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Abstract

In this paper, we introduce a new robust estimator for the extreme value index of Pareto-type distributions under
randomly right-truncated data and establish its consistency and asymptotic normality. Our considerations are based on
the Lynden-Bell integral and a useful huberized M-functional and M-estimators of the tail index. A simulation study is
carried out to evaluate the robustness and the finite sample behavior of the proposed estimator. Moreover, an extreme
quantiles estimation was also derived and applied to real data-set of lifetimes of automobile brake pads.
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1. Introduction

Let (X j,Yj), 1 ≤ j ≤ N, denote a sample of bivariate positive and independent random variables (rv’s) defined over
some probability space (Ω,A ,P) , with continuous marginal cumulative distribution functions (cdf’s) F and G respec-
tively. Suppose that X is right-truncated by Y , in the sense that the rv of interest X j is only observed when X j ≤ Yj.
We assume that both survival functions F := 1−F and G := 1−G are regularly varying at infinity, with respective
indices (−1/γ1) and (−1/γ2) , i.e, F ∈ RV−1/γ1 and G ∈ RV−1/γ2 . That is, for any t > 0,

lim
x→∞

F (tx)/F (x) = t−1/γ1 and lim
x→∞

G(tx)/G(x) = t−1/γ2 (1)

where γ j > 0 ( j = 1,2) is the so-called extreme value index (e.v.i) is a well-known parameter to measure the tail
heaviness of a distribution. Distributions satisfying (1) play a very crucial role in extreme value analysis. They include
many commonly used models such as Pareto, Burr, Fréchet and Lévy-stable distributions, known to be suitable models
for adjusting large insurance claims, log-returns, large fluctuations, etc. (see for instance, Resnick, 2006). Recently,
Benatmane et al. (2020) have proposed a new so-called composite Rayleigh-Pareto distribution, and they showed that
such a model will be a better fit for some heavy tailed insurance claims data (actual data on Algerian fire insurance
losses and Danish fire loss data).
In many real applications, in case of presence of random right truncation (RRT), the rv of interest X may not be
fully available. This truncation can occur in many areas, for example, it is usual that the insurer’s claim data do not
correspond to the underlying losses, because they are truncated from above. We refer to Escudero and Ortega (2008)
for a recent paper on insurance claims under RRT.
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In what follows, the star notation (∗) relates to any characteristic of the observed subsequence denoted by (X∗i ,Y
∗
i ) ;

1≤ i≤ n, (n≤ N) subject to X∗i ≤Y ∗i from the N-sample. As a consequence of truncation, the size of actually observed
sample, n, is a binomial rv with parameters N and p := P(X ≤ Y ) . We shall assume that p > 0, otherwise, nothing
will be observed. Consequently, the marginal cdf’s of X∗ and Y ∗, respectively denoted by F∗ and G∗, becomes

F∗(x) := p−1
∫ x

0
G(t)dF(t) and G∗(y) := p−1

∫ y

0
F(t)dG(t),

the corresponding tails are

F∗(x) =−p−1
∫

∞

x
G(t)dF(t) and G∗(y) =−p−1

∫
∞

y
F(t)dG(t).

We can easily show that (see Proposition B.1.10 in de Haan and Ferreira, 2007) F∗ ∈ RV−1/γ∗1
and G∗ ∈ RV−1/γ∗2

with
respective indices

γ
∗
1 = γ1γ2/(γ1 + γ2) and γ

∗
2 = γ2. (2)

Since F and G are heavy-tailed. Therefore, the Woodroofe’s nonparametric estimator (see, Woodroofe, 1985) of F , is
defined by

F(W )
n (x) := ∏

j:X∗j >x
exp
(
−1/nCn(X∗j )

)
, where Cn (x) :=

1
n

n

∑
j=1

1(
X∗j ≤x≤Y ∗j

),
in which Cn is the empirical estimator of

C (z) := P(X ≤ z≤ Y |X ≤ Y ) = p−1G(z)F (z) .

Another most popular estimator for F , is the well known Lynden-Bell nonparametric maximum likelihood estimator,
originally proposed in Lynden-Bell (1971), defined by

F(LB)
n (x) := ∏

j:X∗j >x

(
1−1/nCn(X∗j )

)
.

Recently, Gardes and Stupfler (2015) was briefly exploited the above relations (2) to define an estimator for the
parameter of interest γ1 by considering the classical Hill (see, Hill, 1975) estimators of γ∗1 and γ∗2 as functions of two
distinct numbers of upper observations:

γ̂
(GS)
1 (k1,k2) = γ̂

∗
1 (k1)γ̂

∗
2 (k2)/(γ̂

∗
2 (k2)− γ̂

∗
1 (k1)) (3)

where

γ̂
∗
1 (k1) :=

1
k1

k1

∑
j=1

log
(

X∗(n− j+1)/X∗(n−k1)

)
and γ̂

∗
2 (k2) :=

1
k2

k2

∑
j=1

log
(

Y ∗(n− j+1)/Y ∗(n−k2)

)
,

X∗(1) ≤ ... ≤ X∗(n) and Y ∗(1) ≤ ... ≤ Y ∗(n) denote the usual order statistics of both observed samples, k1 and k2 are the
numbers of top statistics (upper observations) which are kept for estimating γ∗1 and γ∗2 . The estimator given by (3)
suffer from some kind of calibration problem, because of the difficulty in assessing the correlation between γ̂∗1 and
γ̂∗1 , the authors of Gardes and Stupfler (2015) they don’t consider the situation where the upper statistics are equal.
Benchaira et al. (2015) considered the case where k := k1 = k2 in the expression (3) of γ̂

(GS)
1 . They proved the

asymptotic normality of this estimator under the tail dependence and the second-order regular variation conditions.
Recently, Worms and Worms (2016) proposed an asymptotically normal estimator for γ1 by considering a Lynden-Bell
integrals with a deterministic threshold tn > 0 given by

γ̂
(W )
1 (tn) :=

1

nF(LB)
n (tn)

n

∑
j=1

F(LB)
n

(
X∗j
)

Cn

(
X∗j
) log

(
X∗j /tn

)
1(

X∗j >tn
). (4)

The case of a random threshold, is addressed by Benchaira et al. (2016) who propose a Hill-type estimator under RRT
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based on a Woodroofe integration as follows:

γ̂
(B)
1 (k) :=

1

nF(W )
n

(
X∗
(n−k)

) k

∑
i=1

F(W )
n

(
X∗(n−i+1)

)
Cn

(
X∗
(n−i+1)

) log
(

X∗(n−i+1)/X∗(n−k)

)
. (5)

All of these e.v.i estimators, as well as the classical Hill-type (in complete data case) are non-robust, in the sense that
they are very sensitive to extreme observations, data contamination or model deviation and tend to be highly volatile
for small samples (this is illustrated in our simulation study). Also, the rate of convergence of these estimators are
based on the optimal value of the numbers of top statistics k or the threshold tn, but this rate are slower than the
parametric rate

√
n. Moreover, estimating the optimal value of k is virtually impossible when the sample size n is

small and this leads to unstable estimates for small samples and large confidence intervals (see, Resnick, 1997, for a
detailed discussion). The alternative approach is inspired by the theory of robust inference (see for instance, Huber
(1981) and Hampel et al. (1986)) instead of exact consistency, this theory aim at stability for small samples, possibly
at the cost of a small asymptotic bias. However, as observed by Beran and Schell (2012), in some practical cases, such
as natural disasters, operational risk assessment or reinsurance data are sparse (with n often somewhere between 20
and 50) and distributions are expected to be heavy tailed with an unknown e.v.i. Robust estimation of e.v.i. focuses
primarily on complete data case, see Brazauskas and Serfling (2000), Beran and Schell (2012) and references therein.
The incomplete data case has first been considered by Sayah et al. (2014), who dealt with heavy-tailed and right
censored data. The aim of the current paper is to provide a robust e.v.i. estimator for heavy tailed data under RLT.

The paper is organized as follows. In Section 2, we introduce our new e.v.i. estimator under RRT, and establish its
consistency and asymptotic normality. The proposed estimator is compared with those already existed and its finite
sample behavior is checked by simulation in Section 3. As an application, we introduce, in Section 4, an estimator for
very high quantiles, which we apply to a real data-set of lifetimes of automobile brake pads. Section 5 contain some
concluding notes.

2. Framework and statement of the results

Recall that the condition (1) can be rephrased as F̄ (x) = x−1/γ1LF (x) and G(x) = x−1/γ2LG (x) , where LF and LG are
slowly varying functions at infinity. Assuming that limx→∞ LF (x) = c > 0 leads to the class of so-called Pareto-like (or
heavy-tailed) distributions, i.e. distribution satisfying 1−F (x) ∼ cx−1/γ1 as x tends to infinity. This, the tail of such
distribution behaves asymptotically like the tail of Pareto distribution. Thus, we suggests to robustify the Pareto max-
imum likelihood estimator of γ1 in order to obtain sensible estimates for the class of Pareto-type distributions despite
possible deviations from the single-parameter Pareto model (see, Beran and Schell, 2012, for a detailed discussion).
A natural estimate of γ1 can therefore be based on a Huberized Pareto score function :

ψv,u (x,γ) = [γ−1 log(x)−1]uv−
∫
[γ−1 log(z)−1]uvdFPar,γ(z)

= [γ−1 log(x)−1]uv− (v+ exp(−(v+1))− exp(−(u+1))) , (6)

where FPar,γ (x) := 1− x−1/γ , for x ≥ 1 and [y]uv := min(max(y,v) ,u) . The reason for huberization is that the Pareto
distribution is only an approximation of the true cdf. By huberizing, the estimate becomes robust against a large class
of deviations from this approximation. Since deviations are mainly relevant in the center of the distribution, the lower
truncation parameter v is more important. As an alternative to Hill-type estimation, Beran (1997) proposed to use all
data but huberize the Pareto score function at lower quantiles. This method has been investigated in the complete data
case in Beran and Schell (2012). Moreover, ψv,u (x,γ) is defined for any choice of γ > 0 and−1≤ v < u≤∞. Thus, as
shown by Beran and Schell (2012), robustness needs to be achieved for lower quantiles whereas extreme observations
on the right are those we are interested in. In particular, ψ−1,∞ (x,γ) = γ−1 log(x)−1 for x≥ 1. Consequently, a natural
choice is u = ∞ and robustification on the left is obtained only if v >−1.

Under the assumptions above, and denote by F a set of distributions with support in R+. Then the functional T (F)
defined on F as the solution t = t0 of the equation

βF (t) =
∫

ψv,u (x, t)dF (x) = 0, (F ∈F )

Robust estimation of the extreme value index of Pareto-type distributions under random truncation with applications 237



Pak.j.stat.oper.res. Vol.17 No.1 2021 pp 235-245 DOI: http://dx.doi.org/10.18187/pjsor.v17i1.2735

is called huberized tail index M-functional. Consequently, by using relations (1.9) and (1.10) in Stute and Wang
(2008) in the left truncation case, a natural adaptation of this integral βF (t) in the framework of RRT, leads to the
corresponding Huberized Lynden-Bell integral estimator of the e.v.i. γ1 as any solution sequence Tn of the empirical
equation

β̂Fn (Tn) :=
n

∑
j=1

ψv,u
(
X∗j ,Tn

)
F(LB)

n
(
X∗j
)
/Cn

(
X∗j
)
= 0. (7)

Remark 2.1. It is worth mentioning that for complete data case (no truncation), we have n = N, X∗ = X and Cn =
Fn = F∗n , it follows that β̂Fn (Tn) =∑

n
i=1ψv,u (Xi,Tn) and consequently Tn reduce to the Beran and Schell estimator (see

e.g. Beran and Schell, 2012).

Next, we investigate the asymptotic properties of the estimator of the tail index γ1 under the large class of Pareto-type
distributions assumptions. To formulate our main result, the following conditions are required:

(A1) Let F ∈ RV−1/γ1 and G ∈ RV−1/γ2 with 0 < γ1 < γ2.

(A2)
∫ (

1/G(x)
)

ψ2
v,u (x, t)dF (x)< ∞ and

∫ (
1/G(x)

)
dF (x)< ∞.

Remark 2.2. In comparison with the optimal value of the numbers of top statistics k in the Hill-type estimators,
the parameter v play a less crucial role, since the rate of convergence does not depend on v. In contrast to Hill-type
estimators under truncation (see, equations 3 and 5), all data are used. The role of v is only to determine a threshold
below which data have a bounded influence on the estimator. Note also that, the equation (7) defining our estimator
has a solution for n≥ 2 almost surely.

Theorem 2.1. Assume that assumptions (A1) and (A2) hold. Moreover, let Fn := F(LB)
n be the Lynden-Bell estimator of

the cdf F. Then, provided the existence of γ1 as a unique solution of βF (t) = 0, any solution sequence γ̂
(Z)
1 := γ̂

(Z)
1n (v,u)

of

β̂Fn (t) =
∫

ψv,u (x, t)dFn (x) = 0 (n ∈ N)

is a consistent estimator of γ1. Assume further that
∫

∂

∂ t ψv,u (x, t)dF (x) 6= 0 hold in a neighborhood of γ1. Then

√
n
(

γ̂
(Z)
1 − γ1

)
d→N

(
0,σ2

v,u
)
, as n→ ∞

where d→ stands for convergence in distribution and

σ
2
v,u := σ

2
(∫

∂

∂ t
ψv,u (x, t)dF (x)

)−2

(8)

in which

σ
2 =Var

{
Λ(X∗)
C (X∗)

+
∫ Y ∗

X∗

Λ(z)
C2 (z)

dF∗ (z)
}
,

where
Λ(z) :=

∫
z>x

[ψv,u (z,γ1)−ψv,u (x,γ1)]dF (x) .

Remark 2.3. Condition (A1) is standard in heavy-tailed and RRT context. The condition γ1 < γ2 ensures that the tail
of the truncated rv of interest X is note too contaminated by the truncation rv Y. In addition, (A1) implies that, the
right endpoints of X and Y are infinite and thus they are equal. Assumption (A2) already appeared in Stute and Wang

(2008), who showed that, σ2 < ∞ under (A2), therefore, σ2
v,u < ∞ too. Since G≤ 1, it implies

∫
ψ2

v,u (x, t)dF (x)< ∞,

which is the assumption when no truncation occurs (see, Theorem 2 in Beran and Schell, 2012). In our case, (A2) is
satisfied when 0 < γ1 < γ2.
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Proof. The proof is essentially based on Theorem 4.3 in He and Yang (1998) and Corollary 1.1. in Stute and Wang
(2008). Note that ψv,u (x, t) is monotone and continuous in t and βF (t) possesses an isolated root at t = γ1. Let ε > 0,
then under (A1) and (A2) by strong low of large numbers under truncation (see, Theorem 4.3 in He and Yang, 1998),
we have

β̂Fn (γ1− ε) =
∫

ψv,u (x,γ1− ε)dFn (x)→ βF (t0− ε)> 0 almost surely

and
β̂Fn (γ1 + ε) =

∫
ψv,u (x,γ1 + ε)dFn (x)→ βF (t0 + ε)< 0 almost surely.

Hence, there exists some n ∈ N such that

P
(

β̂Fm (γ1 + ε)< 0 < β̂Fm (γ1− ε) , ∀m≥ n
)
→ 1 as n→ ∞. (9)

According to the monotonicity of ψv,u (x, t) in t, together with the assumption of the existence of a solution sequence
γ̂
(Z)
1 of the empirical equation

β̂Fn (t) =
∫

ψv,u (x, t)dFn (x) = 0 (n ∈ N)

we then get
P
(

γ1 + ε < γ̂
(Z)
1 < γ1− ε, ∀n≥ m

)
→ 1 as n→ ∞.

The existence of such a solution sequence for a continuous function in a neighborhood of γ1 follows from (9) for n
large enough. Thus, γ̂

(Z)
1 is a consistent estimator of γ1.

Let us now focus on the asymptotic normality of γ̂
(Z)
1 . Recall that,∫

ψv,u

(
x, γ̂(Z)1

)
dFn (x)−

∫
ψv,u (x,γ1)dF (x) =

∫ (
ψv,u

(
x, γ̂(Z)1

)
−ψv,u (x,γ1)

)
dFn (x)

+
∫

ψv,u (x,γ1)d (Fn (x)−F (x)) , (10)

The assumed differentiability of ψv,u (x, t) in t allows a Taylor expansion around γ1 which yields

√
n
(

γ̂
(Z)
1 − γ1

)∫
∂

∂ t
ψv,u (x, t)dFn (x) =

√
n
∫

(−ψv,u (x,γ1))d (Fn (x)−F (x)) .

Then,
√

n
(

γ̂
(Z)
1 − γ1

)
=
√

n
(∫

∂

∂ t
ψv,u (x, t)dFn (x)

)−1 ∫
(−ψv,u (x,γ1))d (Fn (x)−F (x)) .

It was shown in Theorem 4.3 of He and Yang (1998) that for any non-negative measurable real function ϕ := ∂

∂ t ψ,
under the condition that

∫
ϕv,u (x, t)dF (x) 6= 0 hold in a neighborhood of γ1, we get∫

ϕv,u (x, t)dFn (x) =
∫

ϕv,u (x, t)dF (x)+op(1) . (11)

Under assumptions (A1) and (A2), we can apply the central limit theorem under right truncation (see, Corollary 1.1 in
Stute and Wang, 2008) for the Lynden-Bell integral, obtaining

√
n
∫

(−ψv,u (x,γ1))d (Fn (x)−F (x)) d→N
(
0,σ2) , as n→ ∞ (12)

where σ2 is given by (8). Consequently, the limit variance follows from (11) and (12). This concludes the proof of
Theorem 2.1.
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3. Simulation study

This following section examines the performance of our estimator γ̂
(Z)
1 given by solving the empirical equation (7), in

which, the huberizing constants are v = 0 and u = ∞, and compare it with estimators proposed by Gardes and Stupfler
(2015), Worms and Worms (2016) and Benchaira et al. (2016) given by (3), (4) and (5) respectively.
Firstly, we generate 1000 pseudo-random samples X and Y of size N = 100,150 and 200 from Burr’s models, F (x) =(
1+ x1/θ

)−θ/γ1 and Ḡ(x) =
(
1+ x1/θ

)−θ/γ2 x ≥ 0. We fix θ = 1/4 and choose the values 0.6 and 0.8 for γ1 and
p = 0.7 (resp. 0.9), that means the percentage of truncation is 30% (resp. 10%). The pertaining γ2-value is obtained
by solving the equation p = γ2/(γ1 + γ2), for each couple (γ1, p) . We obtained 1000 pseudo-random samples X∗ and
Y ∗ of size n' pN.
Next, we calculate the estimators values frame the observed data X∗ and Y ∗. For choosing the optimal number kn of
upper order statistics used in the computation of γ̂

(GS)
1 , γ̂

(W )
1 and γ̂

(B)
1 we adopt the Reiss and Thomas algorithm Reiss

and Thomas (2007). In those simulations, we used the random threshold X∗(n−kn)
instead of tn in the definition of γ̂

(W )
1 .

Also note that we only consider kn := k1 = k2 in the expression (3), in this case γ̂
(GS)
1 is the one considered in Benchaira

et al. (2015).
Finally, we compute the absolute bias (abias) and root mean squared error (rmse) of these estimators, the results are
summarized in Table 1 and Table 2. We see that our new estimator shows good performance compared to existing
methods for small sample sizes.

Table 1: Bias and rmse of the estimators based on 1000 samples of Burr’s models with γ1 = 0.6, for p = 0.7 (top)
and p = 0.9 (bottom).

γ̂
(Z)
1 γ̂

(GS)
1 γ̂

(W )
1 γ̂

(B)
1

p N n abias rmse abias rmse abias rmse abias rmse
100 70 .008 .028 .422 7.310 .014 .243 .197 .447

0.7 150 104 .006 .013 .225 1.892 .011 .212 .154 .399
200 139 .003 .010 .227 .993 .009 .187 .148 .363
100 80 .004 .171 .122 4.751 .007 .178 .050 .556

0.9 150 120 .005 .073 .072 .537 .007 .143 .061 .392
200 159 .006 .019 .084 .651 .006 .121 .068 .309

Table 2: Bias and rmse of the estimators based on 1000 samples of Burr’s models with γ1 = 0.8, for p = 0.7 (top)
and p = 0.9 (bottom).

γ̂
(Z)
1 γ̂

(GS)
1 γ̂

(W )
1 γ̂

(B)
1

p N n abias rmse abias rmse abias rmse abias rmse
100 70 .006 .019 .315 9.594 .017 .379 .247 .617

0.7 150 104 .009 .011 .308 2.803 .018 .365 .190 .515
200 139 .008 .012 .256 1.192 .019 .291 .200 .513
100 80 .023 .027 .093 5.440 .037 .183 .090 .713

0.9 150 120 .018 .020 .138 .786 .036 .161 .137 .467
200 159 .010 .014 .110 .487 .034 .138 .102 .407

Now, in order to study the sensitivity to outliers of our newly estimator, we consider an ε-contaminated model known
by mixture of Pareto distributions

Fγ1,λ ,ε (z) = 1− (1− ε)z−1/γ1 + εz−1/λ , γ1,λ > 0 and 0 < ε < 0.5 (13)

Note that, for γ1 < λ and ε > 0, (13) corresponds to a Pareto distribution contaminated by a longer tailed distribution.
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In this context, we proceed our study as follows:
We fix λ = 2 and consider four different contamination levels ε = 0.05,0.15,0.25,0.35, and we vary γ1 among 0.6
and 0.8. For each value of ε, 1000 samples of size N = 200 were generated from the model (13) truncated by a simple
Pareto model Ḡ(x) = x−1/γ2 , with p = 0.7 and 0.9.
Our illustration, made with respect to the biases and rmse’s, are summarized in Table 3. The values of the first line
are those of the case where ε = 0 (i.e., uncontaminated case). Both the bias and the rmse of our estimator are note
sensitive to outliers. Then we can conclude its robustness, giving us, in fact, an excellent level of protection against
contamination data.

Table 3: Bais and rmse of the estimators based on 1000 samples of a contaminated Pareto distribution, with tail
index γ1 = 0.6 (left) and γ1 = 0.8 (right), N = 200.

p 0.7 0.9 0.7 0.9
ε% bias rmse bias rmse bias rmse bias rmse
0 .0088 .0137 .0052 .0998 .0265 .0180 .0189 .0558
5 .0104 .0558 .0644 .1112 .0562 .0591 .0698 .0954
15 .0153 .0921 .0905 .1568 .0872 .0938 .0954 .1589
25 .0256 .3336 .1256 .4451 .1010 .7470 .1615 .4785
35 .1414 .5330 .2115 .6121 .1726 .9221 .2121 .7787

We conclude from tables 1, 2 and 3 that our newly estimator perform better (with the smallest bias and root mean
squared error), compared to existing methods, for small sample sizes and for both uncontaminated and contaminated
cases.

4. Application

4.1. Estimation of an upper quantile

Estimation of e.v.i. is very important in the determination of high quantiles, upper tail probabilities, mean excess
functions, and excess-of-loss and stop-loss reinsurance premiums. Consequently, small errors in estimation of this
quantity can produce substantial impact in applications. Thus, for robust estimation of quantities based on γ1 robust
estimation of γ1 itself is crucial. In other words, for a heavy tailed distributions, robust estimation of the high quantile
Qε corresponding to upper tail probability ε , becomes of interest, and this may be carried out by robust estimation of
γ1. We refer to Brazauskas and Serfling (2000) for a detailed account of this issue.
Let (αn) be some sequence of quantiles orders tending to 0, such that αn = o

(
F (sn)

)
, where (sn) is a sequence of

positive deterministic thresholds growing to infinity with n. Consequently, the quantile of F of order (1−αn) is such
that F (Qαn) = αn. We can then define an estimator Q̂αn,sn of Qαn :

Q̂αn,sn = sn

(
α
−1
n

(
1−F(LB)

n (sn)
))γ̂

(Z)
1

.

A similar estimator is proposed in Worms and Worms (2016), but instead of γ̂
(Z)
1 they consider the estimator γ̂

(W )
1 (tn)

given by (4). Before we state the asymptotic normality of Q̂αn,sn , we set dn := F (sn)/αn and assume that

dn→ ∞ and
√

n/ log(dn)→ ∞, as n→ ∞. (14)

Moreover, from the classical second order condition (see, Bingham et al. 1989) for LF , it follows that

∀x > 0,
LF (tx)
LF (t)

−1 t→∞∼ xρ −1
ρ

h(t) (∀x > 1)

where LF is slowly varying function at infinity and h is a positive measurable function, slowly varying with index
ρ < 0. Set H̄ := F̄Ḡ, where H is the distribution function of min(X ,Y ). The asymptotic normality result will then
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require the following conditions on sn :
nH̄ (sn)→ ∞, as n→ ∞ (15)

and √
nH̄ (sn)h(sn)→ λ , as n→ ∞ (for some λ > 0). (16)

Theorem 4.1. Under (14), (15), (16) and the assumptions of Theorem 2.1, we have
√

n
log(dn)

(
Q̂αn,sn

Qαn

−1
)

d→N
(
0,σ2

v,u
)
, as n→ ∞.

Proof. The result follows by analogous arguments as in the proof of Theorem 2 in Worms and Worms (2016). Recall
that the high quantile Qαn corresponding to order (1−αn) is such that F (Qαn) = αn, and its estimator is defined by

Q̂αn,sn = sn

(
F̄n (sn)

αn

)γ̂
(Z)
1

.

For convenience, we set Λn := F̄n (sn)/F̄ (sn) . Indeed, we have

Q̂αn,sn

Qαn

−1 =
sn

Qαn

(
F̄n (sn)

αn
Λn

)γ̂
(Z)
1

−1

= Λ
γ̂
(Z)
1

n

{(
sn

Qαn

dγ1
n d

(
γ̂
(Z)
1 −γ1

)
n −1

)
+

(
1−Λ

−γ̂
(Z)
1

n

)
+

(
sn

Qαn

dγ1
n −1

)}

=: Λ
γ̂
(Z)
1

n {In1 + In2 + In3} .

We will show that
√

n
log(dn)

In1 is asymptotically centred Gaussian rv with variance σ2
v,u and

√
n

log(dn)
In j

P→ 0, j = 2,3.
Concerning the term In1, by using the mean value theorem, it follows that

√
n

log(dn)
In1 =

√
n
(

γ̂
(Z)
1 − γ1

)
exp(δn) ,

where δn ≤
∣∣∣γ̂(Z)1 − γ1

∣∣∣ log(dn). Assumption (14) and Theorem 2.1, allows us to conclude that δn tends to 0. We use
then Theorem 2.1 to get. √

n
log(dn)

In1→ N
(
0,σ2

v,u
)
, as n→ ∞.

Let us now focus on the negligible terms In2 and In3. By using the mean value theorem, we get

In2 = γ̂
(Z)
1 M

−γ̂
(Z)
1 −1

n (Λn−1) ,

with Mn tending to 1. In view of assumptions (A1) and (15), the sequence (Λn) converge to 1 in probability (see,
Lemma 2 in Worms and Worms, 2016), we have then

√
n

log(dn)
(Λn−1) = op (1) .

Hence √
n

log(dn)
In2 = op (1) .

For In3, in view of the regular variation of F̄ , (1) can be rephrased as F̄ (x) = x−1/γ1LF (x) , where LF is slowly varying
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function at infinity and by definition of Qαn , we get

In3 =
sn

Qαn

(
F̄ (sn)

F̄ (Qαn)

)−γ1

−1 =

(
LF (Qαn)

LF (sn)

)−γ1

−1.

Therefore, we use the following representation of LF (see, Smith 1987, page 1195)

LF (x) = c
(
1+ρ

−1h(x)+o(h(x))
)
, for x→ ∞

where h is a positive measurable function, slowly varying with index ρ < 0. We have, Qαn/sn tends to infinity, then
h(Qαn)/h(sn) tends to 0 and ∣∣∣∣h(Qαn)

h(sn)
−
(

Qαn

sn

)ρ
∣∣∣∣≤ sup

w≥1

∣∣∣∣h(wsn)

h(sn)
−wρ−1

∣∣∣∣→ 0.

It follows that

LF (Qαn)

LF (sn)
= 1−ρ

−1h(sn)

(
1− h(Qαn)

h(sn)
+o
(

h(Qαn)

h(sn)

)
+op (1)

)
= 1−ρ

−1h(sn)(1+op (1)) .

Therefore |In3| ≤C |LF (Qαn)/LF (sn)−1| , then
√

n
log(dn)

|In3| ≤C
√

n
log(dn)

ρ
−1h(sn)(1+op (1))

and then the desired negligibility of In3 follows from assumption (16), which ends the proof of the Theorem.

4.2. Real data example : automobile brake pad lifetime

In reliability, a real data-set of lifetimes of automobile brake pads already considered in Lawless (2002), was recently
analyzed in Gardes and Stupfler (2015) and Benchaira et al. (2016) as an application of heavy-tailed and RRT data. We
follow the same steps as those in Gardes and Stupfler (2015) who transformed this sample into a right-truncated data,
which originally is left-truncated. We are dealing with a data-set of small size (n= 98), consequently, robust estimation
of γ1 can produce substantial robust estimation of the high quantile. Then, our procedure should be preferred to that
based on no robust estimation of γ1. In these situation, we used the random threshold X∗(n−kn)

instead of sn in the

definition of Q̂αn,sn . We select the optimal number of top statistics, via the numerical procedure of (Reiss and Thomas,
2007, page 137) and we get k = 10 and we estimate the tail index γ1 given in (5) and (7) we get γ̂

(B)
1 = 0.4701 and

γ̂
(Z)
1 = 0.4925 respectively.

The estimation results of our based (right-panel) and that of Benchaira et al. (2016) based (left-panel) extreme quantiles
estimators with three different quantile levels corresponding to αn = 0.001, 0.005, 0.010 are summarized in Table 4.
For instance, we conclude that the brake pad lifetime is estimated to be less than 17063 km for 1 % of the cars while
only be out of a thousand brake pads lasts less than 10200 km.

Table 4: Extreme quantiles for automobile brake pad lifetimes.

Quantile level Q̂αn via γ̂
(B)
1 Q̂αn via γ̂

(Z)
1

0.990 17604 17063
0.995 14641 14138
0.999 10559 10203
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5. Concluding notes

The main objective of this paper was to propose a robust estimator for the extreme value index of Pareto-type dis-
tributions under randomly right-truncated data by using a Lynden-Bell integral and a useful huberized M-functional
and M-estimators of the tail index. It has been shown that our newly estimator is more robust and perform better than
the estimators proposed in Gardes and Stupfler (2015), Worms and Worms (2016), Benchaira et al. (2016), for small
sample sizes and for both uncontaminated and contaminated cases. In our further research we will study this robust
estimator in more detail. We will investigate its influence function and its relative asymptotic efficiency. Note also
that, The degree of robustness is determined by the tuning parameters v and u. This paper does not treat the choice of
these parameters, it remains a likely topic for future investigations. Finally, we emphasize that our approach may also
be employed to derive several robust estimators of upper tail probabilities, mean excess functions, and excess-of-loss
and stop-loss reinsurance premiums, in case of presence of random right truncation.

Acknowledgment: The authors wish to thank the editor and reviewers for their helpful comments in the earlier version
of this paper.
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