provide a flexible extension of the WW distribution which can be used in much wider
situations.
The paper is organized as follows: The pdf and cdf of the proposed model is intro-
duced and several mathematical characteristics are studied in Section 2. Distribution
of the order statistics is obtained in Sec. 4. Estimation of the model parameters are
done in Sec. 5. The influence of the estimators are evaluated in Sec. 6. The validity
of prosed model is on real data is presented in Sec. 7. Some concluding remarks are
given in Sec. 8.

2. Topp-Leone Weighted Weibull Distribution and its Properties

In this section, we have obtained the pdf and cdf of new model. For this, we consider
the survival function of the WW distribution given in (3) and have used it in (4).
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The cdf of the TLWW distribution is obtained as

F (x) = [1− (e−αx
γ(1+λγ))2]b = [1− e−2αxγ(1+λγ)]b, b > 0. (6)

The density function is obtained by differentiating (6) and is given as

f(x) = 2bαγ(1 + λγ)xγ−1e−2αxγ(1+λγ)[1− e−2αxγ(1+λγ)]b−1, x, α, λ, γ, b > 0, (7)

where, α, γ, b are shape parameters and λ is scale parameter. A random variable X
having pdf (7) is denoted as X ∼ TLWW (α, λ, γ, b). The proposed model reduces to
Topp Leone Weibull distribution for λ = 0. For λ = 0 and γ = 1, it reduces to Topp
Leon Exponential distribution.

The reliability function (rf), which is also known as survival function, is the proba-
bility of an item not failing prior to some time t. The rf of the TLWW distribution
is obtained as R(x) = 1−H(x) and is given as

S(x) = 1− [1− e−2αxγ(1+λγ)]b.

The hazard rate function which is also known as, force of mortality in actuarial s-
tatistics, Mill’s ratio in statistics and intensity function in extreme value theory are
important characteristics in reliability theory, It is roughly explained as the condi-
tional probability of failure, given it has survived to the time t. The hrf of random
variable X is defined as h(x) = f(x)/R(x) and for TLWW distribution it is given as

h(x) =
2bαγ(1 + λγ)xγ−1e−2αxγ(1+λγ)[1− e−2αxγ(1+λγ)]b−1

1− [1− e−2αxγ(1+λγ)]b
.

The cumulative hrf of the TLWW distribution is given by

H(x) = − log |1− [1− e−2αxγ(1+λγ)]b|.

2.1 Limiting Behavior

The behaviors of the pdf , cdf and hrf of TLWW distribution are investigated when
x→ 0 and x→∞. Therefore, lim

x→0
f(x) and lim

x→∞
f(x) are given in the following

lim
x→0

f(x) = lim
x→0

[
2bαγ(1 + λγ)xγ−1e−2αxγ(1+λγ)[1− e−2αxγ(1+λγ)]b−1

]
= 0,

lim
x→∞

f(x) = lim
x→∞

[
2bαγ(1 + λγ)xγ−1e−2αxγ(1+λγ)[1− e−2αxγ(1+λγ)]b−1

]
=∞

From above it is clear that the proposed model has a unique mode. The limiting
behavior of cdf and hrf is given below

lim
x→0

f(x) = lim
x→0

[
1− e−2αxγ(1+λγ)

]b
= 0,
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lim
x→∞

f(x) = lim
x→∞

[
1− e−2αxγ(1+λγ)

]b
= 1,

lim
x→0

h(x) = lim
x→0

[
2bαγ(1 + λγ)xγ−1e−2αxγ(1+λγ)[1− e−2αxγ(1+λγ)]b−1

1− [1− e−2αxγ(1+λγ)]

]
= 0,

lim
x→∞

h(x) = lim
x→∞

[
2bαγ(1 + λγ)xγ−1e−2αxγ(1+λγ)[1− e−2αxγ(1+λγ)]b−1

1− [1− e−2αxγ(1+λγ)]

]
= 0.

2.2 Shape

The distribution and density functions of the proposed model can be expressed in
the form of exponentiated G-distribution. Prudnikov et al. (1986) presented a series
representation and is given as

(1 + x)α =
∞∑
j=0

(1)jΓ(α + 1)

j!Γ(α + 1− j)
xj,

the distribution function of TLWW distribution is written as follow

F (x) =
∞∑
j=0

(−1)j
Γ(b+ 1)

j!Γ(b+ 1− j)
(eαx

γ(1+λγ))2j.

The density of TLWW distribution can also be written in the form of exponentiated
distributions and is given as

f(x) =
∞∑
j=0

(−1)j2Γ(b+ 1)

j!Γ(b− j)
αγxγ−1(1 + λγ)

(
e−2αxγ(1+λγ)

)(j+1)
(8)

We, now, present the plots for the density function of the TLWW distribution for
different values of parameters in Figures 1 to 4. Figure 1 shows that as the value of b
increase there is a smooth increase in the peak of the curve and starting point is also
shifted. One can clearly see from Figure 2 that λ plays opposite role as compared
with the b. As the values of b increase, the curve shrinks and a rapid decrease occurs
in the peak of curve. Figure 3 shows that the distribution is positively skewed for
the smaller values of γ. From Figure 4 it can be seen that α plays important role
in shape of the distribution. For smaller values of α, the curve is smooth but as the
values of α increase great change appears and curve’s peak increases abruptly.
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Figure 1: Plots of pdf for α = 2, γ =
2.5, λ = 1.5
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Figure 2: Plots of pdf for b = 2, α =
2, γ = 2.5
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Figure 3: Plots of pdf for b = 2, α =
2, λ = 1.5
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Figure 4: Plots of pdf for b = 2, λ =
1.5, γ = 2.5

2.3 Quantile Function

The quantile function of the TLWW distribution is obtained as Q(u) = F−1(u) and
given as

Q(u) = −

(
ln{1− u 1

b }
2α(1 + λγ)

) 1
γ

, for α > 0, u ∈ (0, 1).

Median of the distribution can be obtained by replacing u = 0.5 in above equation.
The quantile function is used to observe the effect of shape parameters on skewness
and kurtosis. The Bowley’s measure of skewness (S) is given as

S =
Q(1

4
) +Q(3

4
)− 2Q(1

2
)

Q(3
4
)−Q(1

4
)

and the Moors’s coefficient of kurtosis (K) is given as

K =
Q(7

8
)−Q(5

8
) +Q(3

8
)−Q1

8

Q(6
8
)−Q(2

8
)

.
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2.4 Moments

The raw or non-central moment for any probability distribution is obtained by using

µ′q =

∫ ∞
−∞

xqdF (x).

Using pdf of the TLWW distribution in (8), we obtain the raw moments of the TLWW
distribution as

µ′q =

∫ ∞
0

xq
∞∑
j=0

(−1)j2Γ(b+ 1)

j!Γ(b− j)
αγxγ−1(1 + λγ)

(
e−2αxγ(1+λγ)

)(j+1)
.

From the transformation w = (j + 1)2αxγ(1 + λγ) and after some calculations, the
q − th moment of TLWW distribution is obtained as

µ′q =
∞∑
j=0

bjΓ(1 +
q

γ
),

where bj = (−1)j Γ(b+1)
j!Γ(b−j)

(
1
j+1

) q
γ

+1 (
1

2α(1+λγ)

) q
γ
. The coefficient of variation (CV ), co-

efficient of skewness (CS), and coefficient of kurtosis (CK) of the TLWW distribution
are obtained as follows

CV =

√
µ2

µ1

− 1,

CS =
µ3 − 3µ2µ1 + 2µ3

1

(µ2 − µ1)
3
2

,

CK =
µ4 − 4µ3µ1 + 6µ2µ

2
1

(µ2 − µ2
1)2

.

Now, the first incomplete moment is used to derive the mean deviation, Bonfer-
roni, and Lorenz curves. These curves have great influences in economics, reliability,
demography, insurance, and medicine. The incomplete moment of the TLWW distri-
bution is obtained by using (7) and is given below.

ϕs(t) =

∫ t

0

xs
∞∑
j=0

(−1)j2Γ(b+ 1)

j!Γ(b− j)
αγxγ−1(1 + λγ)

(
e−2αxγ(1+λγ)

)(j+1)
dx

Simplifying, the incomplete moments is given by

ϕs(t) =
∞∑
j=0

A∗j

[
γ(1 +

s

γ
)− γ(1 +

s

γ
), 2α(1 + λγ)(j + 1)

]
.

where A∗j = (−1)j Γ(b+1)
j!Γ(b−j)

(
1
j+1

) s
γ

+1 (
1

(2α(1+λγ))

) s
γ
.

The mean deviation about mean [m1 = E(|X − µ′1|)] and [m2 = E(|X −M |)] mean
deviation about median of X are given as m1 = 2µ′1F (µ′1) − 2ϕ1(µ′1) and m2 =
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µ′1 − 2ϕ1(M), respectively, where µ′1 = E(X), M = Median(X) = Q(0.5), and
F (µ′1) is calculated from (7) and ϕ1(t) is the first incomplete moment given by (19)
with s = 1.
These equations for ϕ1(t) can be used to obtain Bonferroni and Lorenz curves given

probability π as B(π) = ϕ1(q)
πµ′1

and L(π) = ϕ1(q)
µ′1

, respectively, where µ′1 = E(X) and

q = Q(π) is quantile function of X at π.
The (q, r)th probability weighted moment (PWM) of X is defined as

ρq,r =

∫ ∞
−∞

xq[F (x)]rf(x)dx.

Using (5) and (6), we can write after some algebra,

[F (x)]rf(x) =
∞∑

j,m=0

a(j,m)h2j+1(x),

where

a(j,m) =
∞∑

j,m=0

(−1)j+m
Γ(b+ 1)(rb+ 1)

j!m!Γ(b− j)(rb+ 1− j)

and

h2j+1(x) = 2αγxγ−1(1 + λγ)e−2γxγ(1+λγ)(2j+1),

After making transformation, the (q, r)th PWM of X can be expressed as

ρq,r(x) = a(j,m)

(
1

2j + 1

) q
γ

+1(
1

2α(1 + λγ)

) q
γ

Γ(1 +
q

γ
).

Now, we provide numerical values for the mean, variance, coefficient of skewness, and
coefficient of kurtosis in Tables 1 to 4, respectively.
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Table 1: Mean of TLWW distribution for α = 1 and various values of
parameters

γ
b λ 4 5 6 7 8 9

1 0.6409 0.6958 0.7363 0.7674 0.7919 0.8118
2 0.3754 0.3972 0.4122 0.4232 0.4316 0.4383

1 3 0.2533 0.2662 0.2754 0.2824 0.2879 0.2923
4 0.1904 0.1998 0.2066 0.2118 0.2159 0.2192
5 0.1524 0.1599 0.1653 0.1694 0.1727 0.1754
6 0.1270 0.1332 0.1378 0.1412 0.1439 0.1461
1 0.7429 0.7859 0.8167 0.8397 0.8576 0.8720
2 0.4351 0.4486 0.4572 0.4630 0.4674 0.4708

2 3 0.2936 0.3007 0.3055 0.3090 0.3117 0.3139
4 0.2206 0.2257 0.2292 0.2318 0.2338 0.2354
5 0.1766 0.1805 0.1833 0.1854 0.1871 0.1884
6 0.1472 0.1505 0.1528 0.1545 0.1559 0.1570
1 0.7929 0.8288 0.8541 0.8729 0.8875 0.8990
2 0.4644 0.4731 0.4781 0.4814 0.4837 0.4854

3 3 0.3134 0.3171 0.3195 0.3212 0.3226 0.3237
4 0.2355 0.2380 0.2397 0.2410 0.2419 0.2427
5 0.1885 0.1904 0.1917 0.1928 0.1936 0.1942
6 0.1571 0.1587 0.1598 0.1606 0.1613 0.1618
1 0.8248 0.8557 0.8774 0.8935 0.9058 0.9156
2 0.4830 0.4885 0.4912 0.4927 0.4937 0.4943

4 3 0.3259 0.3274 0.3282 0.3288 0.3293 0.3296
4 0.2450 0.2457 0.2462 0.2466 0.2469 0.2472
5 0.1961 0.1966 0.1970 0.1973 0.1976 0.1978
6 0.1634 0.1638 0.1641 0.1644 0.1646 0.1648
1 0.8477 0.8750 0.8940 0.9080 0.9187 0.9272
2 0.4965 0.4994 0.5004 0.5007 0.5007 0.5006

5 3 0.3350 0.3347 0.3344 0.3341 0.3339 0.3338
4 0.2518 0.2512 0.2508 0.2506 0.2505 0.2504
5 0.2015 0.2010 0.2007 0.2005 0.2004 0.2003
6 0.1680 0.1675 0.1672 0.1671 0.1670 0.1669
1 0.8654 0.8897 0.9066 0.9190 0.9285 0.9360
2 0.5068 0.5078 0.5075 0.5068 0.5060 0.5054

6 3 0.3420 0.3404 0.3391 0.3382 0.3375 0.3370
4 0.2570 0.2554 0.2544 0.2537 0.2531 0.2527
5 0.2057 0.2044 0.2035 0.2029 0.2025 0.2022
6 0.1715 0.1703 0.1696 0.1691 0.1688 0.1685

170 Pak.j.stat.oper.res. Vol.15 No.1 2019 pp161-178



A New Generalized Weighted Weibull Distribution

Table 2: Variance of TLWW distribution for α = 1 and various values of
parameters

γ
b λ 4 5 6 7 8 9

1 0.0196 0.0173 0.0151 0.0131 0.0114 0.0100
2 0.0249 0.0267 0.0278 0.0286 0.0291 0.0295

1 3 0.0169 0.0184 0.0194 0.0201 0.0206 0.0211
4 0.0114 0.0124 0.0132 0.0137 0.0142 0.0145
5 0.0081 0.0088 0.0094 0.0098 0.0101 0.0104
6 0.0060 0.0066 0.0070 0.0073 0.0075 0.0077
1 0.0144 0.0117 0.0095 0.0079 0.0066 0.0056
2 0.0285 0.0294 0.0299 0.0302 0.0304 0.0306

2 3 0.0208 0.0216 0.0222 0.0225 0.0228 0.0230
4 0.0145 0.0150 0.0154 0.0157 0.0159 0.0161
5 0.0104 0.0108 0.0111 0.0113 0.0115 0.0116
6 0.0078 0.0081 0.0083 0.0085 0.0086 0.0087
1 0.0109 0.0085 0.0067 0.0054 0.0045 0.0037
2 0.0295 0.0301 0.0305 0.0307 0.0308 0.0309

3 3 0.0226 0.0231 0.0234 0.0236 0.0237 0.0238
4 0.0159 0.0163 0.0165 0.0166 0.0167 0.0168
5 0.0116 0.0118 0.0119 0.0121 0.0121 0.0122
6 0.0087 0.0089 0.0090 0.0091 0.0091 0.0092
1 0.0085 0.0065 0.0050 0.0040 0.0033 0.0027
2 0.0300 0.0304 0.0307 0.0308 0.0309 0.0310

4 3 0.0237 0.0239 0.0241 0.0242 0.0243 0.0243
4 0.0169 0.0170 0.0171 0.0172 0.0172 0.0173
5 0.0123 0.0124 0.0125 0.0125 0.0125 0.0126
6 0.0093 0.0093 0.0094 0.0094 0.0094 0.0095
1 0.0068 0.0051 0.0039 0.0031 0.0025 0.0021
2 0.0302 0.0306 0.0308 0.0309 0.0310 0.0310

5 3 0.0244 0.0245 0.0246 0.0246 0.0246 0.0246
4 0.0175 0.0176 0.0176 0.0176 0.0176 0.0176
5 0.0128 0.0128 0.0128 0.0128 0.0128 0.0128
6 0.0097 0.0097 0.0097 0.0097 0.0097 0.0097
1 0.0055 0.0041 0.0031 0.0025 0.0020 0.0016
2 0.0303 0.0306 0.0308 0.0309 0.0310 0.0311

6 3 0.0249 0.0250 0.0249 0.0249 0.0249 0.0249
4 0.0180 0.0180 0.0179 0.0179 0.0178 0.0178
5 0.0132 0.0132 0.0131 0.0130 0.0130 0.0130
6 0.0100 0.0099 0.0099 0.0099 0.0098 0.0098
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Table 3: Coefficient of skewness of the TLWW distribution for α = 1 and
various values of parameters

γ
b λ 4 5 6 7 8 9

1 0.2970 0.2545 0.2224 0.1973 0.1772 0.1608
2 0.4807 0.4656 0.4547 0.4464 0.4399 0.4345

1 3 0.5821 0.5754 0.5701 0.5659 0.5624 0.5594
4 0.6295 0.6255 0.6223 0.6197 0.6175 0.6157
5 0.6545 0.6519 0.6498 0.6480 0.6465 0.6452
6 0.6692 0.6674 0.6658 0.6645 0.6634 0.6625
1 0.2252 0.1878 0.1609 0.1407 0.1250 0.1124
2 0.4358 0.4252 0.4184 0.4136 0.4100 0.4072

2 3 0.5555 0.5516 0.5487 0.5464 0.5446 0.5431
4 0.6123 0.6102 0.6085 0.6071 0.6060 0.6050
5 0.6426 0.6413 0.6402 0.6392 0.6385 0.6378
6 0.6605 0.6596 0.6588 0.6581 0.6576 0.6571
1 0.1904 0.1569 0.1334 0.1159 0.1025 0.0919
2 0.4119 0.4048 0.4007 0.3980 0.3960 0.3946

3 3 0.5410 0.5392 0.5379 0.5369 0.5361 0.5354
4 0.6028 0.6021 0.6014 0.6009 0.6004 0.5999
5 0.6360 0.6356 0.6352 0.6348 0.6345 0.6342
6 0.6556 0.6554 0.6552 0.6549 0.6547 0.6545
1 0.1695 0.1386 0.1173 0.1016 0.0896 0.0801
2 0.3963 0.3917 0.3894 0.3882 0.3873 0.3868

4 3 0.5313 0.5311 0.5310 0.5309 0.5307 0.5305
4 0.5964 0.5967 0.5969 0.5969 0.5968 0.5967
5 0.6315 0.6319 0.6320 0.6320 0.6320 0.6320
6 0.6523 0.6527 0.6528 0.6528 0.6528 0.6528
1 0.1557 0.1266 0.1066 0.0921 0.0811 0.0724
2 0.3849 0.3823 0.3814 0.3812 0.3812 0.3813

5 3 0.5242 0.5252 0.5260 0.5265 0.5269 0.5271
4 0.5916 0.5928 0.5935 0.5940 0.5943 0.5945
5 0.6281 0.6291 0.6297 0.6300 0.6302 0.6304
6 0.6498 0.6506 0.6511 0.6513 0.6515 0.6516
1 0.1460 0.1181 0.0992 0.0855 0.0752 0.0671
2 0.3761 0.3750 0.3753 0.3759 0.3765 0.3771

6 3 0.5186 0.5207 0.5222 0.5232 0.5239 0.5245
4 0.5879 0.5898 0.5910 0.5918 0.5923 0.5927
5 0.6255 0.6270 0.6278 0.6284 0.6288 0.6291
6 0.6479 0.6490 0.6497 0.6502 0.6505 0.6507
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Table 4: Coefficient of kurtosis of TLWW distribution for α = 1 and various
values of parameters

γ
b λ 4 5 6 7 8 9

1 1.8001 1.7602 1.7333 1.7144 1.7006 1.6903
2 2.0269 2.0074 1.9933 1.9827 1.9743 1.9675

1 3 2.1708 2.1619 2.1549 2.1492 2.1445 2.1406
4 2.2366 2.2316 2.2275 2.2240 2.2212 2.2187
5 2.2700 2.2668 2.2641 2.2619 2.2599 2.2583
6 2.2889 2.2867 2.2848 2.2832 2.2818 2.2807
1 1.7357 1.7077 1.6903 1.6788 1.6708 1.6651
2 1.9677 1.9547 1.9463 1.9404 1.9360 1.9325

2 3 2.1343 2.1292 2.1254 2.1224 2.1200 2.1180
4 2.2137 2.2111 2.2089 2.2071 2.2056 2.2044
5 2.2547 2.2531 2.2517 2.2505 2.2495 2.2487
6 2.2780 2.2769 2.2759 2.2751 2.2744 2.2738
1 1.7095 1.6879 1.6749 1.6666 1.6609 1.6568
2 1.9372 1.9287 1.9238 1.9206 1.9183 1.9166

3 3 2.1142 2.1120 2.1105 2.1092 2.1081 2.1072
4 2.2008 2.2001 2.1993 2.1986 2.1980 2.1974
5 2.2460 2.2456 2.2452 2.2447 2.2443 2.2440
6 2.2718 2.2716 2.2713 2.2710 2.2707 2.2705
1 1.6955 1.6776 1.6671 1.6604 1.6560 1.6528
2 1.9176 1.9124 1.9098 1.9084 1.9075 1.9068

4 3 2.1008 2.1008 2.1009 2.1008 2.1007 2.1005
4 2.1921 2.1928 2.1931 2.1931 2.1931 2.1930
5 2.2400 2.2407 2.2409 2.2410 2.2410 2.2410
6 2.2676 2.2681 2.2683 2.2683 2.2683 2.2683
1 1.6870 1.6714 1.6624 1.6568 1.6531 1.6505
2 1.9036 1.9008 1.9000 1.8998 1.8999 1.9001

5 3 2.0909 2.0927 2.0939 2.0948 2.0953 2.0957
4 2.1856 2.1875 2.1885 2.1892 2.1896 2.1899
5 2.2356 2.2370 2.2378 2.2383 2.2386 2.2388
6 2.2644 2.2655 2.2660 2.2664 2.2666 2.2668
1 1.6814 1.6673 1.6594 1.6544 1.6512 1.6489
2 1.8928 1.8919 1.8925 1.8934 1.8942 1.8950

6 3 2.0831 2.0863 2.0886 2.0901 2.0912 2.0921
4 2.1805 2.1833 2.1850 2.1861 2.1869 2.1875
5 2.2320 2.2341 2.2354 2.2362 2.2368 2.2372
6 2.2618 2.2634 2.2643 2.2649 2.2653 2.2656

Pak.j.stat.oper.res. Vol.15 No.1 2019 pp161-178 173



Salman Abbas, Gamze Ozal, Saman Hanif Shahbaz, Muhammad Qaiser Shahbaz

2.5 Moment and Probability Generating Function

Let X ∼ TLWW (b, α, λ, γ), then the moment generating function of X is denoted as
MX(t) and is given as

MX(t) =

∫ ∞
0

etxf(x)dx.

Using Taylor series and from (7), we have

MX(t) =
∞∑

i,j=0

ti

i

(−1)jΓ(b+ 1)

j!Γ(b− j)

(
1

j + 1

) i
γ

+1(
1

(2α(1 + λγ)

) i
γ

Γ(1 +
i

γ
). (9)

Similarly, if X ∼ TLWW (b, α, λ, γ), then the probability generating function of X is
denoted as PhiX(t) and is given as

ΦX(t) =

∫ ∞
0

txf(x)dx.

Using

MX(t) =
∞∑
l=0

(ln t)lxl

l!

we have,

ΦX(t) =
∞∑

l,j=0

(ln t)l

l!

)jΓ(b+ 1)

j!Γ(b− j)

(
1

j + 1

) i
γ

+1(
1

2α(1 + λγ)

) l
γ

Γ(1 +
l

γ
)
l
γ (10)

2.6 Order Statistics

The order statistics play an important role in the statistical theory. LetX1, X2, , , , , Xn

be a random samples from the TLWW distribution, then the density function of the
i− th order statistics is given as

fi:n(x) =
∞∑
j=0

ψj(e
−2αxγ(1+λγ))m+1,

where

ψj =
n!

(i− 1)!(n− i)!
2αγ(1 + λγ)xγ−1

b(i+j)−1∑
m=0

(
n− 1

j

)(
b(i+ j)− 1

m

)
.
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The pdf of the first order statistics can be obtained by using i = 1 and the pdf of nth
order statistics can be defined by replacing i = n.

3. Entropy

The entropy is used to explain the existence of uncertainty in the random variables.
Different method to measure the uncertainty in random variables are developed by
researchers. Reyni’s entropy is obtained by using

Ip =
1

1− p
log

∫ ∞
−∞

f(x)pdx, p > 0, p 6= 0,

Now using Eq. (8), we have

Ip =
1

1− p
log

∫ ∞
−∞

{ ∞∑
j=0

(−1)j2Γ(b+ 1)

j!Γ(b− j)
αγxγ−1(1 + λγ)

(
e−2αxγ(1+λγ)

)(j+1)
}p
dx,

To obtained the expression of entropy, we assume z = 2αxγ(1 + λγ)(j + 1), and after
simplification we have

Ip =
1

1− p
log

{
κpjA

∗Γ(p+ 1)

}
,

where

κ =
∞∑
j=0

(−1)j2Γ(b+ 1)

j!Γ(b− j)
αγxγ−1(1 + λγ)

A∗ = αp
(

1

2α(1 + λγ)(j + 1)

)p
Next, the q − th entropy is define as

Hq =
1

q − 1
log
{

1−
∫ ∞
−∞

f(x)qdx
}
.

So, the q − th entropy for the TLWW distribution is given as

Hq =
1

q − 1
log

{
1− κqjA∗Γ(q + 1)

}
,

where

κ =
∞∑
j=0

(−1)j2Γ(b+ 1)

j!Γ(b− j)
αγxγ−1(1 + λγ)

A∗ = αp
(

1

2α(1 + λγ)(j + 1)

)q
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4. Estimation

In this section, we have discussed estimation of the parameters of TLWW distribution.
Let x1, x2, , , , xn be the random sample of size n from TLWW distribution. The log
likelihood function is, then, given as

L =n log(2) + n log(b) + n log(α) + n log(γ) + n log(1 + λγ) + (γ − 1)
n∑
i=0

xi

− 2α(1 + λγ)
n∑
i=0

xγi + (b− 1)
n∑
i=0

log(1− e−2αxγ(1+λγ)). (11)

The parameters are obtained by solving the nonlinear equations which are obtained
by differentiating (11). The score vector components, say U(θ) = ( dl

db
, dl
dα
, dl
dγ
, dl
dλ

)T =

(Ub, Uα, Uγ, Uλ)
T , are given as follows:

Uα =
n

α
− 2(1 + λγ)

n∑
i=0

xi + (b− 1)
n∑
i=0

2xγi (1 + λγ)wi
1− wi

,

Ub =
n

b
+

n∑
i=0

log(1− wi),

Uγ =
n

γ
+
nλγ log(λ)

1 + λγ
− 2αλγ log(λ)

n∑
i=0

xγi +
n∑
i=0

log(xi)− 2α(1 + λ)
n∑
i=0

xγi log(xi)

− (b− 1)
n∑
i=0

wi(2x
γα(1 + λ) log(xi)− 2xγαλγ log(λ)

1− wi
,

Uλ =
nγλγ−1

1 + λγ
2αγλγ−1

n∑
i=0

xγi + (b− 1)
n∑
i=0

2xγαγλγ−1wi
1− wi

,

where wi = e−2αxγ(1+λγ). The maximum likelihood estimate for the parameters are
obtained by equating the above expressions equal to zero. For interval estimation of
the parameters, we obtain the 4× 4 observed information matrix given by

J(θ) = −


Jbb Jbα Jbγ Jbλ

Jαα Jαγ Jαλ
Jγγ Jγλ

Jλλ


The entries of J(θ) can be easily computed numerically. Under standard regularity
conditions when n −→∞, the distribution of θ̂ can be approximated by a multivariate
normal N4 = (0, J(θ̂)−1) distribution to construct approximate confidence intervals
for the parameters. Here, J(θ̂) is the observed information matrix evaluated at θ.
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5. Application

In this section, we show the performance of the proposed model with a real data set.
We use the distributions in Table 5 to compare the existing distributions with the
proposed distribution. The comparison has been done by fitting various models on

Table 5: Fitted Distributions and their Abbreviations

Distributions Abb Referrence
Topp Leone Weighted Weibull TLWW Proposed

Kumaraswamy Weibull KwW (10)
Exponential Weibull ExW (9)

Exponentiated Weibull-Exponential ExpWEx (11)
Marshall-Olkin exponential-Weibull MOEW (18)

Weighted Weibull WW (16)

real data sets and comparing the goodness of fit measures. In order to compare the fit
of TLWW model with other models, we provide the values of the Akaike Information
Criterion (AIC) and Consistent Akaike Information Criterion (CAIC).

The data have been obtained from Bjerkedal by Bjerkedal et al. (1960) and represents
the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli.
The data set is given in Table 6.

Table 6: Data for the survival time (9n days) of 72 guinea pigs infected
with virulent tubercle bacilli

0.1 0.33 0.44 0.56 0.59 0.72 0.74 0.77 0.92 0.93 0.96 1
1 1.02 1.05 1.07 07 .08 1.08 1.08 1.09 1.12 1.13 1.15

1.16 1.2 1.21 1.22 1.22 1.24 1.3 1.34 1.36 1.39 1.44 1.46
1.53 1.59 1.6 1.63 1.63 1.68 1.71 1.72 1.76 1.83 1.95 1.96
1.97 2.02 2.13 2.15 2.16 2.22 2.3 2.31 2.4 2.45 2.51 2.53
2.54 2.54 2.78 2.93 3.27 3.42 3.47 3.61 4.02 4.32 4.58 5.55

In Table 7, the values of estimated parameters and the statistic are given. We can
easily see that the proposed model provide smaller values of the computed statistics
which indicate that it provides better fit than competing models.

Table 7: The MLEs and the values of AIC, CAIC and -2LL statistics

Model Parameters −2LL AIC CIAC

α λ γ λ
TLWW 0.078 2.037 1.157 3.055 205.62 213.62 214.217
KwW 1.655 0.232 1.355 1.615 207.311 215.311 215.908
ExW 1.617 0.311 1.2×10−8 - 208.034 214.034 214.387

ExpWEx 0.409 1.958 2.082 0.127 304.341 312.341 312.938
MOEW 0.091 0.012 2.940 - 245.993 251.993 252.346

WW 0.213 0.621 1.617 - 208.034 214.034 214.387

Figures 5 and 6 shows the plots for the fitted models and probability plot of the
TLWW distribution, respectively.
As seen from Figures 5 and 6, the proposed model adequately fits the data as com-
pared with other models.
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Figure 5: Plots for the fitted models
for the data set
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Figure 6: Probability Plot of TLWW
distribution for the data set

6. Conclusion

This paper presents the Topp Leone weighted Weibull distribution. We have obtained
various properties for the proposed model; including, shape, moments, moment gen-
erating function, probability generating moments, and reliability analysis. The effects
of model parameters are discussed in terms of mean, variance, coefficient of skewness,
and coefficient of kurtosis. The method of maximum likelihood is used for the estima-
tion of the parameters. We study the data regarding the survival time of 72 Pigs (in
days) for the evaluation of the proposed model in practical application. The results
show that the proposed model is a better fit as compared with the available models
for modeling of the used data.
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