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1. Introduction  

Weibull Distribution (WD) was introduced by Weibull (1939) while analyzing the strength data but soon realized its 

potential to model different types of data. Since its inception, it has been extensively used to analyze and model data 

emerging in multifarious fields owing to its simplicity and versatility. Khalili and Kromp (1991) studied the 

performance of the estimators of WD using three different approaches.  Hallinan  (1993) reviewed different forms of 

WD.  Alqam et al. (2002) conducted a comparison study of the three and two parameter WD  using 26 

mechanical property data sets of fiber-reinforced polymeric composite materials obtained through  the process of 

pultrusion. The cumulative distribution function (cdf) and probability density function (pdf) of WD are given by Eq. 

(1) and (2) respectively. 

𝑀(𝑥) = 1 − 𝑒−𝜃𝑥
𝜆
    ; 𝑥, 𝜃, 𝜆 > 0.                                                             (1) 

𝑚(𝑥) = 𝜃𝜆𝑥𝜆−1𝑒−𝜃𝑥
𝜆
.                                                                              (2) 

The hazard rate function (hrf) of WD can exhibit shapes such as increasing, decreasing and constant but it 

cannot be exploited in situations where the hrf takes complex shapes. Consequently, a number of researchers 

proposed various extensions of WD every so often to enhance its flexibility. Some generalizations of WD are: 

Bourguignon et al. (2014) proposed the Weibull- G family of Probability Distributions, Pal et al. (2016) introduced 

Exponentiated Weibull Distribution, Nassar et al. (2017) introduced Alpha Power Weibull Distribution, Alizadeh et 

al. (2017) put forth the Transmuted Weibull-G family of Distributions, Uzma et al. (2017) introduced Transmuted 

Exponentiated Inverse Weibull Distribution with Applications in Medical sciences etc. For latest generalizations, 

readers may refer to: El-Basit et al. (2020), Mazucheli et al. (2020), Mahmood et al. (2020) etc 

Lately, a new transmutation technique was introduced by Bakouch et al. (2017). A random variable X is 

said to follow New Transmuted distribution suggested by Bakouch et al (2017) with 𝛽 as transmuted parameter if its 

cdf and pdf take respectively the forms given by Eq. (3) and Eq. (4). 
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  𝐺(𝑥) = 𝑀(𝑥) + 𝛽
𝑀(𝑥)[1−𝑀(𝑥)]

[1+𝑀(𝑥)]
; 𝑥 ∊ 𝑅,−1 ≤ 𝛽 ≤ 1.                                             (3) 

   𝑔(𝑥) = [1 − 𝛽 +
2𝛽

[1+𝑀(𝑥)]2
]𝑚(𝑥).                                                                          (4) 

Where 𝑚(𝑥) and 𝑀(𝑥) are respectively the pdf and cdf of base distribution.  

In this paper, our aim to generalize the WD using this new transmutation technique proposed by Bakouch 

et al (2017). The new distribution is named New Transmuted Weibull Distribution (NTWD). The main motivation 

to consider NTWD is following: NTWD can exhibit more complex shapes of hrf and density function which the 

WD fails to depict. Also, NTWD outperforms the WD and other well-known model in terms of a real life data set. 

The rest of paper is organized as: The pdf, cdf, some special cases and a useful mixture representation of the pdf are 

discussed in section 2. Section 3 deals with the reliability measures and Section 4 is dedicated to the derivation of 

statistical properties of NTWD such as moments, mean, mgf, incomplete moments, mean deviation about mean and 

median, residual and reverse residual life moments etc. Various estimation procedures for estimating the parameters 

of proposed distribution are debated in section 5. In section 6, a simulation study is conducted to examine the 

efficiency of MLE’s and a real life data set is incorporated in section 7 to illustrate the application of proposed 

model in real life. 

2. NTWD 

 

Upon inserting Eq. (1) in Eq. (3) and Eq. (4), we obtain the cdf of NTWD given by Eq. (5). 

 

𝐺(𝑥) = 1 − 𝑒−𝜃𝑥
𝜆
+

𝛽𝑒−𝜃𝑥
𝜆
(1−𝑒−𝜃𝑥

𝜆
)

2−𝑒−𝜃𝑥
𝜆    ; 𝑥, 𝜃, 𝜆 > 0,   − 1 ≤ 𝛽 ≤ 1.                             (5) 

The corresponding pdf is given by Eq. (6). 

𝑔(𝑥) = {1 − 𝛽 +
2𝛽

[2−𝑒−𝜃𝑥
𝜆
]
2} 𝜃𝜆𝑥

𝜆−1𝑒−𝜃𝑥
𝜆
.                                                                     (6) 

The graphical overview of possible shapes of  pdf of NTWD  for distinct values of the parameters 𝛼, 𝛽 and 

𝜆 are given by Figure 1. 

 
Figure 1: Plots of Pdf of NTWD. 
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1.1. Special Cases 

In this section, the sub-models of NTWD will be discussed. 

1.1.1. New Transmuted Exponential Distribution 

If we put  𝜆 = 1 in Equation (5), we get new cdf of New Transmuted Exponential distribution given as 

𝐺(𝑥) = 1 − 𝑒−𝜃𝑥 +
𝛽𝑒−𝜃𝑥(1 − 𝑒−𝜃𝑥)

2 − 𝑒−𝜃𝑥
   ; 𝑥, 𝜃 > 0,−1 ≤ 𝛽 ≤ 1.   

1.1.2. New Transmuted Rayleigh Distribution 

If we put  𝜆 = 2 in Eq. (5), we get new cdf of New Transmuted Rayleigh distribution given as 

𝐺(𝑥) = 1 − 𝑒−𝜃𝑥
2
+
𝛽𝑒−𝜃𝑥

2
(1 − 𝑒−𝜃𝑥

2
)

2 − 𝑒−𝜃𝑥
2    ; 𝑥, 𝜃 > 0,   − 1 ≤ 𝛽 ≤ 1. 

1.1.3. Exponential Distribution 

If we put  𝜆 = 1and 𝛽 = 0  in Eq. (5), we get new cdf of Exponential distribution given as 

                     𝐺(𝑥) = 1 − 𝑒−𝜃𝑥    ; 𝑥, 𝜃 > 0.   

1.1.4. Rayleigh Distribution  

If we put  𝜆 = 2and 𝛽 = 0 in Eq. (5), we get new cdf of Rayleigh distribution given as 

                        𝐺(𝑥) = 1 − 𝑒−𝜃𝑥
2
   ; 𝑥, 𝜃 > 0. 

2. Useful Expansion 

A useful mixture representation of pdf given in Eq. (6) can be obtained using generalized binomial expansion is 

given as 

                        𝑔(𝑥) = ∑ ∑ 𝜃𝜆𝑥𝜆−1𝑏𝑗 (𝑗 + 1) (
𝑗
𝑘
) (−1)𝑘

𝑗
𝑘=0 𝑒−𝜃(𝑘+1)𝑥

𝜆
.∞

𝑗=0  

The above given mixture representation is very much useful in deriving various properties of NTWD. 

3. Reliability Analysis  

 In this section, some aspects related to reliability will be explored. 

3.1. Survival Function  

The survival function of NTWD is given as  

                  𝑆(𝑥) =  1 − 𝐺(𝑥) = 𝑒−𝜃𝑥
𝜆
−
𝛽𝑒−𝜃𝑥

𝜆
(1 − 𝑒−𝜃𝑥

𝜆
)

2 − 𝑒−𝜃𝑥
𝜆

. 

3.2. Hazard Rate Function (hrf) 

The hrf of NTWD is given as 
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ℎ(𝑥) =
{(1 + 𝛽) + (1 − 𝛽) (1 − 𝑒−𝜃𝑥

𝜆
) (3 − 𝑒−𝜃𝑥

𝜆
)} 𝜆𝜃𝑥𝜆−1

((1 − 𝛽(1 − 𝑒−𝜃𝑥
𝜆
)) − (1 − 𝛽)(1 − 𝑒−𝜃𝑥

𝜆
)
2
)

. 

Figure 2 displays the shape of hrf of NTWD for selected values of the parameters.  

 

Figure 2: Hrf of NTWD 

4. Statistical Properties 

Some of the statistical properties of NTWD will be discussed in this section. 

4.1. Moments 

The rth moment about origin of NTWD can be obtained as   

𝜇𝑟
′ = ∫ 𝑥𝑟 ∑ ∑ 𝜃𝜆𝑥𝜆−1𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝑗
𝑘=0 𝑒−𝜃(𝑘+1)𝑥

𝜆
𝑑𝑥.∞

𝑗=0
∞

0
                 

On simplification we get 

𝜇𝑟
′ =∑∑

Γ(
𝑟
𝜆
+ 1) 𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝜃
𝑟
𝜆(𝑘 + 1)

𝑟
𝜆
+1

𝑗

𝑘=0

∞

𝑗=0

.                            (7) 

Putting r=1, we get the mean of NTWD given as 

𝜇1
′ =∑∑

Γ(
1
𝜆
+ 1) 𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝜃
1
𝜆(𝑘 + 1)

1
𝜆
+1

𝑗

𝑘=0

∞

𝑗=0

.  

Also, the variance of NTWD is given as  

𝜇2 = {∑∑
Γ(
2
𝜆
+ 1)𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝜃
2
𝜆(𝑘 + 1)

2
𝜆
+1

𝑗

𝑘=0

∞

𝑗=0

} − {∑∑
Γ(
1
𝜆
+ 1) 𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝜃
1
𝜆(𝑘 + 1)

1
𝜆
+1

𝑗

𝑘=0

∞

𝑗=0

}

2

. 
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4.2. Incomplete Moments about Origin 

The nth incomplete moment about origin of NTWD is given as 

𝜇(𝑛)
′ =∑∑

γ(
𝑛
𝜆
+ 1, 𝜃(𝑘 + 1)𝑠𝜆) 𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝜃
𝑟
𝜆(𝑘 + 1)

𝑟
𝜆
+1

.

𝑗

𝑘=0

∞

𝑗=0

 

4.3. Moment Generating Function (mgf)  

The mgf of NTWD is given as 

𝑀𝑋(𝑡) =∑∑∑
𝑡𝑟Γ (

𝑟
𝜆
+ 1) 𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝑟! 𝜃
𝑟
𝜆(𝑘 + 1)

𝑟
𝜆
+1

∞

𝑟=0

𝑗

𝑘=0

∞

𝑗=0

. 

 

4.4. Mean Deviation about Mean and Median 

The mean deviation about mean for NTWD can be derived as 

𝐷(𝜇) = 2∫ (𝜇 − 𝑥)𝑑𝑥
𝜇

0

 

𝐷(𝜇) = 2𝜇∑∑𝑏𝑗 (𝑗 + 1) (
𝑗
𝑘
) (−1)𝑘 (

γ(1, 𝜃(𝑘 + 1)𝜇𝜆)

(𝑘 + 1)
−
γ (
1
𝜆
+ 1, 𝜃(𝑘 + 1)𝜇𝜆)

𝜃
1
𝜆(𝑘 + 1)

1
𝜆
+1

)

𝑗

𝑘=0

∞

𝑗=0

. 

Also the expression for Mean deviation about mean is the following form: 

𝐷(𝑀) = 𝜇 − 2(∑∑
γ(
1
𝜆
+ 1, 𝜃(𝑘 + 1)𝑀𝜆) 𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝜃
1
𝜆(𝑘 + 1)

1
𝜆
+1

𝑗

𝑘=0

∞

𝑗=0

). 

4.5.  Residual and Reverse Residual Life Moments. 

The residual life moments for NTWD can be derived as  

𝑀𝑠(𝑡) = ∑𝑡𝑠−𝑙 (
𝑠
𝑙
) (−1)𝑠−𝑙{𝐸(𝑋𝑙) − 𝜇𝑙(𝑡)}.

𝑠

𝑙=0

 

𝑀𝑠(𝑡) = ∑𝑡𝑠−𝑙 (
𝑠
𝑙
) (−1)𝑠−𝑙 {∑∑

Γ(
𝑙
𝜆
+ 1) 𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝜃
𝑙
𝜆(𝑘 + 1)

𝑙
𝜆
+1

𝑗

𝑘=0

∞

𝑗=0

𝑠

𝑙=0

−∑∑
γ(
𝑙
𝜆
+ 1, 𝜃(𝑘 + 1)𝑠𝜆) 𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝜃
𝑙
𝜆(𝑘 + 1)

𝑙
𝜆
+1

𝑗

𝑘=0

∞

𝑗=0

}. 
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𝑀𝑠(𝑡) = ∑𝑡𝑠−𝑙 (
𝑠
𝑙
) (−1)𝑠−𝑙 {∑∑

Γ(
𝑙
𝜆
+ 1, 𝜃(𝑘 + 1)𝑠𝜆) 𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝜃
𝑙
𝜆(𝑘 + 1)

𝑙
𝜆
+1

𝑗

𝑘=0

∞

𝑗=0

} .

𝑠

𝑙=0

 

 

Also, the simplified expression for reverse residual life moments of NTWD is given as    

 

𝑚𝑠(𝑡) = ∑𝑡𝑠−𝑙 (
𝑠
𝑙
) (−1)𝑙 {∑∑

γ(
𝑙
𝜆
+ 1, 𝜃(𝑘 + 1)𝑠𝜆) 𝑏𝑗 (𝑗 + 1) (

𝑗
𝑘
) (−1)𝑘

𝜃
𝑙
𝜆(𝑘 + 1)

𝑙
𝜆
+1

𝑗

𝑘=0

∞

𝑗=0

} .

𝑠

𝑙=0

 

Theorem 1.  Let 𝑋~𝑁𝑇𝑊𝐷(𝜃, 𝜆, 𝛽), then the Renyi and Mathai- Haubold entropy for NTWD is respectively given 

by 

𝐼𝛿 =
1

1 − 𝛿
∑∑∑(

𝛿
𝑗 
)

∞

𝑙=0

𝑗

𝑙=0

(
𝑗
𝑙 
) (
−2𝑙
𝑖
) 𝜃𝛿𝜆𝛿−1𝛽𝑗2−𝑙−𝑖(−1)𝑗−𝑙+𝑖

∞

𝑗=0

Γ((𝛿 + 1)(𝜆 − 1) + 1)

((𝛿 + 𝑖)𝜃)
((𝛿+1)(𝜆−1)+1)

; 𝛿 > 0, 𝛿 ≠ 1. 

𝑔𝑀𝐻(𝑥) =
1

1 − 𝛿

[
 
 
 
 
 

{
 
 

 
 
∑∑∑(

𝛿
𝑗 
)

∞

𝑙=0

𝑗

𝑙=0

(
𝑗
𝑙 
) (
−2𝑙
𝑖
) 𝜃2−𝛿𝜆1−𝛿𝛽𝑗2−𝑙−𝑖(−1)𝑗−𝑙+𝑖

∞

𝑗=0

Γ((1 − 𝛿)(𝜆 − 1) + 1)

((𝛿 + 𝑖)𝜃)((1−𝛿)(𝜆−1)+1) }
 
 

 
 

− 1

]
 
 
 
 
 

; 𝛿 > 0, 𝛿 ≠ 1. 

Proof.  The Renyi entropy (Renyi, 1961) is defined as   

𝐼𝛿 =
1

1−𝛿
∫ 𝑔𝛿(𝑥)𝑑𝑥
∞

0
                                      (8) 

where 𝛿 > 0, 𝛿 ≠ 1.  

Substituting Eq. (4) in Eq. (8), we get  

𝐼𝛿 =
1

1 − 𝛿
∫ {[1 + 𝛽 [

2

[1 + 𝑀(𝑥)]2
] − 1]𝑚(𝑥)}

𝛿

𝑑𝑥
∞

0

 

𝐼𝛿 =
1

1 − 𝛿
∫ ∑(

𝛿
𝑗 
)

∞

𝑗=0

𝛽𝑗 {[
2

[1 + 𝑀(𝑥)]2
] − 1}

𝑗

𝑚𝛿(𝑥)𝑑𝑥
∞

0

 

𝐼𝛿 =
1

1 − 𝛿
∫ ∑∑(

𝛿
𝑗 
)

𝑗

𝑙=0

(
𝑗
𝑙 
) 𝛽𝑗2𝑙(−1)𝑗−𝑙[1 + 𝑀(𝑥)]−2𝑙

∞

𝑗=0

𝑚𝛿(𝑥)𝑑𝑥
∞

0

 

𝐼𝛿 =
1

1 − 𝛿
∫ ∑∑(

𝛿
𝑗 
)

𝑗

𝑙=0

(
𝑗
𝑙 
) 𝛽𝑗2𝑙(−1)𝑗−𝑙 [2 − 𝑒−𝜃𝑥

𝜆
]
−2𝑙

∞

𝑗=0

(𝜃𝜆𝑥𝜆−1𝑒−𝜃𝑥
𝜆
 )𝛿𝑑𝑥

∞

0

 

𝐼𝛿 =
1

1 − 𝛿
∫ ∑∑∑(

𝛿
𝑗 
)

∞

𝑙=0

𝑗

𝑙=0

(
𝑗
𝑙 
) (
−2𝑙
𝑖
) 𝛽𝑗2−𝑙−𝑖(−1)𝑗−𝑙+𝑖𝑒−𝑖𝜃𝑥

𝜆
(𝜃𝜆𝑥𝜆−1𝑒−𝜃𝑥

𝜆
 )𝛿𝑑𝑥

∞

𝑗=0

∞

0
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𝐼𝛿 =
1

1 − 𝛿
∑∑∑(

𝛿
𝑗 
)

∞

𝑙=0

𝑗

𝑙=0

(
𝑗
𝑙 
) (
−2𝑙
𝑖
) 𝜃𝛿𝜆𝛿−1𝛽𝑗2−𝑙−𝑖(−1)𝑗−𝑙+𝑖

∞

𝑗=0

Γ((𝛿 + 1)(𝜆 − 1) + 1)

((𝛿 + 𝑖)𝜃)((𝛿+1)(𝜆−1)+1)
 , 

which is required expression of Renyi Entropy for NTWD. Also, the Mathai- Haubold entropy (Mathai and 

Haubold, 2006) is defined as 

𝑔𝑀𝐻(𝑥) =
1

1 − 𝛿
{∫ 𝑔2−𝛿(𝑥)𝑑𝑥 − 1

∞

0

} ; 𝛿 > 0, 𝛿 ≠ 1. 

Using Eq. (4) we get 

𝑔𝑀𝐻(𝑥) =
1

1 − 𝛿
{∫ {[1 + 𝛽 [

2

[1 + 𝑀(𝑥)]2
] − 1]𝑚(𝑥)}

2−𝛿

𝑑𝑥 − 1
∞

0

}, 

𝑔𝑀𝐻(𝑥) =
1

1 − 𝛿
{∫ ∑(

2 − 𝛿
𝑗 

)

∞

𝑗=0

𝛽𝑗 {[
2

[1 + 𝑀(𝑥)]2
] − 1}

𝑗

𝑚2−𝛿(𝑥)𝑑𝑥 − 1
∞

0

}, 

𝑔𝑀𝐻(𝑥) =
1

1 − 𝛿
{[∫ ∑∑(

2 − 𝛿
𝑗 

)

𝑗

𝑙=0

(
𝑗
𝑙 
) 𝛽𝑗2𝑙(−1)𝑗−𝑙[1 +𝑀(𝑥)]−2𝑙

∞

𝑗=0

𝑚2−𝛿(𝑥)𝑑𝑥
∞

0

]      − 1}, 

𝑔𝑀𝐻(𝑥) =
1

1 − 𝛿

{
 
 

 
 

[
 
 
 
 

∫ ∑
∑(

2 − 𝛿
𝑗 

)

𝑗

𝑙=0

(
𝑗
𝑙 
) 𝛽𝑗2𝑙(−1)𝑗−𝑙

[−𝑒−𝜃𝑥
𝜆
]
−2𝑙

∞

𝑗=0

(𝜃𝜆𝑥𝜆−1𝑒−𝜃𝑥
𝜆
 )
2−𝛿

𝑑𝑥
∞

0

]
 
 
 
 

− 1

}
 
 

 
 

, 

𝑔𝑀𝐻(𝑥) =
1

1 − 𝛿

[
 
 
 
 
 

{
 
 

 
 
∑∑∑(

𝛿
𝑗 
)

∞

𝑙=0

𝑗

𝑙=0

(
𝑗
𝑙 
) (
−2𝑙
𝑖
) 𝜃2−𝛿𝜆1−𝛿𝛽𝑗2−𝑙−𝑖(−1)𝑗−𝑙+𝑖

∞

𝑗=0

Γ((1 − 𝛿)(𝜆 − 1) + 1)

((𝛿 + 𝑖)𝜃)((1−𝛿)(𝜆−1)+1) }
 
 

 
 

− 1

]
 
 
 
 
 

, 

which is the required expression.  

4.6. L-Moments 

The L-moments for NTWD can be derived as 

                        𝐸(𝑋𝑖:𝑛
𝑟 ) = ∫ 𝑥𝑟

∞

0
𝑓𝑖:𝑛(𝑥)𝑑𝑥.                          (9) 

We have   

𝑓𝑖:𝑛(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
𝐺𝑖−1(𝑥)[1 − 𝐺(𝑥)]𝑛−𝑖𝑔(𝑥). 

𝑓𝑖:𝑛(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ (

𝑛 − 𝑖
𝑢

)

𝑛−𝑖

𝑢=0

(−1)𝑢𝐺𝑢+𝑖−1(𝑥)𝑔(𝑥). 

𝑓𝑖:𝑛(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ (

𝑛 − 𝑖
𝑢

)

𝑛−𝑖

𝑢=0

(−1)𝑢 {[1 − 𝛽 +
2𝛽

[1 +𝑀(𝑥)]
]𝑀(𝑥)}

𝑢+𝑖−1

𝑔(𝑥) 
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𝑓𝑖:𝑛(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ ∑ (

𝑛 − 𝑖
𝑢
)

𝑢+𝑖−1

𝑣=0

(
𝑢 + 𝑖 − 1

𝑣
)

𝑛−𝑖

𝑢=0

(−1)𝑢(1 − 𝛽)𝑢+𝑖−1−𝑣(2𝛽)𝑣( 1

+𝑀(𝑥))
−𝑣
𝑀𝑢+𝑖−1(𝑥) 𝑔(𝑥). 

𝑓𝑖:𝑛(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ ∑ ∑ (

𝑛 − 𝑖
𝑢

)

∞

𝑤=0

𝑢+𝑖−1

𝑣=0

(
𝑢 + 𝑖 − 1

𝑣
) (
−𝑣
𝑤
)

𝑛−𝑖

𝑢=0

(−1)𝑢 

× (1 − 𝛽)𝑢+𝑖−1−𝑣(2𝛽)𝑣𝑀𝑤+𝑢+𝑖−1(𝑥) 𝑔(𝑥). 

𝑓𝑖:𝑛(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ ∑ ∑∑∑ ∑ (

𝑢 + 𝑖 − 1
𝑣

)

𝑤+𝑢+𝑖−1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

(
𝑛 − 𝑖
𝑢

)

∞

𝑤=0

𝑢+𝑖−1

𝑣=0

(
−𝑣
𝑤
) (
𝑗
𝑘
)

𝑛−𝑖

𝑢=0

 

× 𝜃𝜆𝑏𝑗 (𝑗 + 1)(−1)
𝑘+𝑢+𝑙 (

𝑤 + 𝑢 + 𝑖 − 1
𝑙

) (1 − 𝛽)𝑢+𝑖−1−𝑣(2𝛽)𝑣𝑥𝜆−1𝑒−𝜃(l+𝑘+1)𝑥
𝜆
.  

𝑓𝑖:𝑛(𝑥) =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
∑ ∑ ∑ ∑ ∑ ∑ 𝜂𝑢,𝑣,𝑤,𝑗,𝑘𝜃𝜆𝑥

𝜆−1𝑤+𝑢+𝑖−1
𝑙=0

𝑗
𝑘=0

∞
𝑗=0

∞
𝑤=0

𝑢+𝑖−1
𝑣=0

𝑛−𝑖
𝑢=0 𝑒−𝜃(𝑙+𝑘+1)𝑥

𝜆
        (10) 

Where 

 𝜂𝑢,𝑣,𝑤,𝑗,𝑘= 𝑏𝑗 (𝑗 + 1)(−1)
𝑘+𝑢+𝑙 (

𝑛 − 𝑖
𝑢

) (
𝑢 + 𝑖 − 1

𝑣
) (
−𝑣
𝑤
) (
𝑗
𝑘
) × (

𝑤 + 𝑢 + 𝑖 − 1
𝑙

) (1 − 𝛽)𝑢+𝑖−1−𝑣(2𝛽)𝑣 . 

Therefore, upon substituting Eq. (10) in Eq. (9), we get 

𝐸(𝑋𝑖:𝑛
𝑟 ) = ∫ 𝑥𝑟

∞

0

𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ ∑ ∑∑∑ ∑

𝜂𝑢,𝑣,𝑤,𝑗,𝑘𝜃𝜆𝑥
𝜆−1

× 𝑒−𝜃(l+𝑘+1)𝑥
𝜆

𝑤+𝑢+𝑖−1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

∞

𝑤=0

𝑢+𝑖−1

𝑣=0

𝑛−𝑖

𝑢=0

𝑑𝑥. 

𝐸(𝑋𝑖:𝑛
𝑟 ) =

𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ ∑ ∑∑∑ ∑ 𝜂𝑢,𝑣,𝑤,𝑗,𝑘∫

𝑥𝑟𝜃𝜆𝑥𝜆−1

× 𝑒−𝜃(l+𝑘+1)𝑥
𝜆

∞

0

𝑑𝑥.

𝑤+𝑢+𝑖−1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

∞

𝑤=0

𝑢+𝑖−1

𝑣=0

𝑛−𝑖

𝑢=0

 

𝐸(𝑋𝑖:𝑛
𝑟 ) =

𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ ∑ ∑∑∑ ∑

𝜂𝑢,𝑣,𝑤,𝑗,𝑘Γ (
𝑟
𝜆
+ 1)

𝜃
𝑟
𝜆(𝑙 + 𝑘 + 1)

𝑟
𝜆
+1
.

𝑤+𝑢+𝑖−1

𝑙=0

𝑗

𝑘=0

∞

𝑗=0

∞

𝑤=0

𝑢+𝑖−1

𝑣=0

𝑛−𝑖

𝑢=0

 

 

4.7. Stress Strength Reliability 

If 𝑋1~ 𝑁𝑇𝑊𝐷(𝜃, 𝜆, 𝛽1) and 𝑋2~ 𝑁𝑇𝑊𝐷(𝜃, 𝜆, 𝛽2), then the stress strength reliability denoted by R for NTWD can 

be obtained as  

𝑅 = ∫ 𝑔1(𝑥)𝐺2(𝑥)𝑑𝑥

∞

0

 

𝑅 =∑ ∑ ∑𝑏𝑗
(𝛽1)𝑏𝑖

(𝛽1)

 
(𝑗 + 1) (

𝑗
𝑘
) (
𝑗 + 𝑖 + 1

𝑘
) (−1)𝑘

∞

𝑖=0

𝑗+𝑖+1

𝑘=0

∞

𝑗=0

∫ 𝜃𝜆𝑥𝜆−1 𝑒
−𝜃(𝑘+1)𝑥𝜆

∞

0

𝑑𝑥. 

After simplification of the above equation we get 
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𝑅 =∑ ∑ ∑𝑏𝑗
(𝛽1)𝑏𝑖

(𝛽1)

 

(𝑗 + 1)

(𝑘 + 1)
(𝑗 + 1) (

𝑗
𝑘
) (
𝑗 + 𝑖 + 1

𝑘
) (−1)𝑘

∞

𝑖=0

𝑗+𝑖+1

𝑘=0

∞

𝑗=0

. 

 

5. Estimation 

There are a number of methods of estimating the parameters. A few among them are discussed below: 

5.1. Maximum likelihood estimation 

The log likelihood function is given as 

𝑙𝑜𝑔𝑙 =∑𝑙𝑜𝑔 [1 − 𝛽 + 2𝛽𝑒2𝜃𝑥
𝜆
] + 𝑛𝑙𝑜𝑔

𝑛

𝑖=1

𝜃 + 𝑛𝑙𝑜𝑔𝜆 + (𝜆 − 1)∑ 𝑙𝑜𝑔𝑥𝑖
𝑛

𝑖=1
−∑ 𝜃𝑥𝑖

𝜆
𝑛

𝑖=1
. 

𝑙𝑜𝑔𝑙 = ∑ 𝑙𝑜𝑔 𝑇(𝑥𝑖 , 𝜃, 𝛽, 𝜆) + 𝑛𝑙𝑜𝑔
𝑛
𝑖=1 𝜃 + 𝑛𝑙𝑜𝑔𝜆 + (𝜆 − 1)∑ 𝑙𝑜𝑔𝑥𝑖

𝑛
𝑖=1 − ∑ 𝜃𝑥𝑖

𝜆𝑛
𝑖=1 ,                     (11) 

where  𝑇(𝑥𝑖,𝜃, 𝛽, 𝜆) = [1 − 𝛽 + 2𝛽𝑒2𝜃𝑥
𝜆
]. 

Upon differentiating Eq. (11) w.r.t 𝜃, 𝜆 and 𝛽 respectively, we obtain the following non-linear Eq.: 

𝜕

𝜕𝜃
𝑙𝑜𝑔𝑙 =∑

𝜕
𝜕𝜃
𝑇(𝑥𝑖,𝜃, 𝛽, 𝜆)

𝑇(𝑥𝑖,𝜃, 𝛽, 𝜆)
+
𝑛

𝜃

𝑛

𝑖=1

−∑ 𝑥𝑖
𝜆

𝑛

𝑖=1
 .                                                    (12) 

𝜕

𝜕𝜆
𝑙𝑜𝑔𝑙 =∑

𝜕
𝜕𝜆
𝑇(𝑥𝑖,𝜃, 𝛽, 𝜆)

𝑇(𝑥𝑖,𝜃, 𝛽, 𝜆)

𝑛

𝑖=1

+
𝑛

𝜆
+∑ 𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1
−∑ 𝜃𝑥𝑖

𝜆𝑙𝑜𝑔𝑥𝑖,
𝑛

𝑖=1
.           (13) 

𝜕

𝜕𝛽
𝑙𝑜𝑔𝑙 =∑

𝜕
𝜕𝛽

𝑇(𝑥𝑖,𝜃, 𝛽, 𝜆)

𝑇(𝑥𝑖,𝜃, 𝛽, 𝜆)

𝑛

𝑖=1
.                                                                          (14) 

Since the equations are nonlinear, hence the ML estimates can be obtained by respectively equating the 

above given three Eq. (12) to Eq. (14) to zero and solving them using N-R technique simultaneously. Also, for the 

NTWD the second order derivatives exist for log 𝑙 function. Thus the inverse dispersion matrix (IDM) is given as 

(
𝜃̂
𝜆̂
𝛽̂

)~𝑁 [(
𝜃
𝜆
𝛽
) , (

𝑉̂11 𝑉̂12 𝑉̂13
𝑉̂21 𝑉̂22 𝑉̂23
𝑉̂31 𝑉̂32 𝑉̂33

)]. 

                                            𝑉−1 = −𝐸 (

𝑉11 𝑉12 𝑉13
𝑉21 𝑉22 𝑉23
𝑉31 𝑉32 𝑉33

)                                          (15)      

Where 𝑉11 =
𝜕2

𝜕𝜃2
𝑙𝑜𝑔𝑙,  𝑉12 =  𝑉21 =

𝜕2

𝜕𝜃𝜕𝜆
𝑙𝑜𝑔𝑙,  𝑉13 =  𝑉31 =

𝜕2

𝜕𝜃𝜕𝛽
𝑙𝑜𝑔𝑙, 

           𝑉22 =
𝜕2

𝜕𝜆2
𝑙𝑜𝑔𝑙,  𝑉23 =  𝑉32 =

𝜕2

𝜕𝜆𝜕𝜕𝜆
𝑙𝑜𝑔𝑙, 

            𝑉33 =
𝜕2

𝜕𝛽2
𝑙𝑜𝑔𝑙. 
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The variance co-variance matrix of NTWD is given by Eq. (14). Upon solving the IDM the asymptotic variances 

and co-variances of the MLE’s for 𝜃̂, 𝜆̂ and 𝛽 ̂are obtained. Also the 100(1-α) % confidence interval for 𝜃, 𝜆 and 

𝛽can be obtained as 

𝜃̂ ± 𝑍𝛼
2
√𝑉̂11,    𝜆̂ ± 𝑍𝛼

2
√𝑉̂22, 𝛽 ̂ ± 𝑍𝛼

2
√𝑉̂33  . 

Where 𝑍𝛼
2
 is the upper αth percentile of the standard normal distribution. 

5.2. Least Square method (LS) 

Let 𝑥𝑖;  𝑖 = 1,2, . . 𝑛. be the observed value of NTWD with parameters 𝜃, 𝜆 and 𝛽, in increasing order and 𝑋𝑖:𝑛; 𝑖 =

1,2, . . 𝑛 be the associated order satatistics. Upon minimizing the following equation, least square estimates can be 

obtained 

𝑆(Θ) = ∑ [𝐺(𝑥𝑖) − 𝐸(𝐺(𝑥𝑖))]
2𝑛

𝑖=1 . 

Note that  𝐸(𝐺(𝑥𝑖)) =
𝑖

𝑛+1
. 

𝑆(Θ) = ∑ [(1 − 𝑒−𝜃𝑥𝑖
𝜆
+

𝛽𝑒−𝜃𝑥𝑖
𝜆
(1−𝑒−𝜃𝑥𝑖

𝜆
)

2−𝑒
−𝜃𝑥𝑖

𝜆 ) −
𝑖

𝑛+1
]

2

𝑛
𝑖=1 .                 (16) 

Upon differentiating Eq. (16) w.r.t  𝜃, 𝜆 and 𝛽 respectively we obtain three non-linear equation. Equating each of the 

three non-linear equations obtained, to zero and solving them simultaneously we get the required LS estimates. 

5.3. Minimum spacing method (MS) 

Let 𝑥𝑖; 𝑖 = 1,2, . . 𝑛. be the observed value of NTWD with parameters 𝜃, 𝜆 and 𝛽, in increasing order.the geometric 

mean of the differences is given as 

𝐺𝑀 = √∏𝐷𝑖

𝑛+1

𝑖=1

𝑛+1

, 

where 𝐷𝑖 = 𝐺(𝑥𝑖) − 𝐺(𝑥𝑖−1). 

Taking log on both sides we get  

log (𝐺𝑀) =
1

𝑛 + 1
∑ 𝑙𝑜𝑔[𝐺(𝑥𝑖) − 𝐺(𝑥𝑖−1)].

𝑛+1

𝑖=1
 

Using Eq. (5), we get 

log (𝐺𝑀) =
1

𝑛 + 1
∑    𝑙𝑜𝑔 [(1 − 𝑒−𝜃𝑥𝑖

𝜆
+
𝛽𝑒−𝜃𝑥𝑖

𝜆
(1 − 𝑒−𝜃𝑥𝑖

𝜆
)

2 − 𝑒−𝜃𝑥𝑖
𝜆 )                                                     

𝑛+1

𝑖=1

− (1 − 𝑒−𝜃1 + 
𝛽𝑒−𝜃𝑥𝑖−1

𝜆
(1 − 𝑒−𝜃𝑥𝑖−1

𝜆
)

2 − 𝑒−𝜃𝑥𝑖−1
𝜆 )].                                            (17)             

We differentiating Eq. (17) w.r.t  𝜃, 𝜆 and 𝛽 respectively, equating them to zero and solving them simultaneously we 

get the required MS estimates of parameters. 
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5.4. Weighted least Square (WLS)  

The likelihood Eq. of WLS estimates is given as 

𝑊(Θ) =∑
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
[𝐺(𝑥𝑖) −

𝑖

𝑛 + 1
]
2

.
𝑛

𝑖=1
 

𝑊(Θ) = ∑
(𝑛+1)2(𝑛+2)

𝑖(𝑛−𝑖+1)
[(1 − 𝑒−𝜃𝑥𝑖

𝜆
+

𝛽𝑒−𝜃𝑥𝑖
𝜆
(1−𝑒−𝜃𝑥𝑖

𝜆
)

2−𝑒
−𝜃𝑥𝑖

𝜆 ) −
𝑖

𝑛+1
]

2

.𝑛
𝑖=1                  (18) 

 

We differentiating Eq. (18) w.r.t  𝜃, 𝜆 and 𝛽 respectively, equating them to zero and solving them simultaneously we 

get the required WLS estimates of parameters. 

5.5. Cramer Von Mises (CVM) 

The likelihood Eq. of CVM estimates is given as 

𝐶(Θ) =
1

12𝑛
+∑ [𝐺(𝑥𝑖) −

2𝑖 − 1

2𝑛
]
2

.
𝑛

𝑖=1
 

                            𝑊(Θ) =
1

12𝑛
+ ∑ [(1 − 𝑒−𝜃𝑥𝑖

𝜆
+

𝛽𝑒−𝜃𝑥𝑖
𝜆
(1−𝑒−𝜃𝑥𝑖

𝜆
)

2−𝑒
−𝜃𝑥𝑖

𝜆 ) −
2𝑖−1

2𝑛
]

2

.𝑛
𝑖=1               (19) 

Eq. (19) is differentiated w.r.t 𝜃, 𝜆 and 𝛽 respectively and equated to zero to obtain the CVM estimates. 

6. Simulation Study 

In this section, R software has been used to accomplish the simulation study of the behavior of ML estimates for 

different sample sizes. 1000 samples of size n are drawn using Eq. (6). The sample sizes considered are n= 

(25,50,75,300,500) for parameter combinations (θ,β,λ)=(0.2,0.7,0.5 ) and (θ,β,λ)=(0.2,0.7,0.5 ). The results obtained 

are displayed in Table 1. It can be concluded from the Table 1 that the MSE gets reduced as the sample size 

increases. 

Table 1:  𝐁𝐢𝐚𝐬 and 𝐌𝐒𝐄 of Parameters 

𝜽 𝜷 𝝀 n 𝑩𝒊𝒂𝒔(𝜽) 𝑴𝑺𝑬(𝜽) 𝑩𝒊𝒂𝒔(𝜷) 𝑴𝑺𝑬(𝜷) Bias(λ) 𝑴𝑺𝑬(𝝀) 

 

 

 

 

 

 

0.2 

 

 

 

0.7 

 

 

 

0.5 

25 2.664 7.280 0.802 0.646 1.224 1.654 

50 2.596 6.817 0.797 0.636 1.152 1.394 

75 2.595 6.784 0.785 0.629 1.126 1.314 

100 2.578 6.681 0.780 0.625 1.110 1.261 

300 2.574 6.636 0.768 0.609 1.095 1.209 

500 2.568 6.601 0.707 0.562 1.092 1.199 
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0.3 

 

 

 

0.9 

 

 

 

0.4 

25 2.447 6.149 1.006 1.015 1.294 1.818 

50 2.421 5.938 0.996 0.999 1.253 1.635 

75 2.410 5.864 0.988 0.991 1.239 1.580 

100 2.380 5.702 0.984 0.990 1.219 1.517 

300 2.360 5.602 0.969 0.968 1.298 1.578 

𝟓𝟎𝟎 𝟐. 𝟑𝟕𝟎 𝟓. 𝟔𝟐𝟑 𝟎. 𝟗𝟏𝟑 𝟎. 𝟗𝟎𝟓 𝟏. 𝟏𝟗𝟐 𝟏. 𝟒𝟐𝟕 

 

7. Application  

A number of criterions are available in literature to access the flexibility of generalized probability models. The 

criterions that will be used in this paper to examine the efficiency of proposed model are Akaike Information 

Criteria (AIC), Bayesian Information Criteria (BIC) and Akaike Information Criteria Corrected (AICc). The model 

which admits the minimum value of each of the given criterion is considered as the best fitted model for the given 

real life data set. The probability models used for comparison with the new model are WD, Rayleigh Distribution 

(RD) and Exponential Distribution (ED). The data set considered is a random sample consisting of the remission 

times (in months) of 128 bladder cancer patients (Lee and Wang, 2003). Table 2 present the ML estimates and 

values of comparison criterion for the given dataset.  

Table 2: The ML Estimates and Values of Comparison Criterion for the Cancer Dataset 

Model Estimates  

−2ℓ̂ 

 

AIC 

 

BIC 

 

AICc 𝜃̂ 𝛽̂ 𝜆̂ 

NTWD 0.219 
(0.047) 

−0.976 
(0.164) 

0.829 
(0.073) 

412 828.51 821.99 828.70 

RD 9.931 
(0.438) 

- - 492 984.53 985.69 984.56 

ED 0.106 
(0.078) 

- - 415 830.68 832.71 831.84 

WD 0.0939 
(0.0190) 

- 1.0477 
(0.067) 

415 832.17 834.49 832.20 

 

Based on the values reported in Table 2, we can conclude that NTWD provides better fit than compared 

models. Thus, we can conclude that NTWD provides best fit for the given dataset. The estimated variance- 

covariance matrix is given as 

𝑗(Θ̂) = [
 0.002273 −0.00588 −0.003263
−0.00588  0.02718 0.008338
−0.003263 0.008338 0.005361

] 

The 95% confidence interval for the parameters 𝜃, 𝜆 and 𝛽 are given by [0.1224,0.3093], [−1.299, −0.653] and 

[0.6860,0.9730] respectively. 

8. Conclusions 

In this paper, a new transmutation technique is employed to achieve a more flexible generalization of Weibull 

distribution. The new distribution is named New Transmuted Weibull distribution. Some important statistical 
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properties are expounded. Different methods of estimating the parameters of the proposed distribution are discussed. 

The utility of the proposed model is illustrated by means of a real life dataset. 
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