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Abstract

This work proposes an inverse odd Weibull (IOW) family of distributions for a lifetime distributions. Some mathe-
matical properties of this family of distribution were derived. Survival, hazard, quantiles, reversed hazard, cumulative,
odd functions, kurtosis, skewness, order statistics and entropies of this new family of distribution were examined. The
parameters of the family of distributions were obtained by maximum likelihood. The behavior of the estimators were
studied through simulation. The flexibility and importance of the distribution by means of real data set applications
were emphasized.
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1. Background

Modeling lifetime processes has received several attentions in recent time. Thus, the interest of distribution statistics
has grown over the years by applying its applications to obtain the parameters of interest, improve the understanding
of the processes; and to make a prediction at some locations where measurements of such processes are not available.
The Weibull distribution was proposed by in Weibull (1951). This distribution has a wide range of application because
of its flexibility and applicability in lifetime processes. Thus, studying a new family of probability model is motivated
by increasing its capacity to model dataset that cannot be fitted properly by existing models, Anake et al.(2015). These
new classes or families may add one or more parameters to already proposed models in statistical literature, Korkmaz
et al.(2018). Gupta et al.(1998), Gupta and Kundu(1999), Mudholkar and Srivastava(1993), Oguntunde et al.(2013),
Cordeiro et al.(2013), Oguntunde et al.(2014a, 2014b, 2014c), Oguntunde et al.(2017a), Yousof et al.(2015), Yousof et
al.(2017a, 2017b, 2017c¢), Yousof et al.(2018), Cordeiro et al.(2017a, 2017b), Aryal et al.(2017) and Nofal et al.(2017)
proposed a generator called the exponentiated classes. These classes, consist of the cumulative distribution function of
positive power parameter. Al-Mofleh(2018) proposed another family of generator using the tangent function. Hassan
and Al-Thobety (2012) and Hassan et al.(2015) proposed the type II inverted Weibull for both optimal design for fail-
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ure step stress partially and constant-stress accelerated life tests. Hassan et al.(2018) formulated the Odds generalized
exponential inverse Weibull distribution. Afify et al.(2013), Afify et al.(2016) and Afify et al.(2017) proposed the
transmuted Weibull Lomax, geometric-G and the Odd exponentiated half-logistic-G families of distributions respec-
tively. Cordeiro et al.(2010) and Rasekhi et al.(2018) proposed the Kumaraswamy Weibull geometric distribution.
Manal and Fathy (2003) developed the exponentiated Weibull family of Distribution. Tojeiro et al.(2014) proposed
the Weibull geometric distribution. Lee et al.(2007), Silva et al.(2010, 2013) and Khan (2015) formulated the beta
Weibull and the The gamma extended Frechet distribution families of distribution. Zelibe et al.(2019) proposed the
Kumaraswamy alpha power inverted exponential model. Alzaatreh et al.(2013b) proposed the Weibull-Pareto distri-
bution. Alzaatreh et al.(2016) proposed the gamma half-Cauchy distribution. Agu and Onwukwe (2019) proposed
modified laplace distribution. Pinho et al.(2015) proposed the The Harris extended exponential distribution. Harter
et al. (1963) proposed the maximum likelihood of the gamma and Weibull population. Cordeiro et al.(2014) pro-
posed McDonald Weibull model for failure data. Eliwa and El-Morshedy(2020) proposed the bivariate odd Weibull-G
family. Eliwa and El-Morshedy(2019) proposed the odd flexible Weibull-H distribution. Cooray(2015) examined the
moment and likelihood of the odd Weibull mode. Cooray(2006) proposed the generalization of the odd Weibull family.
Jiang (2008) further examined the odd Weibull distribution. In this article, we shall correct Equations (5) and (6)of
the generalized odd Weibull generated family of distribution proposed by Korkmaz et al.(2018) and proposed a better
family of distribution called the inverse odd Weibull generated family of distributions.

This article is organized as follows: Section 1 introduced the model, Section 2 provided the formulation of the inverse
odd Weibull family of distribution together with its maximum likelihood of its parameters. In Section 3, discussed
some properties of the IOW family of distribution with a simulation studies of the kurtosis and skewness. The appli-
cations to validate the proposed distribution and results obtained were compared with existing distributions in section
4. Section 5 is the concluding remarks.

Let u(s) be a probability density function for a random variable T € [d, h] for —co < d < h < c0. Also, let B[D(s)]
be a function for the cumulative distribution function for a random variable .S such that B[D(s)] must satisfy the
following conditions:

* B[D(s)] € [d, h],
* B[D(s)] is a monotonic increasing and differentiable on the interval [d, h],
* B[D(s)] approaches d as s — —oo and more also, B[D(s)] — d as s — co.

Then by Alzaatreh et al.(2013), a T'x family of distributions can be defined as

B[D(s)]
Fs)= [ uts)ds M)
d

where B[D(s)] is the link function on the interval (0, co) called Gamma-G type 111, Weibull-G.
The probability density function of Equation (6) is given by

1) ={ 32|00 Ju{ 5|9 . @

2. The Inverse Odd Weibull Generated Family of Distribution

In this article, we shall propose a class of distributions called the Inverse odd Weibull Generated ("7OW"") family of
distribution. Now, let the link function B[D(s)| be defined as

G(s;p)=
BlD@s) = G Ly .
1-G(s;9)
with the probability density function (pdf) of u(s) defined as
u(s; B) = BsPle=”  s>0, B>0. 4)
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Figure 1: The pdf of the JOW distribution for different parameter values
Also, the cdf of Equation (4) given as
B

G(s;9)=1—¢e"". (5)
The probability density function for @ = i that corresponds to the JOW distribution is thus, expressed as

aﬁg%”‘(s;@msw)"&lew{_{ G(&(b)élr}’

1= G 0)2 1~ G(si0) ©

f(low)(s;a757¢) =

with g(s; ¢) as the baseline probability density function.

Figure 1 shows some plots for the probability density function (pdf) of the JOW distribution for several values of
parameters. The Figure 1 plots reveal that the JOW density can be concave down, left skewed depending on the value
of the shape and scale parameters. Then, the cumulative distribution function (cdf) of the pdf can then be expressed as

M
Firow)(s;a,B,9) = /“G(“”)E BsP—le=s"
0
1-G(s;0)a
1
:1—61‘]?{_[1"‘1‘ T 1.1 I 1 ]}7
[(71)7"6 ZEZl E(Efl)(afrf)'--(zfr+l) exp(—rﬂsﬁ)]

where G(s; ¢) is the cdf of the parent distribution.

Figure 2 shows the plots for cumulative density function (cdf) of the /JOW distribution for several values of parameters.
Thus, for a random variable X, we defined its distribution as X ~ IOW (a, 3, ¢). Now, for a stochastic system with
random variable T'; we can defined its cdf by G(s;¢). Thus, we can let G(s;¢) = G(s) for @ > 0, for the random
variable X, (Korkmaz et al.(2018)).
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Figure 2: The cdf of the JOW distribution for different parameter values
2.1. Maximum Likelihood Estimator of the Inverse Odd Weibull Generated Family of Distribution

In this section, we shall estimate the parameters of the /OW model using maximum likelihood approach. Let sy, so, - - -
be a random sample of the JOW family of distribution with vector of parameter © = («, 3, ¢)* and ¢ is ¢ x 1 baseline
vector of parameter. The likelihood function for the JOW distribution is given by

e G(s)] "= [ G 17
Liow-c(s) = a"8" [[ g7 (s)[é()s])wexp{—ZL_égsm} } ®

i=1 [ i=1

1
Now, for r; = [1 — G(s,¢)~] ,a = =% and p; = [G(‘(’Ti‘b)“]ﬁ . Then, the log-likelihood function for the IOW can be
written as

3

((©) =nloga +nlog B+ &Y _logg(si;¢) + Gl

i=1 =1

n n )
- (B+ 1)Zlogri - Zpi.
i=1 =0
Now, differentiating partially the nonlinear equation with respect to the parameters, Noting that ¢/, (s;, ) = %f;@;
G'(si9) = %ﬁw; 25 = i di = %; t; = f;:; and ¢; = ép’ The vector component, say U(0) = 25 =
5 50 80 \u
(Ea R W) = (Ua, Ug, U¢’Y)T.
Thus,
nooay (B-1) - N2 " d;
Ua =~ D1 HBP)— ——— log G(s;, ¢ 1) ol Zi 10
a+a;0gg(s 9) o2 ;Og (5i,9) — (B + ;TZ ;pz (10)
n 1< n n
U[f:E+aZIOgG(Sw¢)7210g7’172q“ (11)
=0 i=0 i=0
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Figure 3: The Survival Function of the /JOW Distribution for Different Parameter Values

N0 (B G500) NN
Usy =2 9(51,9) T ; G50, 8) (5+1);E ;Tl. (12)

=0

Setting U, = U = Uy, = 0 and solving the nonlinear equations yield the MLEs 6= (&, B , (;AS“)“ The Equations
(10,11 and 12) are usually solved using the nonlinear quasi-Newton optimization method algorithm. This method
maximize the ¢(©) numerically with (¢ + 2) x (¢ + 2) elements and a Jacobi matrix of J(0) = ( 6£j$55 ). When
n — oo, under standard regularity conditions, the distribution of © is approximately multivariate normal with mean

zero and variance .J(0©) L.

3. Some Main Properties of the Inverse Odd Weibull Generated Family of Distribution
3.1. Survival and Hazard Rate Functions of the Inverse Odd Weibull Generated Family of Distribution

We shall provide the survival and hazard rate function of the Inverse Odd Weibull Generated Family of Distribution.
Now, the probability that the random variable x > 0 of interest will survived beyond any specific lifetime 7" is given
as

Siow)(x) =1~ Prigow)(X < x);

G(x)i B
owi b (13)

On the other hand, the hazard rate function or failure rate is the conditional density given that for > 0, has not yet
occurred prior to time ¢ is given as

S(IOW) (z) = exp{—[

_ fuowy(@)  aBge (;0)G(x;¢) =
-

- Suow)(@) [1— G(x;¢)7)5~

haow) () (14)

Figure 3 is the plot of the survival function for the IOW generated family of distribution, while Figure 4 is the plot of
the failure rate for the inverse odd Weibull generated family of distribution for some values of parameters.
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Figure 4: The Hazard Rate Functions of the JOW Distribution for Different Parameter Values
3.2. Quantiles Functions of the Inverse Odd Weibull Generated Family of Distribution

The quantiles function for u ~ uni form]0, 1] that describe the inverse of the cdf of the inverse odd Weibull generated
family of distribution is given as

Q(u) = inf{z € R:u < Fuow) ()} = F by (w).

Now, let Frow (s) = u, then,

—u = expl— G(Sﬂﬁ)i i
w2 T
—log(l —u) = [1 ?g’(f)(;) I ]B

G(si¢)w

1

[~ log(1 — w)]7 — [~ log(1 — u)]FG(s;0)% = G(s; )7,
[~ log(1 —w)?

) = gl — )

)

[~ log(1 — w)]?

R S

but G(s;¢) = 1 — exp — s°. Then,

PP o ) LA
14 [~log(1—u)]?
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[~ log(1 —u)]?

1+ [~ log(1 - w)]

[_1Og(1_u)% al] _ B
—log|1 — n =35
8l [1+[710g(1—u)]ﬁ] ]
[—1og[1—[ [_IOg(l_u)}% a]% — s

1
1+ [—log(1—u)]?
Therefore, the quantile function of the Inverse Odd Weibull Generated Family of Distribution is defined as

[~ log(1 — w)]#

-7, (15)
1+[710g(17u)]7f] !

Q(u) = [~ log[l — [

where u = 0.25,u = 0.50, and u = 0.75, are the first three quantiles respectively (see Nzei et al.(2020)).
The median for the inverse odd Weibull generated family of distribution is obtained as

_ ] 1
M=[-log[l - [————=———]%]]7 O<u<l. (16)
T st
Hence, the 25" percentile and the 75" percentile are given as
—1lo 3 % 1
Q1 = [~loglt — [— "oyt gy, a7
1+ [~log(3)]7
and )
—log 1z ol
Qs = [ ogt — [— B ays gy, as)
14 [~ log(7)]?

3.3. Kaurtosis and Skewness of the Inverse Odd Weibull Generated Family of Distribution

The kurtosis coefficient measures the heavy tailed or thin tailed of the data, while the skewness measures the symmetry
nature of the distribution. The Moors’ (1988) kurtosis for the IOW family of distribution is given by

Q(F) - Q) —QE) +Q(5)
K= . 19
Q) Q) o
The Bowley’s (1939) skewness for the IOW family of distribution is as follows
3y 1 1
oo Q) —20G) +QG) 20)

Q) - Q%)

Figures 5 and 6 show the Bowley’s skewness and the Moors’ kurtosis for the IOW model.

Table 1 shows the simulation for different values of parameters for kurtosis and skewness of the IOW family of
distribution. The kurtosis and skewness in Table 1 increases as the parameters increases. The median, the first and
third quartiles have irregular values as the values of the parameters increases.
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Table 1: Kurtosis and Skewness of the IOW Family of Distribution

Parameters
B a Kurtosis Skewness Median 25t 75th
2 3.37715 0.923086 0.01238538 3.43333e-05 0.321199600
5 10.96644 0.9984929 1.300555e-05 6.806615e-12  0.017259040
0.5 8 34.62994 0.9999762 1.514099¢-08  1.357338e-18  0.001271685
15 584.0233 1.0000 2.17615e-15 0.0000 3.487949¢-06
20 4680.968 1.0000 2.820019e-20 0.0000 5.277707e-08
2 0.587385 0.2664208 0.1834364 0.05120107 0.4117219
5 1.720512 0.6757537 0.01156546 0.00055673 0.06846023
1.0 8 3.098746 0.8800111 0.000789255  6.206325¢-06 0.01305822
15 9.473921 0.9895068 1.520413e-06  1.724099e-10  0.0002897574
20 20.23337 0.9981761 1.748296e-08  9.592327e-14  1.917048e-05
2 0.06069753 0.0228482 0.3581327 0.2105999 0.5125649
5 0.567609 0.2560765 0.06476073 0.01880715 0.142351
1.5 8 1.148213 0.4824974 0.01243047 0.001731131 0.04308101
15 2.697187 0.8089838 0.0002671704 6.635123e-06  0.002734522
20 4.189216 0.9106184 1.720747e-05  1.246806e-07 0.0003823684
2 -0.09883353  -0.05708644 0.4808086 0.3605138 0.5881106
5 0.156377 0.06922978 0.1398003 0.07210623 0.2175644
2.0 8 0.4774112 0.2156471 0.04262068 0.01485517 0.0856537
15 1.29324 0.5151923 0.002692584  0.000373444  0.009940702
20 1.921226 0.6704989 0.0003745916  2.689268e-05 0.00213735
2 -0.2264367 -0.1245243 0.766156 0.733985 0.791202
5 -0.2035211 -0.1119634 0.4829469 0.4387371 0.5182538
5.0 8 -0.1642355  -0.09029601 0.3108447 0.2669671 0.3474546
15 -0.05883125  -0.0340803 0.1117593 0.08404231 0.1376493
20 0.02076863  0.006404327 0.05383239 0.03681265 0.07107154
2 -0.2307446 -0.1267604 0.8296708 0.8119627 0.8433945
5 -0.2231748 -0.1226319 0.5992527 0.5711622 0.6212062
7.0 8 -0.2047296 -0.1122596 0.4394404 0.4072773 0.4651111
15 -0.1539223  -0.08407185 0.2139213 0.1855394 0.2379011
20 -0.1161175  -0.06361941 0.1279395 0.1058233 0.1474099
2 -0.2301873 -0.1263226 0.8790953 0.8699506 0.8861887
5 -0.2293141 -0.1259152 0.7016092 0.6855413 0.7140833
10 8 -0.2211255 -0.1212714 0.5660098 0.5456443 0.58197
15 -0.1971436 -0.1076952 0.3438809 0.321078 0.3622498
20 -0.1794216 -0.097783 0.2409221 0.2198604 0.2582318

3.4. Cumulative Hazard Function of the Inverse Odd Weibull Generated Family of Distribution

The cumulative hazard function is obtained as the integral of the hazard function as

t G(s;0)
H t)= [ h(uw)du=—-InS(t)=[—2" )5 21
woweyt) = [ ha) 0= [ gy e
This can be also be translated as X
_[(;(570)51]5
S(t)=e 1-GEwe (22)
and ,
— G(s;¢)31 ]H
f@t) =h(t)e 1-ceo= (23)
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3.5. Reversed Hazard Function of the Inverse Odd Weibull Generated Family of Distribution

This is calculated as the ratio of the pdf to the cdf of the inverse odd Weibull generated family of distribution . It is

given as
B—1 ) é
R o S
r(s) = ’ Gt E ’ : (24)
1 — exp[—[=Z%2)> 18
Pl [17G(s:¢)i] ]

3.6. The Odds Function of the Inverse Odd Weibull Generated Family of Distribution

The Odd function is given as

G(s;9)= %1 (25)

0 = eonl = o " s

3.7. The k' Order Statistics for the Inverse Odd Weibull Generated Family of Distribution

The k" Order Statistics for n variables for the family of distribution is given as

o g _G(;i)é/f k-1
g T (5 G5 T Gl 5 G0 gk
(O e e SO
The distribution of the median for k = m + 1 and n = 2m + 1, when n is odd is given as
_@mADt _G(50)7 _15yym
gnL-l-l(y?rH-l) - (m)'(m)' {1 exp{ [1—G( (b)%] }} (27)
0By = (55 6)G(56) "+ G(s:0)* s G(si0)% 131 vm
A e {2 SO P e = ey,
The distribution of the median for K = m + 1 and n = 2m, when n is even is given as
__em G507 1511m
o) =i e g g e8)
aﬁg%‘x(sm)G(S;(b)ﬁ G(s;0)* 15 G(5:0) 15yym1.
A e o S PN a2 SO
3.8. The Entropies
The measure of the uncertainty of the random variable X is either measure as Renyi entropy is defined as
Ir(h) = log| / h flow.(s)ds], forf >0 and 6 # 1. (29)
1-46 0 <

Inverse Odd Weibull Generated Family of Distributions 626



Pak j.stat.oper.res. Vol.16 No.3 2020 pp 617-633 DOI: http://dx.doi.org/10.18187/pjsor.v16i3.2760

Also, the Shannon entropy of the random variable S is defined as

E[-loglf(S)]] = ~loga — log § — Bllogly™=* (s: )] — U~ mtogfcs; )]
e Glsi6) s ¢
+ (84 1) Ellogl - Gsi )] + Bl 2 e 21

4. Real Life Application

A real life dataset is applied to the proposed model to test the performance of the model based on statistic

Several criteria were used to determine the distribution for the best fit: Akaike Information Criteria (AIC), Consistent
Akaike Information Criteria (CAIC), Bayesian Information Criteria (BIC), and Hannan and Quinn Information Criteria
(HQIC). The Anderson Darling (A) statistic, Cramér—von Mises statistic the value (W), the Kolmogorov Smirnov (KS)
statistic, and the p value were also provided.

4.1. Carbon Data

Our first set of data is from Nichols and Padgett(2006) and Eghwerido et al.(2020a). It consists of 100 observations
taken on breaking stress of carbon fibers (in Gba). The dataset are as follow: 3.7, 2.74,2.73, 2.5, 3.6, 3.11, 3.27, 2.87,
1.47,3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93,
3.22,3.39,2.81,4.2,3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,2.38, 2.81, 2.77, 2.17, 2.83, 1.92,
1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17,
1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08,
2.03, 1.61,2.12,1.89, 2.88, 2.82, 2.05, 3.65.

The descriptive statistics of the carbon fibers dataset are showed in Table 2. We observed that the carbon fibers dataset

Table 2: Descriptive statistics for the Carbon Fibers dataset to 2 decimal points
Mean Median Mode StD IQR Variance Skewness Kurtosis 25"P. 751" P.
2.62 2.70 72.17773.68”  1.01 1.38 1.03 0.37 3.10 1.84 3.22

has mode of 2.17 and 3.68 and is slightly positive skewness because the value is close to zero. The mean of the carbon
fibers dataset values is smaller than the median. Thus, the carbon fibers dataset distribution is left-skewed. Also, the
carbon fibers dataset is positive excess kurtosis. This indicates that the carbon fibers dataset is a fat-tailed distribution,
and is said to be leptokurtic.

Table 3. is the goodness-of-fit and the performance rating of the JOW distribution using several test statistics for the
carbon fibers dataset. Table 4 is the test statistic for the different distributions examined.

4.2. Glass Fiber Data

The data on 1.5 cm strengths of glass fibres were obtained by workers at the UK National Physical Laboratory was also
used to compare the performance of the JOW distribution as used by Smith and Naylor (1987), Bourguinon et al.(2014),
Efe-Eyefia et al.(2020), Eghwerido et al.(2019), Eghwerido et al.(2020b), Eghwerido et al.(2020c) Eghwerido et
al.(2020d), Eghwerido et al.(2020e), Eghwerido et al.(2020f), Merovci et al.(2016), Oguntunde et al.(2017a) and
Oguntunde et al.(2017b). The observations are as follows: 0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13,
1.30, 1.25,1.27, 1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61,
1.58,1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73,
1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01, 2.24.

The descriptive statistics of the glass fibers dataset are showed in Table 5. Table 6 is the measure of comparison for the
various distribution under consideration. A plot of some distributions against the empirical histogram of the glass
fiber data is as shown in Figure 7. This is to demonstrate the performance of the IJOW distribution. Also, a plot for the
empirical cdf of the competing IOW distribution of the glass fiber data is shown in Figure 6. The plots in Figures 7 and
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Figure 8: A Plot of Empirical cdf of the distributions of the Glass Fiber data
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Table 3: Performance Rating of the IOW distribution with Carbon Fibers Dataset.

Distribution Parameter AIC CAIC BIC HQIC W A
& = 4085.1225855
IOW 2029.215 -2029.092 -2024.005 -2027.107  0.3537269  1.933555
B = —0.2288471
& = 0.3513662
GOWG-G 301.2179  301.3416  306.4283  303.3266  0.2250905  1.234457
B = —1.8754485
& = 2.2593908
B = —0.2016595
GoW 290.5644 2909854  300.985 2947818  0.06475948 0.3833602
a = 0.2649778
b = 2.9807809
& = 0.009063479
B = 5.065619209
GoLo 292.8646  293.2857  303.2853  297.0821 0.06109876 0.4763095
a = 1.984851851
b= 0.647117443
& = 0.08423018
GoE B =0.86595286  304.2500  304.5000 312.0656 307.4131 0.15973880  1.260799

a = 0.91342723
& = 0.01879975

GolE B8 = 3.10656725 289.8412  290.0912  297.6567  293.0043  0.06032237 0.4457551
a = 0.63392041

Table 4: Test statistic for the IOW distribution with Carbon Fibers Dataset

Distributions KS P Value Log-likelihood
oW 0.8711368 0 -1016.608
GOWG 0.1329093  0.05843415 148.609
GoW 0.0632502 0.8185524 141.2822
GolE 0.06232949  0.8320187 141.9206
GoE 0.09621573 0.312806 149.125

GoLo 0.06365319  0.8125448 142.4323
8 show the IOW distribution is more suitable for the glass data than the other competing distributions. Table 7 shows
the Kolmogorov-Smirnov Test, p-value and the log-Likelihood test of the various distributions under consideration for
glass fiber dataset.

4.3. Discussion

The performance of the models are determined by the value that corresponds to the lowest Akaike Information Criteria
(AIC) or the highest Log-likelihood value is regarded as the best model. In the two real life cases considered, the IOW
distribution has the lowest AIC value with -2029.215 and -54.64913 respectively. Also, the JOW has the highest value
of Log-likelihood of 1016.608and 29.32457 respectively. Hence, it is regarded as a better model for the data used.

Table 5: Descriptive statistics for the Glass Fibers dataset to 2 decimal points
Mean Median Mode St.D IQR Variance Skewness Kurtosis 25"P. 75!"P.
1.51 1.59 1.61 032 0.31 0.11 -0.81 0.80 1.38 1.69
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Table 6: Performance Rating of the IOW-G distribution with Glass Fibers Dataset

Distribution Parameter AIC CAIC BIC HQIC \%% A
& = 2.300551
IOW -54.64913  -54.44913 -50.36286 -52.96332  0.56319 3.047042
B = —2.579208
& = 4.499297
GOWG-G 35.36342  35.56342  39.64969  37.04923  0.2540335 1.397502
B =1.373304
& = 0.224534626
B = 0.009237687
GoW 38.37693  39.06658  46.94946  41.74855 0.2329559  1.283159
a = 0.797323628
b =5.617617029
& = 0.004592168
B = 8.179090952
GoLo 37.00548 37.69513 4557802  40.3771  0.1685148 0.9461908
a = 0.506999372
b = 1.515829086
& = —0.004768848
GoE B = —1.810999364 35.6353 36.04208  42.06471 38.16402  0.144475  0.8424945
a = —1.987714978
& = 0.2030548
GolE B = 11.5541435 34.08187 34.48865 40.51127 36.61059 0.1644603 0.9253032
a = 2.0003185
Table 7: Test statistic for the IOW-G distribution with Glass Fibers Dataset
Distributions KS p Value Log-likelihood
IOW 0.2464499  0.0009493034 29.32457
GOWG 0.1669343 0.05971754 15.68171
GoW 0.1520247 0.108711 15.18846
GolE 0.1327289 0.2169969 14.04093
GoE 0.1313551 0.2271038 14.81765
GoLo 0.1542228  0.09987383 14.50274

5. Concluding Remarks

The inverse odd Weibull generated family distribution has been successfully derived; expressions for its basic statistical
properties which include the cumulative hazard function, reversed hazard function, and quantile, median, hazard
function, odds function and the order statistics distribution have been successfully established. The shape of the
distribution could be inverted bathtub or decreasing (depending on the value of the parameters). An application to a
two real life data shows that the inverse odd Weibull general family of distribution is a strong and better competitor
for other families of distributions.
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