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Abstract

In this paper, permutation test of comparing two-independent samples is investigated in the context of extreme ranked
set sampling (ERSS). Three test statistics are proposed. The statistical power of these new test statistics are evaluated
numerically. The results are compared with the statistical power of the classical independent two-sample t-test, Mann-
Whitney U test, and the usual two-sample permutation test under simple random sampling (SRS). In addition, the
method of computing a confidence interval for the two-sample permutation problem under ERSS is explained. The
performance of this method is compared with the intervals obtained by SRS and Mann-Whitney procedures in terms
of empirical coverage probability and expected length. The comparison shows that the proposed statistics outperform
their counterparts. Finally, the application of the proposed statistics is illustrated using a real life example.

Key Words: Permutation Test; Extreme Ranked Set Sampling; Power Level; Type I Error Probability.

Mathematical Subject Classification: 62D05, 62G05, 62G09.

1. Introduction

McIntyre (1952) introduced the concept of ranked set sampling (RSS) as a new sampling scheme for data collection.
Due to its importance for a variety of applications in statistics, it is republished in McIntyre (2005) to estimate the mean
of Australian pasture yields. As claimed by McIntyre, McIntyre (1952, 2005), the mean of the RSS is an unbiased
estimator of the population mean. Also, the variance of the RSS mean is smaller than in simple random sampling
(SRS) with equal measurement elements. This sampling scheme is useful when it is difficult to measure large number
of elements but visually (without inspection) ranking some of them is easier. For example, in McIntyre’s experiment
the yields of pasture plots can be assessed without the actual laborious process of weighing and mowing the hay for a
lot of plots. Moreover, the RSS scheme is also highly applicable in instances where measuring a variable of interest
is difficult and risky to measure. For example, in studying some diseases such as the yellowing of the body of an
infant, one of the main steps is to measure the bilirubin level of the infant by taking their blood samples. However, it
is risky and excruciating to take the blood samples. It is rather easy to rank the babies and take the measurement of
the bilirubin level on their urine samples (Paul and Thomas, 2017).
The RSS scheme involves randomly selectingm sets, each of sizem elements, from a study population (typicallym is
in the range 2 to 5). The elements of each set are ordered with regards to the variable of interest by any negligible cost
method or visually without measurements. Finally, the i-th minimum from the i-th set, i = 1, 2, . . . ,m, is identified
for measurement. The obtained sample is referred to as a ranked set sample of set size m. Takahasi and Wakimoto
(1968) explained the mathematical theory behind the claims of McIntyre, McIntyre (1952, 2005) by showing that the
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efficiency of the RSS mean with respect to SRS, defined by the ratio of the variances of the two sample means, is
bounded by 1 and (m+ 1)/2.
Some authors estimate the parameters of a specific distribution using RSS. Bhoj (1997) obtained the estimates of the
location and the scale parameters of the extreme value distribution using RSS. Similarly, Abu-Dayyeh et al. (2004)
proposed some estimators for estimating the location and the scale parameters of the Logistic distribution using SRS,
RSS and some of its other modifications. For more examples, see Lam et al. (1994), Bhoj and Ahsanullah (1996),
Chacko and Thomas (2007), Chacko and Thomas (2008), Al-Saleh and Diab (2009), and Sarikavanij et al. (2014),
among others.
To better improve the efficiency of the estimators, some variations of RSS were implemented. For example (but not
limited to): Samawi et al. (1996) introduced a more practical and efficient variation of RSS which is referred to as the
extreme RSS (ERSS); Muttlak (1997) proposed a median RSS as a modification of RSS to decrease ranking error and
to improve the efficiency of the estimators being estimated; Al-Saleh and Al-Kadiri (2000) suggested double RSS as
a method that improves efficiency of the RSS estimators while keeping m fixed; and Al-Saleh and Al-Omari (2002)
suggested a multi-stage RSS as a generalization of double RSS. These variations of RSS were later used to estimate
the parameters of some distributions. Shaibu and Muttlak (2004) used ERSS and median RSS to propose linear un-
biased estimators and maximum likelihood estimators of the parameters of location-scale family of distributions like;
exponential, normal and gamma distributions. They showed that their estimators dominate other existing estimators
under ERSS and the estimators are most efficient under median RSS. For more examples, see Adatia (2000).
In the context of testing hypothesis, Koti and Jogesh Babu (1996) derived the exact distribution of the sign test statistic
based on RSS. It was reported that the test is more powerful than the counterpart sign test statistic of SRS. Liangyong
and Xiaofang (2010) used the sign test statistic of RSS for testing hypotheses about the quantiles of a population
distribution. Bohn and Wolfe (1992, 1994) and Bohn and Wolfe (1994) suggested the RSS analogue of the classical
two-sample Wilcoxon test and studied its relative properties under perfect and imperfect judgment. Öztürk (1999)
studied the effect of the RSS on two-sample sign test statistic. Öztürk and Wolfe (2000) presented an optimal RSS
allocation scheme for a two-sample RSS median test. They derived the exact distribution of the two-sample median
test statistic in the context of RSS and tabled it for some sample sizes. Samuh (2012), Samuh (2017), and Amro and
Samuh (2017) investigated the two-sample permutation test within the context of RSS and multistage RSS. In this
paper, a new testing procedure for the two-sample design within ERSS is investigated.
The rest of the paper is structured as follows. The procedure of the ERSS is described in Section 2. The independent
two-sample problem is introduced in Section 3. Permutation test for two-sample ERSS with three proposed test
statistics is discussed in Section 4. The method of computing a confidence interval for the two-sample permutation
problem under ERSS is explained in Section 5. Simulation study that shows the benefits of permutation test of the
extreme ranked set two-sample design is reported in Section 6. Illustrative example is used to show the application of
this research in Section 7. Finally, summary and concluding remarks are provided in Section 8.

2. Extreme ranked set sampling scheme

Following Samawi et al. (1996), the procedure of the ERSS is described as follows:

1. Randomly select m sets of size m elements each from the study population. These may be denoted as set 1 =
{Y ∗11, Y

∗
12, . . . , Y

∗
1m}, set 2 = {Y ∗21, Y

∗
22, . . . , Y

∗
2m}, and so on till the last set, setm= {Y ∗m1, Y

∗
m2, . . . , Y

∗
mm}.

It is assumed that the largest and the lowest elements in each set can be determined virtually or by any negligible
cost method. This is, of course, a simple and practical approach.

2. If m is even, measure the lowest ranked element in set 1. Repeat this procedure for set 2 till set (m/2).
Represent the measured elements as Y1, Y2, . . . , Y(m/2). Furthermore, measure the largest ranked element in
set (m/2 + 1). Repeat this procedure for set (m/2 + 2) till the last set, set m. Represent the measured elements
as Y(m/2+1), Y(m/2+2), . . . , Ym.

3. If m is odd, measure the lowest ranked element in set 1. Repeat this procedure for set 2 till set ((m − 1)/2).
Represent the measured elements as Y1, Y2, . . . , Y((m−1)/2). Furthermore, measure the largest ranked element
in set ((m+ 1)/2). Repeat this procedure for set ((m+ 3)/2) till set (m−1). Represent the measured elements
as Y((m+1)/2), Y((m+3)/2), . . . , Y(m−1). Element in the last set can be measured in two different ways:

(a) Select the average of the measures of the lowest and the largest ranked elements, or
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(b) Measure the median ranked element, say Ym. In this paper, we consider this way.

The acquired sample, {Y1, Y2, . . . , Ym}, is called an ERSS of size m.

4. Independently repeat the steps h cycles, if needed, to acquire an ERSS of size n = h×m.

It is worth to note that although m2 elements are sampled in the first step, only m of them are considered for measure-
ment. In case of perfect ranking (no error was made in the ranking mechanism) the measured elements are called the
order statistics and they are not ordered (See Navarro et al. (2007) for some examples where order statistics are not
ordered); we denote the i-th order statistic acquired in the j-th cycle by Yji, i = 1, 2, . . . ,m, and j = 1, 2, . . . , h.
To this end, the ERSS scheme produces a data set as follows

Y = {Yji} =


Y11 Y12 · · · Y1m

Y21 Y22 · · · Y2m

...
...

. . .
...

Yh1 Yh2 · · · Yhm


If m is even, the first m/2 columns have the distribution of the 1-st order statistic and the last m/2 columns have the
distribution of the m-th order statistic. If m is odd, the first (m− 1)/2 columns have the distribution of the 1-st order
statistic, the second (m − 1)/2 columns have the distribution of the m-th order statistic, and the last column has the
distribution of the (m/2)-th order statistic. Therefore, the data in the same column are identically distributed. Also,
all the data are mutually independent.
In this paper, we assume perfect judgment ranking in the selection of the data points for the ERSS. A violation of this
assumption is quite interesting and a subject of future work.

3. The independent two-sample design

In this section, the independent two-sample problem is introduced, and the classical independent t-test, Mann-Whitney
U test, and the two-sample permutation test are reviewed.
Let us consider the testing problems for one-sided alternative hypotheses as produced by treatments with non-negative
effect size δ. Particularly, let X1 = (X11, X12, . . . , X1n1) and X2 = (X21, X22, . . . , X2n2) be independent random
samples from F (x1) and G(x2) = F (x2 − δ), and we wish to test

H0 : δ = 0 against H1 : δ > 0. (1)

Under the normality assumption of the underlying distribution, the likelihood ratio test statistic for testing the null
hypothesis in Equation 1 is given by

T =
X̄1 − X̄2

Sp

√
1
n1

+ 1
n2

,

where X̄1 and X̄2 are the sample means of the two samples X1 and X2, respectively, and the pooled standard deviation
is

Sp =

√√√√(

n1∑
i=1

(X1i − X̄1)2 +

n2∑
i=1

(X2i − X̄2)2)/(n1 + n2 − 2).

When H0 is true, T is distributed as Student’s distribution with ν = n1 + n2 − 2 degrees of freedom. H0 is rejected
when |T | > tαν , where tαν is the upper α critical value, and α is the level of significance. The statistical power level is
given by

W (δ;n1, n2, α) = 1− Ft(tαν , ν, ncp),

where Ft is the cumulative distribution of the Student t, ν = n1 + n2 − 2 is the degrees of freedom, and ncp =

δ
(
S2
p(1/n1 + 1/n2)

)−1/2
is the non-centrality parameter. Note that W is a function of δ for a given sample sizes n1

and n2, and preassigned level of significance α. The power level measures how likely to get a significant result given
that the alternative hypothesis is true; It measures the probability that the true value of δ will be detected by the test.
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In a permutation framework, we can relax the normality assumption. Permutation tests form a subclass of nonparamet-
ric tests which do not rely on any particular distribution. To obtain an exact permutation solution, the exchangeability
assumption (often referred to as equality in distributions) in the null hypothesis is required to the data points. This
assumption is generally assured by randomly assigning experimental units to treatments in experimental studies. In
case of observational studies, exchangeability in the null hypothesis shall be assumed. For testing the null hypothesis
in Equation 1, a suitable test statistic should be chosen such that, without loss of generality, large values of it are
considered to be against H0. For more details about the choice of the test statistic in the permutation framework,
see Page 84 of Pesarin and Salmaso (2010). One may choose T = X̄1 − X̄2 as a test statistic. For determining the
exact p-value, an appropriate reference distribution is needed which is called the permutation distribution. Indeed, the
following steps are used to carry out the permutation test for two-sample design.

1. For the given two-independent samples, X1 and X2, calculate the observed test statistic, T0 = T (X1,X2).

2. Write down the set of all possible permutations of the n = n1 + n2 observations between the two samples; i.e.
the permutation sample space X . The cardinality of this space is n!.

3. For each permutation in X , compute the test statistic, T ∗ = T (X∗1,X
∗
2). The cardinality of related space is(

n
n1

)
.

4. The true p-value is calculated as

λT =
number of T ∗’s ≥ T0(

n
n1

) .

5. For a given preassigned significance level α, the test is declared to be significant if α is greater than the p-value.

Since it is tedious to write down and enumerate the whole members of permutation sample spaceX , conditional Monte
Carlo simulation (Algorithm 1) can be used to approximate the p-value at any desired accuracy.

Algorithm 1 Conditional Monte Carlo (CMC)

1. For the given samples, X1 and X2, compute the observed test statistic, T0 = T (X1,X2).

2. From X , take a random permutation (X∗1,X
∗
2) of (X1,X2), and compute the corresponding permutation test

statistic T ∗ = T (X∗1,X
∗
2).

3. Independently repeat Step 2 a large number of times, say B, giving B values for T ∗, say {T ∗b , b = 1, . . . , B}.

4. The estimated permutation p-value is

λ̂T =

∑B
b=1 I(T ∗b ≥ T0)

B
,

where I(·) is the indicator function.

Note that λ̂T is an unbiased estimate of the true λT and, due to the Glivenko-Cantelli theorem (Shorack and Wellner,
1986), as B diverges, it is strongly consistent. A 100(1− α)% approximate confidence interval for λT is

λ̂T ± zα2

√√√√ λ̂T

(
1− λ̂T

)
B

,

where
√
λ̂T

(
1− λ̂T

)
/B is the estimated standard error of λ̂T , and zα

2
is the upper α/2 critical level of the standard

normal distribution.
In order to properly define the power function, the underlying population distribution must be fully specified; defined
in its analytical form and all its parameters. But this is not the case in permutation framework. In practice, the power
of permutation test is based on repeated random sampling from some population. The p-value of the permutation test
is conditional upon the observations for each sample, and the power is the proportion of p-values that are less than or
equal α. Algorithm 2 is used for evaluating the power based on a standard Monte Carlo simulation.
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Algorithm 2 Power Function of Permutation Test

1. For the given samples, X1 and X2, find an estimate of δ, say δ̂. Then, consider the consequent empirical deviates
Ẑ = (X1 − δ̂,X2).

2. Take a random permutation Ẑ∗ of Ẑ. Then for any chosen δ the corresponding dataset (X∗1 + δ,X∗2) is consid-
ered.

3. Use the CMC algorithm (Algorithm 1) to estimate the permutation p-value λ̂T .

4. Independently repeat Steps 2 and 3 a large number of times, say R, giving R estimated p-values, say {λ̂T (r),
r = 1, . . . , R}.

5. Finally, the estimated power level is given by

Ŵ (δ;n1, n2, α, T ) =

∑R
r=1 I

(
λ̂T (r) ≤ α

)
R

.

6. To obtain the power as a function of δ, Steps 1-5 are repeated for different values of δ.

For more details see Pesarin and Salmaso (2010) (See also Samuh and Pesarin, 2018).
Another nonparametric test, which does not assume a normal distribution, is Mann-Whitney U test. The test statistic
is U = min(U1, U2), where

Ui = n1n2 +
ni(ni + 1)

2
−Ri, i = 1, 2,

and Ri is the sum of the ranks for sample i. A large value of U is considered to be against H0. To evaluate the power
of the Mann-Whitney U test, a standard Monte Carlo method can be used.

4. Two-sample permutation test based on ERSS

Let Yt = {Y tji} and Yc = {Y cji} be two independent ERSS groups. The first denotes the treatment group and
the second denotes the control group. In each group, the data are all mutually independent and, aside that, the data
in the same column are identically distributed. Therefore, under the null hypothesis of no effect, the exchangeability
assumption holds within columns and hence the permutation test can be applied. The data has to be permuted carefully
taking into account whetherm is odd or even to maintain the diversity of distributions. To this end, ifm is even then the
firstm/2 columns of Yt = {Y tji} are permuted with the firstm/2 columns of Yc = {Y cji} and the otherm/2 columns
of Yt = {Y tji} are permuted with the other m/2 columns of Yc = {Y cji}. while if m is odd, the first (m − 1)/2
columns of Yt = {Y tji} are permuted with the first (m− 1)/2 columns of Yc = {Y cji}, the other (m− 1)/2 columns
of Yt = {Y tji} are permuted with the other (m− 1)/2 columns of Yc = {Y cji}, and the last column of Yt = {Y tji} is
permuted with the last column of Yc = {Y cji}. To carry out the permutation test for this extreme ranked set two-sample
design, Algorithm 3 is used.
To this end, three test statistics are proposed:

1. The first proposal is based on the difference between overall means of the two groups;

T1 = Ȳ t − Ȳ c,

where Ȳ k =
∑nk
i=1

∑h
j=1 Y

k
ji/hm, k = t, c (Assuming balanced design).

2. The second proposal is based on the studentized statistic;

T2 =


∑2
r=1

(
Ȳ tEr−Ȳ

c
Er

σ̂Er

)2

, if m is even

∑3
s=1

(
Ȳ tOs−Ȳ

c
Os

σ̂Os

)2

, if m is odd
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Algorithm 3 Extreme ranked set two-sample permutation test

1. For the acquired extreme ranked set two-sample data sets Yt and Yc, compute the test statistic, T0.

2. Form a new matrix Y = Yt
⊎
Yc by concatenating Yt and Yc vertically (Note that the two matrices have m

columns).

3. Randomly permute Y as explained above to get Y∗.

4. Split Y∗ into Yt∗ and Yc∗ such that Yt∗ and Yc∗ contain the same number of rows as in Yt and Yc, respec-
tively.

5. Compute the test statistic T ∗ = T (Y∗) based on Y∗ = Yt∗⊎Yc∗.

6. Independently repeat Steps 3-5 a large number of times, say B, giving B test statistics, say {T ∗b , b = 1, . . . , B}.

7. The estimated p-value is

λ̂(Y) =

∑B
b=1 I (T ∗b ≥ T0)

B
.

where

σ̂2
Er =

∑
k∈{t,c}

∑
i∈Vr

h∑
j=1

(Y kji − Ȳ kEr)2/(mh− 2),

σ̂2
Os =

∑
k∈{t,c}

∑
i∈Ws

h∑
j=1

(Y kji − Ȳ kOs)2/(ns − 2),

Ȳ kEr = 2
∑
i∈Vr

h∑
j=1

Y kji/m, Ȳ kOs = 2
∑
i∈Ws

h∑
j=1

Y kji/m,

W1 = {1, 2, . . . , (m− 1)/2}, W2 = {(m+ 1)/2, . . . ,m− 1}, W3 = {m},

V1 = {1, 2, . . . ,m/2}, V2 = {(m+ 2)/2, . . . ,m},

and
n1 = n2 = (m− 1)h, n3 = 2h.

It is worth to note that the rationale behind this proposal is due to the structure of the data points obtained by
ERSS. For example, when m is even, the first m/2 columns of Yt and Yc have the distribution of the 1-st order
statistic and the last m/2 columns have the distribution of the m-th order statistic. Therefore, the studentized
statistic is proposed for more accuracy and to maintain the diversity of distributions.

3. The third proposal is based on partial tests. If m is even, the null hypothesis in Equation 1 is partitioned into 2
independent sub-hypotheses as follows.

H0r : δr = 0 against H1r : δr > 0, r = 1, 2,

where δ1 (δ2) is the true difference between the means of the 1-st (m-th) order statistic in the treatment and
control groups. Thus, the suggested test statistic will be

T3r = Ȳ tr − Ȳ cr , r = 1, 2.

If m is odd, the null hypothesis in Equation 1 is partitioned into 3 independent sub-hypotheses as follows.

H0s : δs = 0 against H1s : δs > 0, s = 1, 2, 3,

where δ1 (δ2, δ3) is the true difference between the means of the 1-st (m-th, (m/2)-th) order statistic in the
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treatment and control groups. Thus, the suggested test statistic will be

T3s = Ȳ ts − Ȳ cs , s = 1, 2, 3.

Now, Algorithm 1 is used and this leads to 2 or 3 independent p-values. Finally, these p-values have to be com-
bined for testing the overall hypothesis in Equation 1. The following approaches are considered for combining
p-values.

(a) The Fisher approach (Fisher, 1934). It is based on the statistic X2 = −2
∑m
i=1 log λi. Under the null

hypothesis, X2 ∼ χ2
(2m). So, the combined p-value is given by

λF = P (χ2
(2m) > X2).

(b) The Liptak approach (Liptak, 1958). It is based on the statistic L =
∑m
i=1 Φ−1(1− λi), where Φ(·) is the

standard normal cumulative distribution function. Under the null hypothesis, L/
√
m ∼ N(0, 1). So, the

combined p-value is given by

λL = P

(
Z >

L√
m

)
,

where Z is the standard normal random variable.

(c) The logistic approach (Mudholkar and George, 1977). It is based on the logit statistic t = C−1
∑m
i=1 log [(1− λi)/λi],

where

C =

√
mπ2(5m+ 2)

3(5m+ 4)
.

Under the null hypothesis, t follows approximately a Student’s distribution with (5m + 4) degrees of
freedom. Hence, the combined p-value is given by

λM = P
(
T(5m+4) > t

)
.

5. Permutation confidence interval for δ

Suppose that δ̂L and δ̂U are the lower and upper limits, respectively, for the parameter δ. The interval (δ̂L, δ̂U ) is called
a (1− α)100% confidence interval for δ if

P (δ̂L ≤ δ ≤ δ̂U ) = 1− α.

The confidence interval for δ contains all values of δ0 for which the null hypothesis H0 : δ = δ0 versus H1 : δ 6= δ0 is
not rejected at level α. The one-sided confidence interval for δ contains all values of δ0 for which the null hypothesis
H0 : δ = δ0 versus H1 : δ > (or <)δ0 is not rejected at level α.
Pesarin and Salmaso (2010) provided a method to compute a confidence interval for the usual two-sample permutation
problem. The method can be adapted to construct a permutation confidence interval for δ under ERSS. Algorithm 4
summarizes this method. To carry out this algorithm, two types of different tolerance specifications must be defined;

1. An error ε > 0 to control the reliability of the permutation p-value. It must be related to the number of
permutations used in CMC algorithm (B); the smaller ε is, the larger B is.

2. A real number η.

Two criteria are used to evaluate the performance of this algorithm; (1) by estimating the empirical coverage probability
of the resulting confidence interval, and (2) by calculating the length of the interval. This is done by simulation.

6. Simulation study

A simulation study is carried out to assess the significance level and the power of the proposed test statistics for the
two-sample ERSS design and to compare them with the usual two-sample permutation test, Mann-Whitney U test,
and the classical two-sample t-test.

Permutation Tests for Two-sample Location Problem Under Extreme Ranked Set Sampling 393

Pak.j.stat.oper.res. Vol.16 No.2 2020 pp 387-408 DOI: http://dx.doi.org/10.18187/pjsor.v16i2.2746



Algorithm 4 Permutation Confidence Interval for δ

1. For the given samples, Yt and Yc, find an estimate of δ, say δ̂.

2. Choose a negative value of η and subtract (δ̂ + η) from every value of the treatment group Yt.

3. Use the CMC algorithm to estimate the permutation p-value, λ̂(η), based on the data sets Yt− (δ̂+ η) and Yc.

4. If |λ̂(η)− α/2| < ε, then assign δ̂L = δ̂ + η. Otherwise, repeat Steps 2 and 3 with different value of η.

5. To obtain the upper confidence limit of δ, repeat Steps 2 and 3 with positive values for η until the condition
|1− λ̂(η)− α/2| < ε is satisfied and then assign δ̂U = δ̂ + η.

6.1. Simulation conditions

Different configurations are considered in the simulation study. For each combination of m = {3, 4} and h =
{3, 5, 10}, four different distributions are considered; uniform distributionU(−1/3, 1/3), normal distributionN(0, 1),
exponential distribution Exp(1), and gamma distribution G(4, 1). Several other combinations were also performed
but not reported here, and the results follow the same behavior. The simulation study is performed based on R = 5000
data sets. The permutation is based on B = 1000 replications. To examine the significance level of the tests, we set
δ = 0, while to investigate the power behavior, we select values of δ in the set {0.2, 0.4, 0.6, 0.8}. The nominal
significance level was set to α = {0.05, 0.1, 0.4}. Tables 1-8 contain the results of the study.
It is worth to point out that the power levels of the proposed test statistics are obtained for the same generated two-
sample ERSS. Moreover, balanced designs are considered in computing the power levels; that is, each sample of the
two-sample ERSS is with set size m and number of cycles h. Also, the size of each sample in the two-sample SRS is
h×m, so that power comparisons between the considered test statistics under ERSS and SRS are done by maintaining
the same number of observations in both schemes (to insure that the two schemes have the same cost).

6.2. Simulation results

As reported in Tables 1 and 2, the proposed test statistics, for all considered distributions, control the type I error
probability at the nominal α level except the third proposed test statistic when the sample size is small (especially
when h < 4). Thus, the test based on the third proposed statistic is conservative for small sample size. For instance,
when h = 3 for all distributions considered, the empirical level of significance of the statistics (SRS, T1 and T2)
are the closest to their corresponding nominal significance level, while the empirical level of significance of the third
proposed statistic (T3(Fisher), T3(Liptak), T3(Logit)) deviates the most from α. Nevertheless, the empirical level of
significance of T3(Fisher) gets closer to the nominal level for high values of α. Furthermore, when h = 5 under all
distributions considered, the empirical level of significance of the third proposed statistic is now closer to α, just as
the other test statistics. In fact, they are even much closer than other estimators for high values of α under normal and
exponential distributions. Generally, when h > 3, the empirical level of significance of all the statistics are almost the
same as their corresponding nominal level for high values of α.
The empirical power levels are shown in Tables 3-8. For fixed m, h, and α, the power levels of the permutation test
statistics based on ERSS (T1, T2, T3), are strictly higher than the power level of the permutation test statistic within
SRS and MW for all given δ except at very small sample size (h < 4) and small nominal significance level. For all
considered test statistics, the power levels increase as the effect size δ increases. Moreover, the power levels based on
ERSS increase as m, h, and α increase. It can be also seen that the power levels of T1 and T2 behave the same for the
uniform and normal distributions, and T2 is more appropriate for the exponential and gamma distributions (which are
asymmetric distributions) than for the uniform and normal distributions (which are symmetric distributions). In addi-
tion, T2 behaves better for the exponential distribution than for the gamma distribution in the sense that the skewness
is greater for the exponential distribution than for the gamma distribution. Among the considered combining func-
tions, the Liptak combining function is the best for the uniform and normal distributions. All considered combining
functions behave almost the same for large sample size. Finally, under normality assumption, Tables 9-11 report the
exact power levels for the parametric one-sided two-sample t-test for different values of the sample size. Apparently,
the power levels of the permutation test statistics based on ERSS are higher than in the parametric t-test. Contrarily,
the power levels of the permutation test under SRS are equivalent to the parametric t-test for a large sample size, but
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Table 1: Empirical level of significance from the simulation study, m = 3, h = 3.
Nominal level α

Distribution Test stat 0.05 0.10 0.20 0.40 0.60 0.80 0.90
Uniform SRS 0.058 0.109 0.197 0.394 0.615 0.813 0.906

MW 0.041 0.094 0.194 0.389 0.545 0.797 0.863
T1 0.052 0.101 0.197 0.400 0.592 0.802 0.893
T2 0.048 0.103 0.205 0.403 0.600 0.803 0.896
T3(Fisher) 0.016 0.042 0.131 0.347 0.556 0.752 0.866
T3(Liptak) 0.024 0.062 0.150 0.344 0.526 0.709 0.788
T3(Logit) 0.023 0.056 0.147 0.340 0.529 0.712 0.795

Normal SRS 0.049 0.109 0.200 0.420 0.629 0.814 0.911
MW 0.038 0.089 0.190 0.392 0.549 0.791 0.862
T1 0.046 0.097 0.193 0.391 0.590 0.805 0.901
T2 0.049 0.097 0.199 0.395 0.595 0.806 0.908
T3(Fisher) 0.011 0.044 0.127 0.336 0.541 0.774 0.888
T3(Liptak) 0.023 0.058 0.147 0.325 0.523 0.716 0.798
T3(Logit) 0.017 0.055 0.145 0.323 0.525 0.721 0.805

Exponential SRS 0.045 0.105 0.203 0.404 0.603 0.801 0.900
MW 0.039 0.094 0.194 0.392 0.546 0.799 0.867
T1 0.045 0.094 0.187 0.379 0.575 0.793 0.899
T2 0.044 0.098 0.194 0.383 0.589 0.795 0.898
T3(Fisher) 0.009 0.034 0.122 0.339 0.536 0.763 0.875
T3(Liptak) 0.023 0.056 0.143 0.317 0.511 0.700 0.791
T3(Logit) 0.015 0.049 0.134 0.312 0.510 0.709 0.797

Gamma SRS 0.055 0.108 0.217 0.403 0.600 0.778 0.892
MW 0.041 0.098 0.191 0.383 0.540 0.793 0.865
T1 0.047 0.095 0.198 0.399 0.599 0.808 0.901
T2 0.045 0.094 0.196 0.397 0.601 0.815 0.910
T3(Fisher) 0.011 0.044 0.124 0.339 0.560 0.776 0.891
T3(Liptak) 0.025 0.058 0.138 0.334 0.518 0.719 0.800
T3(Logit) 0.021 0.052 0.133 0.330 0.522 0.725 0.805

slightly higher for lower sample sizes.
To evaluate the performance of the confidence intervals of δ obtained by Algorithm 4, the empirical coverage prob-
ability and the expected length (based on 2000 simulations) of 90% confidence intervals are calculated. Data are
simulated from uniform distribution, normal distribution, exponential distribution, and gamma distribution. The re-
sults are reported in Tables 12 and 13 for different values of m, h, and δ. It can be seen that, comparing ERSS to SRS,
the confidence intervals obtained by ERSS are, on average, shorter than the one obtained by SRS of equivalent sample
size. Intervals obtained by Mann-Whitney procedure are the shortest. Everything else being fixed, the length of the
intervals decrease as the sample size (the set size m and/or the number of cycle h) increases. The coverage probability
(percent of intervals containing δ) is at least as the nominal 90% level for all considered test statistics. When m = 4,
the coverage probability is a bit lower than the nominal 90% level for those intervals obtained by T2 and T3 statistics
for the exponential distribution. Moreover, the coverage probability obtained by T1 does not differ substantially from
the one obtained by SRS, but the length of the interval obtained by T1 is shorter than the one obtained by SRS.
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Table 2: Empirical level of significance from the simulation study, m = 3, h = 5.
Nominal level α

Distribution Test stat 0.05 0.10 0.20 0.40 0.60 0.80 0.90
Uniform SRS 0.049 0.100 0.202 0.407 0.615 0.814 0.910

MW 0.045 0.096 0.189 0.394 0.592 0.773 0.870
T1 0.049 0.100 0.203 0.394 0.587 0.789 0.891
T2 0.051 0.101 0.198 0.392 0.589 0.788 0.893
T3(Fisher) 0.043 0.098 0.196 0.393 0.586 0.787 0.886
T3(Liptak) 0.048 0.095 0.192 0.388 0.580 0.781 0.886
T3(Logit) 0.047 0.094 0.194 0.386 0.580 0.782 0.887

Normal SRS 0.057 0.106 0.203 0.406 0.601 0.804 0.897
MW 0.046 0.098 0.186 0.387 0.592 0.775 0.867
T1 0.056 0.109 0.201 0.399 0.605 0.807 0.900
T2 0.059 0.107 0.203 0.406 0.601 0.805 0.900
T3(Fisher) 0.053 0.100 0.198 0.397 0.602 0.803 0.906
T3(Liptak) 0.054 0.101 0.199 0.398 0.596 0.795 0.896
T3(Logit) 0.053 0.102 0.199 0.398 0.598 0.797 0.896

Exponential SRS 0.053 0.106 0.202 0.395 0.601 0.796 0.898
MW 0.048 0.099 0.187 0.388 0.593 0.775 0.872
T1 0.054 0.104 0.206 0.400 0.608 0.799 0.905
T2 0.053 0.109 0.203 0.405 0.600 0.802 0.900
T3(Fisher) 0.048 0.094 0.198 0.394 0.599 0.798 0.900
T3(Liptak) 0.049 0.101 0.200 0.398 0.594 0.795 0.890
T3(Logit) 0.047 0.099 0.198 0.397 0.594 0.795 0.891

Gamma SRS 0.057 0.103 0.195 0.398 0.603 0.798 0.900
MW 0.044 0.097 0.184 0.392 0.596 0.778 0.870
T1 0.044 0.095 0.195 0.398 0.602 0.804 0.902
T2 0.047 0.092 0.197 0.395 0.600 0.800 0.901
T3(Fisher) 0.041 0.088 0.188 0.392 0.590 0.802 0.899
T3(Liptak) 0.043 0.089 0.191 0.385 0.593 0.799 0.897
T3(Logit) 0.044 0.087 0.187 0.385 0.593 0.798 0.898
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Table 3: Empirical power levels from the simulation study, the nominal significance level is α = 0.05 – Uniform
and normal distributions

Uniform Normal
m h Test Stat δ → 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
3 3 SRS 0.100 0.196 0.314 0.472 0.107 0.210 0.350 0.504

MW 0.056 0.100 0.171 0.279 0.057 0.104 0.184 0.304
T1 0.143 0.292 0.517 0.746 0.139 0.282 0.530 0.724
T2 0.127 0.267 0.466 0.679 0.132 0.250 0.477 0.656
T3(Fisher) 0.042 0.114 0.242 0.405 0.042 0.096 0.242 0.397
T3(Liptak) 0.084 0.194 0.367 0.558 0.075 0.169 0.354 0.538
T3(Logit) 0.070 0.166 0.331 0.514 0.063 0.145 0.318 0.500

5 SRS 0.135 0.274 0.480 0.690 0.133 0.269 0.482 0.679
MW 0.070 0.163 0.306 0.479 0.077 0.171 0.324 0.520
T1 0.180 0.449 0.733 0.916 0.184 0.428 0.727 0.900
T2 0.177 0.432 0.714 0.901 0.177 0.411 0.705 0.887
T3(Fisher) 0.160 0.388 0.663 0.865 0.155 0.366 0.650 0.850
T3(Liptak) 0.178 0.433 0.713 0.901 0.170 0.401 0.701 0.886
T3(Logit) 0.173 0.424 0.700 0.896 0.168 0.396 0.688 0.880

10 SRS 0.188 0.450 0.734 0.927 0.195 0.452 0.751 0.918
MW 0.119 0.306 0.570 0.809 0.114 0.324 0.603 0.849
T1 0.297 0.702 0.949 0.997 0.284 0.682 0.939 0.996
T2 0.294 0.702 0.945 0.996 0.283 0.679 0.937 0.994
T3(Fisher) 0.268 0.659 0.926 0.993 0.257 0.639 0.915 0.992
T3(Liptak) 0.299 0.704 0.945 0.996 0.284 0.683 0.936 0.994
T3(Logit) 0.292 0.694 0.942 0.996 0.281 0.676 0.933 0.994

4 3 SRS 0.116 0.246 0.386 0.582 0.117 0.235 0.426 0.599
MW 0.067 0.132 0.247 0.393 0.070 0.137 0.262 0.419
T1 0.217 0.528 0.812 0.950 0.160 0.392 0.657 0.847
T2 0.227 0.524 0.805 0.946 0.156 0.384 0.648 0.836
T3(Fisher) 0.213 0.500 0.783 0.936 0.144 0.364 0.616 0.810
T3(Liptak) 0.225 0.531 0.810 0.947 0.156 0.386 0.648 0.842
T3(Logit) 0.229 0.525 0.805 0.943 0.154 0.382 0.641 0.835

5 SRS 0.144 0.338 0.580 0.805 0.153 0.348 0.594 0.791
MW 0.093 0.218 0.407 0.626 0.088 0.229 0.436 0.673
T1 0.296 0.705 0.944 0.996 0.235 0.557 0.856 0.971
T2 0.297 0.705 0.944 0.995 0.231 0.553 0.848 0.971
T3(Fisher) 0.277 0.678 0.936 0.994 0.220 0.524 0.826 0.965
T3(Liptak) 0.298 0.702 0.944 0.996 0.233 0.553 0.853 0.971
T3(Logit) 0.295 0.698 0.942 0.996 0.231 0.549 0.846 0.970

10 SRS 0.223 0.551 0.843 0.975 0.220 0.542 0.839 0.970
MW 0.139 0.391 0.702 0.910 0.141 0.402 0.740 0.929
T1 0.473 0.930 0.999 1.000 0.366 0.811 0.986 1.000
T2 0.477 0.931 0.999 1.000 0.365 0.809 0.985 0.999
T3(Fisher) 0.447 0.913 0.998 1.000 0.350 0.787 0.980 1.000
T3(Liptak) 0.477 0.929 0.999 1.000 0.365 0.810 0.986 0.999
T3(Logit) 0.473 0.927 0.999 1.000 0.367 0.803 0.984 0.999
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Table 4: Empirical power levels from the simulation study, the nominal significance level is α = 0.05 – expo-
nential and gamma distributions

Exponential Gamma
m h Test Stat δ → 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
3 3 SRS 0.122 0.252 0.400 0.563 0.109 0.225 0.358 0.527

MW 0.079 0.194 0.346 0.514 0.059 0.118 0.219 0.361
T1 0.149 0.318 0.539 0.713 0.145 0.302 0.501 0.714
T2 0.196 0.462 0.739 0.892 0.143 0.311 0.515 0.711
T3(Fisher) 0.068 0.218 0.426 0.613 0.039 0.130 0.264 0.453
T3(Liptak) 0.120 0.305 0.541 0.707 0.077 0.215 0.388 0.602
T3(Logit) 0.103 0.276 0.507 0.685 0.063 0.190 0.346 0.561

5 SRS 0.163 0.311 0.528 0.706 0.145 0.289 0.496 0.706
MW 0.121 0.336 0.570 0.767 0.091 0.193 0.374 0.592
T1 0.191 0.442 0.692 0.861 0.187 0.442 0.705 0.894
T2 0.296 0.683 0.905 0.981 0.205 0.482 0.753 0.931
T3(Fisher) 0.281 0.662 0.890 0.976 0.174 0.435 0.708 0.906
T3(Liptak) 0.288 0.647 0.879 0.967 0.196 0.468 0.746 0.925
T3(Logit) 0.288 0.659 0.894 0.974 0.191 0.462 0.738 0.925

10 SRS 0.207 0.488 0.751 0.916 0.191 0.455 0.758 0.916
MW 0.222 0.605 0.872 0.972 0.133 0.370 0.679 0.897
T1 0.279 0.654 0.895 0.979 0.278 0.672 0.928 0.990
T2 0.446 0.889 0.992 1.000 0.313 0.740 0.966 0.997
T3(Fisher) 0.450 0.895 0.993 1.000 0.292 0.707 0.955 0.996
T3(Liptak) 0.449 0.885 0.992 1.000 0.314 0.738 0.963 0.997
T3(Logit) 0.455 0.897 0.993 1.000 0.312 0.736 0.964 0.997

4 3 SRS 0.140 0.281 0.465 0.647 0.121 0.249 0.434 0.610
MW 0.108 0.262 0.481 0.660 0.073 0.156 0.302 0.497
T1 0.153 0.351 0.553 0.736 0.152 0.379 0.619 0.820
T2 0.357 0.767 0.946 0.986 0.188 0.457 0.739 0.915
T3(Fisher) 0.390 0.791 0.954 0.989 0.182 0.448 0.739 0.910
T3(Liptak) 0.354 0.725 0.898 0.960 0.191 0.451 0.731 0.904
T3(Logit) 0.372 0.774 0.937 0.983 0.190 0.457 0.742 0.914

5 SRS 0.176 0.376 0.616 0.800 0.155 0.349 0.598 0.801
MW 0.161 0.442 0.711 0.879 0.103 0.261 0.504 0.748
T1 0.207 0.459 0.728 0.888 0.213 0.517 0.797 0.945
T2 0.482 0.905 0.990 1.000 0.260 0.637 0.906 0.989
T3(Fisher) 0.522 0.933 0.995 1.000 0.253 0.634 0.911 0.991
T3(Liptak) 0.488 0.900 0.989 1.000 0.260 0.633 0.900 0.987
T3(Logit) 0.508 0.920 0.992 1.000 0.260 0.640 0.913 0.991

10 SRS 0.246 0.569 0.844 0.968 0.233 0.552 0.842 0.970
MW 0.291 0.732 0.951 0.994 0.161 0.474 0.807 0.960
T1 0.297 0.672 0.926 0.987 0.325 0.762 0.966 0.998
T2 0.718 0.988 1.000 1.000 0.423 0.894 0.996 1.000
T3(Fisher) 0.758 0.995 1.000 1.000 0.419 0.897 0.996 1.000
T3(Liptak) 0.721 0.989 1.000 1.000 0.421 0.893 0.996 1.000
T3(Logit) 0.749 0.994 1.000 1.000 0.428 0.903 0.997 1.000
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Table 5: Empirical power levels from the simulation study, the nominal significance level is α = 0.10 – Uniform
and normal distributions

Uniform Normal
m h Test Stat δ → 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
3 3 SRS 0.191 0.317 0.472 0.650 0.195 0.331 0.477 0.650

MW 0.117 0.190 0.291 0.440 0.126 0.198 0.322 0.472
T1 0.244 0.447 0.678 0.858 0.246 0.456 0.660 0.840
T2 0.224 0.420 0.634 0.828 0.228 0.422 0.619 0.795
T3(Fisher) 0.117 0.256 0.459 0.656 0.117 0.244 0.424 0.621
T3(Liptak) 0.162 0.341 0.551 0.745 0.162 0.323 0.524 0.715
T3(Logit) 0.148 0.318 0.530 0.728 0.145 0.305 0.495 0.697

5 SRS 0.220 0.411 0.626 0.810 0.218 0.399 0.634 0.806
MW 0.151 0.262 0.443 0.632 0.133 0.269 0.472 0.659
T1 0.302 0.604 0.848 0.962 0.298 0.571 0.812 0.956
T2 0.291 0.590 0.837 0.954 0.297 0.562 0.802 0.946
T3(Fisher) 0.272 0.549 0.804 0.936 0.268 0.507 0.761 0.922
T3(Liptak) 0.285 0.593 0.838 0.951 0.286 0.555 0.797 0.940
T3(Logit) 0.278 0.587 0.830 0.951 0.285 0.548 0.789 0.938

10 SRS 0.303 0.595 0.851 0.971 0.306 0.591 0.861 0.966
MW 0.196 0.439 0.702 0.890 0.186 0.442 0.739 0.909
T1 0.426 0.804 0.976 0.999 0.416 0.807 0.973 0.996
T2 0.421 0.799 0.974 0.999 0.416 0.806 0.971 0.997
T3(Fisher) 0.401 0.773 0.966 0.998 0.392 0.775 0.963 0.996
T3(Liptak) 0.426 0.801 0.975 0.999 0.419 0.808 0.973 0.997
T3(Logit) 0.420 0.799 0.973 0.998 0.412 0.805 0.973 0.997

4 3 SRS 0.215 0.371 0.567 0.721 0.206 0.382 0.570 0.730
MW 0.128 0.218 0.351 0.537 0.122 0.236 0.380 0.537
T1 0.336 0.677 0.894 0.982 0.278 0.535 0.766 0.932
T2 0.341 0.678 0.889 0.981 0.280 0.527 0.758 0.928
T3(Fisher) 0.329 0.657 0.868 0.974 0.262 0.506 0.731 0.917
T3(Liptak) 0.343 0.681 0.891 0.981 0.280 0.531 0.757 0.928
T3(Logit) 0.340 0.677 0.883 0.979 0.280 0.526 0.756 0.925

5 SRS 0.246 0.486 0.702 0.893 0.263 0.481 0.729 0.884
MW 0.161 0.320 0.537 0.734 0.156 0.339 0.560 0.783
T1 0.436 0.833 0.981 0.999 0.349 0.704 0.915 0.988
T2 0.433 0.832 0.980 0.999 0.341 0.695 0.913 0.987
T3(Fisher) 0.418 0.808 0.976 0.998 0.328 0.671 0.904 0.983
T3(Liptak) 0.435 0.834 0.981 0.999 0.343 0.695 0.912 0.987
T3(Logit) 0.428 0.830 0.980 0.999 0.342 0.687 0.913 0.986

10 SRS 0.346 0.695 0.914 0.993 0.351 0.696 0.915 0.990
MW 0.219 0.515 0.804 0.946 0.220 0.535 0.825 0.960
T1 0.608 0.976 1.000 1.000 0.502 0.894 0.994 1.000
T2 0.605 0.974 1.000 1.000 0.503 0.897 0.993 1.000
T3(Fisher) 0.586 0.965 1.000 1.000 0.484 0.883 0.991 1.000
T3(Liptak) 0.605 0.973 1.000 1.000 0.503 0.894 0.994 1.000
T3(Logit) 0.600 0.972 1.000 1.000 0.499 0.894 0.993 1.000
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Table 6: Empirical power levels from the simulation study, the nominal significance level is α = 0.10 – expo-
nential and gamma distributions

Exponential Gamma
m h Test Stat δ → 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
3 3 SRS 0.205 0.368 0.531 0.677 0.194 0.328 0.514 0.641

MW 0.164 0.329 0.501 0.656 0.129 0.216 0.355 0.517
T1 0.259 0.460 0.651 0.802 0.236 0.453 0.673 0.834
T2 0.352 0.642 0.844 0.951 0.242 0.455 0.695 0.858
T3(Fisher) 0.200 0.431 0.675 0.825 0.127 0.276 0.496 0.711
T3(Liptak) 0.251 0.496 0.711 0.850 0.173 0.357 0.592 0.779
T3(Logit) 0.233 0.480 0.702 0.843 0.161 0.342 0.572 0.763

5 SRS 0.240 0.438 0.670 0.830 0.229 0.447 0.655 0.810
MW 0.210 0.463 0.709 0.854 0.157 0.295 0.524 0.735
T1 0.302 0.574 0.801 0.922 0.296 0.573 0.813 0.950
T2 0.422 0.792 0.963 0.994 0.310 0.614 0.857 0.972
T3(Fisher) 0.425 0.791 0.962 0.992 0.286 0.577 0.825 0.965
T3(Liptak) 0.417 0.773 0.951 0.987 0.303 0.606 0.852 0.970
T3(Logit) 0.422 0.783 0.955 0.990 0.298 0.599 0.848 0.970

10 SRS 0.327 0.604 0.838 0.963 0.328 0.598 0.847 0.963
MW 0.348 0.715 0.929 0.987 0.209 0.489 0.791 0.939
T1 0.414 0.764 0.945 0.990 0.415 0.788 0.960 0.997
T2 0.573 0.942 0.997 1.000 0.453 0.845 0.981 0.999
T3(Fisher) 0.581 0.943 0.997 1.000 0.432 0.829 0.976 0.998
T3(Liptak) 0.576 0.941 0.997 1.000 0.455 0.847 0.981 0.999
T3(Logit) 0.587 0.944 0.998 1.000 0.452 0.846 0.981 0.999

4 3 SRS 0.224 0.404 0.576 0.770 0.220 0.379 0.582 0.761
MW 0.197 0.382 0.603 0.767 0.127 0.246 0.424 0.622
T1 0.267 0.475 0.683 0.823 0.266 0.525 0.757 0.900
T2 0.517 0.866 0.971 0.995 0.317 0.617 0.864 0.962
T3(Fisher) 0.537 0.886 0.979 0.996 0.300 0.607 0.863 0.962
T3(Liptak) 0.512 0.842 0.956 0.987 0.316 0.616 0.854 0.952
T3(Logit) 0.525 0.869 0.969 0.994 0.316 0.616 0.860 0.959

5 SRS 0.266 0.503 0.748 0.885 0.264 0.482 0.735 0.884
MW 0.244 0.569 0.803 0.934 0.172 0.361 0.640 0.829
T1 0.304 0.590 0.812 0.935 0.341 0.656 0.881 0.975
T2 0.632 0.951 0.997 1.000 0.410 0.770 0.953 0.997
T3(Fisher) 0.665 0.965 0.999 1.000 0.398 0.770 0.956 0.997
T3(Liptak) 0.633 0.948 0.996 1.000 0.408 0.765 0.951 0.996
T3(Logit) 0.656 0.955 0.998 1.000 0.411 0.771 0.955 0.996

10 SRS 0.349 0.711 0.919 0.987 0.342 0.681 0.914 0.986
MW 0.407 0.830 0.969 0.998 0.251 0.601 0.877 0.981
T1 0.428 0.783 0.963 0.995 0.478 0.860 0.987 1.000
T2 0.823 0.996 1.000 1.000 0.580 0.947 0.999 1.000
T3(Fisher) 0.863 0.999 1.000 1.000 0.566 0.950 0.999 1.000
T3(Liptak) 0.824 0.996 1.000 1.000 0.578 0.946 0.999 1.000
T3(Logit) 0.847 0.998 1.000 1.000 0.577 0.951 0.999 1.000
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Table 7: Empirical power levels from the simulation study, the nominal significance level is α = 0.40 – Uniform
and normal distributions

Uniform Normal
m h Test Stat δ → 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
3 3 SRS 0.557 0.726 0.837 0.925 0.550 0.727 0.849 0.922

MW 0.438 0.527 0.635 0.766 0.420 0.530 0.654 0.774
T1 0.646 0.833 0.935 0.984 0.627 0.819 0.931 0.982
T2 0.637 0.825 0.924 0.983 0.628 0.809 0.919 0.978
T3(Fisher) 0.568 0.772 0.894 0.969 0.554 0.735 0.882 0.961
T3(Liptak) 0.572 0.775 0.895 0.970 0.561 0.752 0.885 0.962
T3(Logit) 0.570 0.773 0.894 0.968 0.555 0.748 0.882 0.962

5 SRS 0.621 0.796 0.919 0.974 0.612 0.788 0.916 0.971
MW 0.451 0.596 0.759 0.883 0.441 0.592 0.766 0.887
T1 0.703 0.907 0.981 1.000 0.704 0.899 0.977 0.998
T2 0.699 0.899 0.978 1.000 0.705 0.896 0.975 0.997
T3(Fisher) 0.674 0.891 0.976 0.999 0.685 0.880 0.967 0.995
T3(Liptak) 0.693 0.900 0.979 0.999 0.699 0.893 0.974 0.997
T3(Logit) 0.691 0.899 0.979 0.999 0.698 0.893 0.974 0.997

10 SRS 0.697 0.904 0.979 0.998 0.698 0.898 0.982 0.998
MW 0.518 0.741 0.910 0.978 0.525 0.755 0.919 0.984
T1 0.793 0.973 0.999 1.000 0.806 0.967 0.998 1.000
T2 0.792 0.971 0.999 1.000 0.808 0.967 0.998 1.000
T3(Fisher) 0.780 0.965 0.998 1.000 0.783 0.963 0.997 1.000
T3(Liptak) 0.792 0.970 0.999 1.000 0.806 0.967 0.998 1.000
T3(Logit) 0.790 0.970 0.999 1.000 0.807 0.967 0.998 1.000

4 3 SRS 0.605 0.765 0.878 0.946 0.586 0.586 0.901 0.956
MW 0.428 0.557 0.702 0.825 0.429 0.560 0.705 0.841
T1 0.725 0.929 0.986 1.000 0.670 0.670 0.969 0.994
T2 0.732 0.932 0.986 1.000 0.672 0.672 0.968 0.992
T3(Fisher) 0.721 0.923 0.983 0.999 0.661 0.661 0.960 0.992
T3(Liptak) 0.733 0.933 0.987 1.000 0.674 0.674 0.968 0.992
T3(Logit) 0.733 0.933 0.987 1.000 0.672 0.672 0.968 0.993

5 SRS 0.634 0.839 0.950 0.990 0.641 0.848 0.954 0.989
MW 0.491 0.667 0.818 0.930 0.484 0.651 0.857 0.943
T1 0.802 0.979 0.999 1.000 0.733 0.948 0.992 1.000
T2 0.807 0.979 0.999 1.000 0.729 0.944 0.992 1.000
T3(Fisher) 0.786 0.974 0.998 1.000 0.726 0.941 0.990 0.999
T3(Liptak) 0.806 0.979 0.999 1.000 0.729 0.944 0.992 1.000
T3(Logit) 0.806 0.978 0.999 1.000 0.728 0.943 0.992 1.000

10 SRS 0.733 0.942 0.993 1.000 0.747 0.945 0.991 1.000
MW 0.555 0.808 0.949 0.992 0.555 0.826 0.957 0.996
T1 0.903 0.998 1.000 1.000 0.848 0.991 1.000 1.000
T2 0.906 0.998 1.000 1.000 0.848 0.991 1.000 1.000
T3(Fisher) 0.896 0.997 1.000 1.000 0.837 0.987 1.000 1.000
T3(Liptak) 0.904 0.998 1.000 1.000 0.850 0.990 1.000 1.000
T3(Logit) 0.904 0.998 1.000 1.000 0.849 0.990 1.000 1.000
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Table 8: Empirical power levels from the simulation study, the nominal significance level is α = 0.40 – expo-
nential and gamma distributions

Exponential Gamma
m h Test Stat δ → 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
3 3 SRS 0.583 0.740 0.847 0.915 0.562 0.726 0.849 0.921

MW 0.486 0.655 0.799 0.899 0.430 0.540 0.688 0.820
T1 0.638 0.791 0.899 0.963 0.624 0.822 0.933 0.976
T2 0.746 0.917 0.981 0.996 0.645 0.848 0.945 0.987
T3(Fisher) 0.695 0.893 0.971 0.994 0.567 0.793 0.920 0.979
T3(Liptak) 0.689 0.872 0.958 0.984 0.567 0.787 0.922 0.975
T3(Logit) 0.687 0.871 0.958 0.984 0.564 0.786 0.922 0.975

5 SRS 0.613 0.801 0.919 0.973 0.612 0.807 0.921 0.974
MW 0.537 0.770 0.913 0.971 0.468 0.634 0.822 0.925
T1 0.673 0.877 0.969 0.989 0.688 0.891 0.976 0.995
T2 0.813 0.967 0.997 1.000 0.707 0.921 0.983 0.998
T3(Fisher) 0.807 0.964 0.996 1.000 0.692 0.911 0.982 0.997
T3(Liptak) 0.811 0.965 0.997 1.000 0.697 0.919 0.983 0.997
T3(Logit) 0.814 0.966 0.997 1.000 0.698 0.918 0.984 0.997

10 SRS 0.706 0.905 0.976 0.996 0.708 0.904 0.982 0.998
MW 0.669 0.911 0.987 0.998 0.531 0.808 0.950 0.990
T1 0.771 0.949 0.996 1.000 0.789 0.966 0.997 1.000
T2 0.892 0.994 1.000 1.000 0.817 0.982 0.999 1.000
T3(Fisher) 0.884 0.996 1.000 1.000 0.803 0.976 0.998 1.000
T3(Liptak) 0.891 0.994 1.000 1.000 0.817 0.982 0.999 1.000
T3(Logit) 0.892 0.995 1.000 1.000 0.816 0.981 0.999 1.000

4 3 SRS 0.595 0.760 0.869 0.953 0.604 0.767 0.898 0.961
MW 0.493 0.719 0.865 0.940 0.440 0.578 0.765 0.878
T1 0.637 0.815 0.918 0.971 0.667 0.846 0.962 0.989
T2 0.848 0.979 0.997 0.999 0.724 0.901 0.988 0.998
T3(Fisher) 0.858 0.983 0.998 1.000 0.713 0.902 0.988 0.998
T3(Liptak) 0.851 0.980 0.997 0.999 0.721 0.900 0.989 0.997
T3(Logit) 0.852 0.980 0.997 0.999 0.721 0.900 0.989 0.998

5 SRS 0.648 0.846 0.953 0.982 0.647 0.848 0.955 0.990
MW 0.596 0.842 0.956 0.990 0.497 0.703 0.881 0.961
T1 0.685 0.889 0.973 0.994 0.727 0.922 0.988 0.998
T2 0.892 0.997 1.000 1.000 0.795 0.963 0.997 1.000
T3(Fisher) 0.906 0.998 1.000 1.000 0.795 0.968 0.996 1.000
T3(Liptak) 0.893 0.996 1.000 1.000 0.794 0.962 0.997 1.000
T3(Logit) 0.894 0.996 1.000 1.000 0.795 0.963 0.997 1.000

10 SRS 0.725 0.934 0.990 0.999 0.734 0.941 0.992 0.999
MW 0.726 0.956 0.997 1.000 0.593 0.858 0.974 0.998
T1 0.786 0.963 0.999 0.999 0.835 0.983 0.999 1.000
T2 0.973 1.000 1.000 1.000 0.894 0.996 1.000 1.000
T3(Fisher) 0.979 1.000 1.000 1.000 0.892 0.996 1.000 1.000
T3(Liptak) 0.971 1.000 1.000 1.000 0.893 0.996 1.000 1.000
T3(Logit) 0.972 1.000 1.000 1.000 0.895 0.996 1.000 1.000
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Table 9: The power levels of the parametric one-sided two-sample t-test. The nominal significance level is
α = 0.05.

δ
n = m× h 0.2 0.4 0.6 0.8
9 0.108 0.203 0.335 0.492
12 0.121 0.243 0.413 0.600
15 0.133 0.282 0.483 0.689
20 0.153 0.344 0.587 0.799
30 0.190 0.455 0.743 0.922
40 0.224 0.551 0.845 0.971

Table 10: The power levels of the parametric one-sided two-sample t-test. The nominal significance level is
α = 0.10.

δ
n = m× h 0.2 0.4 0.6 0.8
9 0.193 0.325 0.483 0.645
12 0.212 0.374 0.564 0.739
15 0.229 0.420 0.632 0.810
20 0.256 0.488 0.724 0.889
30 0.304 0.601 0.847 0.964
40 0.348 0.691 0.917 0.989

Table 11: The power levels of the parametric one-sided two-sample t-test. The nominal significance level is
α = 0.40.

δ
n = m× h 0.2 0.4 0.6 0.8
9 0.568 0.724 0.846 0.925
12 0.593 0.766 0.888 0.956
15 0.616 0.800 0.918 0.974
20 0.648 0.844 0.950 0.989
30 0.699 0.902 0.981 0.998
40 0.739 0.938 0.992 1.000
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Table 12: Empirical coverage probability (expected length between parentheses) of 90% confidence intervals –
Uniform and normal distributions

Uniform Normal
m h Test Stat δ → 0.0 0.6 0.0 0.6
3 3 SRS 0.986 (2.605) 0.984 (2.613) 0.992 (2.562) 0.985 (2.594)

MW 0.905 (1.789) 0.886 (1.779) 0.903 (1.694) 0.899 (1.688)
T1 0.993 (2.025) 0.992 (2.009) 0.988 (2.040) 0.997 (2.045)
T2 0.979 (1.877) 0.978 (1.875) 0.973 (1.891) 0.983 (1.895)
T3(Fisher) 0.996 (2.361) 0.999 (2.379) 0.994 (2.426) 0.995 (2.397)
T3(Liptak) 0.997 (2.096) 0.996 (2.080) 0.997 (2.125) 0.993 (2.140)
T3(Logit) 0.998 (2.179) 0.998 (2.180) 0.994 (2.236) 0.995 (2.201)

5 SRS 0.993 (2.094) 0.995 (2.097) 0.995 (2.092) 0.993 (2.103)
MW 0.898 (1.343) 0.902 (1.333) 0.895 (1.278) 0.903 (1.281)
T1 0.999 (1.649) 0.998 (1.658) 0.998 (1.688) 0.998 (1.694)
T2 0.992 (1.508) 0.992 (1.515) 0.993 (1.542) 0.988 (1.533)
T3(Fisher) 0.993 (1.572) 0.993 (1.561) 0.992 (1.591) 0.996 (1.591)
T3(Liptak) 0.988 (1.516) 0.995 (1.514) 0.993 (1.540) 0.990 (1.534)
T3(Logit) 0.994 (1.522) 0.989 (1.517) 0.989 (1.542) 0.993 (1.533)

10 SRS 0.999 (1.636) 0.999 (1.635) 0.996 (1.641) 0.998 (1.642)
MW 0.892 (0.915) 0.904 (0.912) 0.912 (0.882) 0.904 (0.889)
T1 0.999 (1.267) 1.000 (1.267) 0.999 (1.286) 1.000 (1.280)
T2 0.998 (1.227) 0.996 (1.221) 0.999 (1.227) 0.999 (1.232)
T3(Fisher) 0.998 (1.233) 0.996 (1.224) 0.996 (1.238) 0.998 (1.238)
T3(Liptak) 0.998 (1.221) 0.998 (1.221) 0.998 (1.229) 0.999 (1.225)
T3(Logit) 0.999 (1.218) 0.998 (1.218) 0.999 (1.227) 0.998 (1.225)

4 3 SRS 0.992 (2.312) 0.988 (2.293) 0.989 (2.289) 0.990 (2.281)
MW 0.916 (1.545) 0.921 (1.553) 0.903 (1.481) 0.909 (1.462)
T1 0.998 (1.551) 0.998 (1.556) 0.998 (1.785) 0.998 (1.777)
T2 0.995 (1.386) 0.994 (1.397) 0.993 (1.589) 0.996 (1.596)
T3(Fisher) 0.992 (1.418) 0.992 (1.401) 0.986 (1.658) 0.990 (1.631)
T3(Liptak) 0.994 (1.379) 0.995 (1.396) 0.994 (1.580) 0.993 (1.591)
T3(Logit) 0.986 (1.382) 0.995 (1.386) 0.990 (1.592) 0.992 (1.614)

5 SRS 0.995 (1.912) 0.993 (1.914) 0.997 (1.887) 0.993 (1.883)
MW 0.903 (1.156) 0.923 (1.140) 0.900 (1.103) 0.913 (1.109)
T1 0.999 (1.284) 0.999 (1.287) 0.998 (1.523) 0.998 (1.519)
T2 1.000 (1.223) 0.997 (1.219) 0.994 (1.318) 0.997 (1.332)
T3(Fisher) 0.999 (1.211) 1.000 (1.213) 0.998 (1.383) 0.992 (1.375)
T3(Liptak) 1.000 (1.216) 0.997 (1.219) 0.998 (1.310) 0.994 (1.313)
T3(Logit) 0.999 (1.219) 0.998 (1.215) 0.996 (1.329) 0.995 (1.339)

10 SRS 1.000 (1.586) 0.997 (1.586) 0.998 (1.560) 0.998 (1.552)
MW 0.892 (0.791) 0.900 (0.788) 0.896 (0.766) 0.898 (0.765)
T1 1.000 (1.212) 1.000 (1.213) 0.999 (1.232) 1.000 (1.232)
T2 1.000 (1.017) 1.000 (1.022) 0.999 (1.217) 1.000 (1.218)
T3(Fisher) 1.000 (1.091) 0.999 (1.073) 1.000 (1.190) 1.000 (1.183)
T3(Liptak) 1.000 (1.007) 1.000 (1.008) 0.999 (1.222) 0.999 (1.216)
T3(Logit) 0.998 (1.027) 1.000 (1.026) 1.000 (1.205) 0.998 (1.202)
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Table 13: Empirical coverage probability (expected length between parentheses) of 90% confidence intervals –
Exponential and gamma distributions

Exponential Gamma
m h Test Stat δ → 0.0 0.6 0.0 0.6
3 3 SRS 0.997 (2.485) 0.992 (2.470) 0.987 (2.559) 0.988 (2.536)

MW 0.902 (1.348) 0.894 (1.337) 0.904 (1.605) 0.915 (1.597)
T1 0.997 (2.057) 0.994 (2.073) 0.997 (2.036) 0.993 (2.054)
T2 0.912 (1.475) 0.899 (1.454) 0.969 (1.787) 0.979 (1.807)
T3(Fisher) 0.983 (2.036) 0.975 (2.054) 0.997 (2.347) 0.994 (2.299)
T3(Liptak) 0.983 (1.841) 0.997 (1.872) 0.994 (2.076) 0.990 (2.054)
T3(Logit) 0.984 (1.909) 0.989 (1.910) 0.993 (2.135) 0.992 (2.127)

5 SRS 0.992 (2.036) 0.996 (2.024) 0.997 (2.080) 0.992 (2.060)
MW 0.919 (0.907) 0.898 (0.915) 0.904 (1.175) 0.910 (1.187)
T1 0.997 (1.709) 0.998 (1.723) 0.999 (1.700) 0.996 (1.695)
T2 0.916 (1.238) 0.931 (1.236) 0.977 (1.448) 0.983 (1.449)
T3(Fisher) 0.916 (1.264) 0.923 (1.270) 0.983 (1.516) 0.974 (1.510)
T3(Liptak) 0.947 (1.274) 0.959 (1.283) 0.988 (1.462) 0.992 (1.462)
T3(Logit) 0.937 (1.255) 0.951 (1.283) 0.990 (1.475) 0.989 (1.475)

10 SRS 0.998 (1.620) 1.000 (1.628) 1.000 (1.643) 0.995 (1.643)
MW 0.891 (0.585) 0.895 (0.592) 0.886 (0.808) 0.889 (0.801)
T1 1.000 (1.375) 0.999 (1.372) 1.000 (1.328) 0.999 (1.324)
T2 0.959 (1.055) 0.961 (1.045) 0.994 (1.197) 0.993 (1.196)
T3(Fisher) 0.926 (1.030) 0.944 (1.046) 0.990 (1.185) 0.984 (1.194)
T3(Liptak) 0.957 (1.059) 0.961 (1.047) 0.995 (1.200) 0.997 (1.202)
T3(Logit) 0.947 (1.053) 0.959 (1.045) 0.994 (1.193) 0.992 (1.191)

4 3 SRS 0.992 (2.221) 0.996 (2.219) 0.991 (2.254) 0.996 (2.266)
MW 0.906 (1.095) 0.891 (1.104) 0.913 (1.366) 0.915 (1.382)
T1 0.999 (1.978) 0.998 (1.984) 0.995 (1.846) 0.993 (1.836)
T2 0.833 (1.171) 0.866 (1.199) 0.955 (1.459) 0.959 (1.462)
T3(Fisher) 0.824 (1.144) 0.807 (1.145) 0.945 (1.479) 0.954 (1.477)
T3(Liptak) 0.891 (1.227) 0.880 (1.204) 0.979 (1.460) 0.975 (1.479)
T3(Logit) 0.837 (1.166) 0.868 (1.205) 0.959 (1.489) 0.950 (1.456)

5 SRS 1.000 (1.840) 0.996 (1.836) 0.994 (1.859) 0.992 (1.874)
MW 0.893 (0.779) 0.906 (0.758) 0.904 (1.010) 0.916 (1.020)
T1 0.999 (1.663) 0.999 (1.656) 0.997 (1.565) 0.998 (1.560)
T2 0.869 (1.039) 0.886 (1.053) 0.975 (1.234) 0.978 (1.262)
T3(Fisher) 0.829 (1.030) 0.851 (1.033) 0.954 (1.238) 0.954 (1.255)
T3(Liptak) 0.882 (1.035) 0.891 (1.051) 0.971 (1.250) 0.980 (1.243)
T3(Logit) 0.863 (1.053) 0.851 (1.035) 0.960 (1.231) 0.968 (1.236)

10 SRS 0.998 (1.486) 0.999 (1.488) 0.999 (1.519) 0.996 (1.514)
MW 0.901 (0.495) 0.912 (0.499) 0.897 (0.696) 0.912 (0.693)
T1 0.999 (1.333) 0.998 (1.332) 1.000 (1.244) 1.000 (1.244)
T2 0.895 (0.900) 0.895 (0.919) 0.995 (1.073) 0.991 (1.072)
T3(Fisher) 0.882 (0.909) 0.890 (0.887) 0.979 (1.076) 0.979 (1.068)
T3(Liptak) 0.908 (0.915) 0.905 (0.908) 0.991 (1.065) 0.989 (1.068)
T3(Logit) 0.909 (0.911) 0.890 (0.895) 0.986 (1.064) 0.987 (1.078)
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7. Data application

Height is an important factor in basketball and football. The heights of basketball players are in the range of 184-210
cm, and the heights of football players are in the range of 170-188 cm. Talent players could have height outside these
ranges. So, in general, the average height of basketballers is slightly greater than that for footballers. To examine
this among Palestinian athletes, a SRS of 15 footballers and 15 basketballers are selected from an athletics club in
Palestine. Moreover, an ERSS of 15 footballers and 15 basketballers (m = 3, and h = 5) are selected in the following
way. A group of three players is randomly selected, ranked according to their heights, and the height of the shortest
player is measured. A second group of three players is randomly selected, ranked according to their heights, and the
height of the tallest player is measured. Finally, a third group is randomly selected, ranked according to their heights,
and the height of the middle player is measured. This is a single cycle of ERSS of sizem = 3. This process is repeated
5 times (h = 5), for both footballers and basketballers, to acquire an ERSS of size m × h = 15. The data are shown
in Table 14.
Table 14: The height of 15 footballers and 15 basketballers chosen from an athletics club in Palestine by SRS
and ERSS

Basketballers Footballers
185 183 195 201 211 175 191 183 185 173

SRS 185 191 198 201 191 203 193 180 191 206
203 201 213 208 196 193 185 196 201 183
191 201 191 196 203 175 196 193 160 198

ERSS 198 185 201 183 175 196 180 201 193 188
201 206 195 213 206 203 191 173 198 178

To construct a 95% confidence interval for δ = µB − µF , the true difference between the two population means, we
set ε = 0.001 and B = 1000. The results are reported in Table 15. It can be seen that, for testing H0 : δ = 0 versus
H1 : δ 6= 0, all p-values are significant at α = 0.05. In addition, all confidence intervals are positive abd do not
include zero; that is, the expected height of basketballers is greater than that for footballers.

Table 15: 95% confidence interval for δ = µB − µF .
observed test stat p-value CI

SRS 8.267 0.024 (0.022, 16.757)
MW 162.5 0.039 (0.000, 10.600)
T1 8.133 0.012 (0.854, 15.412)
T2 3.257 0.006 (1.460, 14.807)
T3(Fisher) 13.2 0.015 (1.258, 15.008)
T3(Liptak) 6.60 0.006 (1.460, 14.807)
T3(Logit) 4.60 0.009 (1.258, 15.008)

8. Summary and Conclusion

Two-sample permutation test was previously investigated within the context of RSS and multistage RSS. It was shown
to be highly efficient and applicable in the context of RSS. In this paper, we extend the applicability of the permutation
test to ERSS. The concept of ERSS is first introduced. Then, we review the independent two-sample design, such as,
the classical independent t-test, Mann-Whitney U test, and the two-sample permutation test. Further, three different
permutation test statistics for two-sample ERSS are suggested. The first statistic is based on the difference between
overall means of two groups. The second is based on the studentized statistic, while the third is based on partial tests.
The third statistic yields 2 or 3 independent p-values, which are combined to a single p-value for testing hypothesis.
The following methods are explored for combining the p-values; the Fisher approach, the Liptak approach, and the
logistic approach. The suggested statistics are compared with the usual permutation test statistic, the Mann-Whitney
U test and the classical t-test. These are done under different distributions, such as, uniform, normal, exponential, and
gamma distributions. In summary, our simulation results assert that the power levels of the permutation test statistics
using ERSS are higher than the power levels of the classical two sample independent t-test statistic and the permutation
test statistic using SRS. In addition, we compute the confidence interval for the two-sample permutation problem under
ERSS and observe that the length of the confidence interval are, on average, lesser than the one obtained under SRS of
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equivalent sample size. The effect of sample size is considered and it is observed that the performance of the proposed
statistics improves with increase in sample size. Real life application of this research is shown using an illustrative
example. To this end, it is recommended to apply permutation test within the framework of ERSS in lieu of SRS. It is
worthy of note that we assume perfect judgment ranking in the selection of the data points for the ERSS. A violation
of this assumption is quite interesting and a subject of future work.
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