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Abstract  
This paper deals with the problem of classical and Bayesian estimation of stress-strength reliability  from a 

generalized inverted exponential distribution (GIED) based on upper record values. Hassan et al. (2018) 

have discussed the maximum likelihood estimator (MLE) and Bayes estimator of R by considering that the 

scale parameter of defined distribution is known while we have considered the case when all the parameters 

of GIED are unknown. In classical approach, we have obtained MLE and uniformly minimum variance 

estimator (UMVUE). In Bayesian approach, we have considered the Bayes estimator of R by considering 

the squared error loss function. Further, based on upper records, we have considered the asymptotic 

confidence interval (CI) based on MLE, Bayesian credible interval and bootstrap CI for R. Moreover, to 

evaluate the performances of the discussed estimators of R, a Monte Carlo simulation and a real data 

application have been carried out. 
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1. Introduction  

Let X and Y be two independent random variables and )( YXPR =  represents the 

probability that  X  does not exceeds Y. In terms of stress-strength reliability, X denotes 

the stress applied to a device having strength Y. For proper functionning of the device,  

the strength of the device Y  must exceeds to stress X. Stress-strength reliability model 

appears in many practical situations like, in medical sciences, structural engineering, 

natural phenomena like a flood, earthquakes, etc. In medical science, let X and Y stand for 

the effect of the control treatment and the new treatment respectively. When new 

treatment applied over a control treatment then the quantity )( YXPR =  express the 

effectiveness of the new treatment compared with the control treatment. In structural 

engineering, while building a bridge, X and Y shows the stress (load on the bridge) and 

strength (capacity) of the bridge respectively. Bridge survive only if the strength of the 

bridge is greater than the stress applied on it. In such a situation )( YXPR =  shows the 

survival probability of the bridge. In statistical literature, estimation of )( YXPR =  has 

been widely studied under the assumption that X and Y are independent random variables 

belonging to the same family of distributions. Several researchers have deduced the 

estimators of R. Awad et al. (1981) considered the MLE of )( XYP  when X and Y have 



M.J.S. Khan, Bushra Khatoon 

Pak.j.stat.oper.res.  Vol. XV No. III 2019  pp547-561 548 

a bivariate exponential distribution. For an extensive and lucid literature review regarding 

estimation and application of the stress-strength reliability, readers are referred to 

Johnson (1988) and Kotz et al. (2003). 

 

In stress-strength reliability, the problem of estimating R  is carried out for different data 

sets such as complete, censored and so on. However, many situations are appeared in 

practical life where observations are more extreme than the current extreme values. A 

natural example is industrial stress testing where only items are destroyed which are more 

weaker than other observed failed items, see Ahmadi and Arghami (2003 a, b). This type 

of data is called “Record Data” or “Record Values”. Chandler (1952) developed the 

mathematical theory of record values and discussed its basic properties. Consequently, 

many researchers considered record data for their work of interest. A detailed treatment 

with extensive references are provided by Ahsanullah (1995) and Arnold et al. (1998). 

Let ,..., 21 XX  be an infinite sequence of identically and independently distributed (iid) 

random variables. An observation jX  is called an upper record if ij XX   for every 

ji  . We shall assume that jX occurs at time j, then the record time sequence is defined 

as 11 =U  and }:min{
1−

=
nUjn XXjU . The upper record sequence nRRR ,...,, 21  is 

defined as = nXR
nUn , . The joint probability density function (pdf) of first n upper 

records is given by 

n
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where )(1)( ii rFrF −= .  

The exponential distribution played a very important role in reliability theory. Several 

researchers have considered its generalized and inverse form namely generalized 

exponential distribution (Gupta and Kundu, 1999) and inverted exponential distribution 

(Dey, 2007). Abouammoh and Alshingiti (2009) introduced the GIED in reliability 

estimation. Ghitany et al. (2013) discussed the likelihood estimation for a general class of 

inverted exponential distribution based on complete and censored samples. Further, 

several researchers considered the estimation of the parameters of GIED based on 

complete, censored samples and record values. For example: Dey and Dey (2014 a, 2014 

b), Dey and Pradhan (2014), Dube et al. (2016), Dey et al. (2016), Panahi (2017) and 

Gunasekera (2018) and so on. The cumulative distribution function (cdf) of GIED(λ,α) is 

written as 
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and its pdf is given by- 
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Estimation of parameters based on record values with different lifetime models have been 

discussed by various researchers. However, estimation of stress-strength reliability based 

on record values has got more attention in last two decades. Baklizi (2008 a, 2014 a) has 

considered the MLE, associated CIs and Bayesian inference of stress-strength reliability 

using record values for the exponential distribution. Interval estimation (Bayesian 
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interval, bootstrap interval and interval using the generalized pivot variable) of the stress-

strength reliability in two-parameter exponential distribution based on upper records has 

been obtained by Baklizi (2014 b). Baklizi (2008 b) and Wong and Wu (2009) have 

discussed the MLE, Bayesian estimation and interval estimation of )( YXP   

respectively using lower record values from the generalized exponential distribution. 

Hassan et al. (2015) have described the estimation of stress-strength reliability for 

exponentiated inverted weibull distribution based on lower record values. Basirat et al. 

(2016) have derived the estimation of stress strength parameter for proportional hazard 

rate models for upper record values. Condino et al. (2018) have considered a similar 

problem for proportional reversed hazard model based on lower records. Khan and 

Arshad (2016) have studied the UMVU estimation of reliability function and stress-

strength reliability from proportional reverse hazard family based on lower records. 

MLE, approximate Bayes estimator and the exact CIs of stress-strength reliability for the 

two-parameter bathtub-shaped lifetime distribution based on upper record values have 

been deduced by Tarvirdizade and Ahmadpour (2016). Mahmoud et al. (2016) have 

deduced the result for the Bayesian estimation of )( YXP  for the Lomax distribution 

based on upper record values. In this paper, Mahmoud et al. (2016) described the MLE of 

stress-strength reliability in two cases, when all the parameters are unknown and when 

scale parameter is common and known. Amin (2017) has discussed the estimation of 

stress-strength reliability based on upper record values for Kumaraswamy Exponential 

distribution. Recently, Dhanya and Jeevavand (2018) have considered the Bayesian 

estimation of squared error loss function and linex loss function and MLE of stress-

strength reliability for power function distribution with different shape and same scale 

parameter based on records. Inference for the two-parameter bathtub-shaped distribution 

based on record data has been considered by Raqab et al. (2018). Rasethuntsa and Nadar 

(2018) have discussed the MLE, its asymptotic distribution and Bayes estimator under 

symmetric squared error loss function of stress-strength reliability in a multi-component 

system with nonidentical component strengths from a family of Kumaraswamy 

generalized distribution based on upper records. Khan and Khatoon (2019) have obtained 

MLE, UMVUE and Bayesian estimaor of stress strength reliability for exponential 

distribution based on generalized order statistics. In this paper, we have derived the 

classical (MLE and UMVUE) and Bayesian estimators of stress-strength reliability based 

on upper record values from GIED by taking common scale parameter and different 

shape parameter.  

  The rest of the paper is organized as follows: In Section 2, the MLE of )( YXPR = is 

computed. Section 3 provided the asymptotic confidence interval and percentile bootstrap 

interval of stress-strength reliability. UMVUE and Bayesian inference of )( YXPR =  

are discussed in Section 4 and 5 respectively. In Section 6, Monte Carlo simulations are 

carried out to check the efficiency of aforesaid estimators of R. A real data example is 

presented in Section 7 for the purpose of illustration. 

 

2. Maximum Likelihood Estimation 

In this Section, we consider the problem of estimating )( YXPR =  based on upper 

record values from GIED. Here, we obtained MLE of R by assuming that all the 

parameters of GIED are unknown. 
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Let X~GIED(λ,α) and Y~GIED(λ,β) be independent random variables. Let 

)( YXPR = be the stress-strength reliability and it can be seen that  




+
=R . We 

are interested to obtain the MLE of R based on upper records. However, to find the MLE 

of R , it is required to obtain the MLE of   and   say, 
ML̂  and ML̂ . By using 

invariance property of MLE, one can find the MLE of R . Let ,..., 21 XX  be a sequence of 

iid random variables having the parent population GIED(λ,α) and nrrrr ,...,, 21= be the 

corresponding set of first n upper records. Similarly, let ,..., 21 YY  be another sequence of 

iid random variables having the parent population GIED(λ, β) and the corresponding set 

of first m upper records are mssss ,...,, 21= . Then the likelihood function based on these 

upper records values is given by 
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where  f, F and g, G represent the pdf, cdf of GIED(λ,α) and GIED(λ,β)  respectively. 

Also )(1)( ii rFrF −= and )(1)( ii sGsG −= . Putting the values of f, F, g and G in (2.1), 

the likelihood function can be written as  
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Thus the log-likelihood function of the above expression is given by 
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where, ),|,,(ln),|,,( srLsrl  = . 

The MLE of α, β and λ can be obtained by solving 
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from equation (2.4) and (2.5) we get 
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and the MLE of λ is the solution of the non-linear equation 

0
)1(

1
1

)1(
1

1

)1(

)(

)1(

)(
/

/

1
/

/

1
/

/

2

/

/

1 =










−
+−











−
+−

−
+

−
+

+
−

−

=
−

−

=
−

−

−

−


i

i

i

i

m

m

n

n

s

sm

i i

r

rn

i i

s

m

s

r

n

r

e

e

se

e

res

eh

er

ehmn














 

  
 

Hence, the MLE of R based on upper records becomes 
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From the above expression, it is very difficult to find the exact distribution of MLR̂ . 

Therefore, we use another method to construct the CI of R  namely asymptotic 

distribution of MLE and parametric bootstrap method. 

 
3. CI for R  

In this Section, we discussed two different methods to obtain the confidence interval for 

R  namely the method of asymptotic normality and parametric bootstrap method. 

 
3.1 Asymptotic CI 

Here, we deduced the expression for asymptotic CI when   is unknown by using the 

multivariate delta method (see Wasserman, 2003, p.99). To compute the asymptotic 

distribution of MLR̂  we need to find an asymptotic variance of MLR̂ . However, it is well 

known that the asymptotic variance is the inverse of the Fisher information matrix which 

is given as: 
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However, to find the expectation of the above defined terms are very complicated so, 

under some regularity conditions, we have used observed information matrix define as; 
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Using the multivariate delta method (Soliman et al. 2013) to find the approximate 

estimate of the asymptotic variance of MLR̂ ,  R̂  as follows: 
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it can also be written as : 
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where ),( baN denotes  normal distribution with mean a and variance b and the symbol 
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 denotes the convergence in distribution. Based on this asymptotic distribution, a 

)%1(100 − asymptotic CI for R is given by 
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Where 2/Z  denotes upper 2/  quantile value of )1,0(N .  

3.2. Parametric bootstrap CI 

Here, we have constructed a bootstrap CI for R  by using a parametric percentile 

bootstrap method (Efron. 1982). The following algorithm is used to generate the 

parametric bootstrap estimates of R . 

Step-1. Simulate a random sample from Uniform (0,1). Using this simulated value 

compute random sample for ~X GIED ),(   and ~y GIED ),(   respectively. 

Compute the MLE of  ,   and   say ML̂ , ML̂  and ML̂  given in section-2. 

Step-2. Generate an independent parametric bootstrap sample using ML̂ , ML̂  and ML̂  

instead of  ,   and  . then using these values, calculate MLR̂ . 

Step-3. Calculate the maximum likelihood estimate of ML̂ , ML̂ , ML̂  and MLR̂  

obtained in step-2 say ML'̂ , ML'̂ , ML'̂  and MLR'ˆ . 
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Step-4. Repeat the step-2 and step-3 N  times to obtained the parametric bootstrap 

estimates NMLMLML RRR 'ˆ,...,'ˆ,'ˆ
21  of R . 

Step-5. Let )ˆ()( xRPxH ML = be the cumulative distribution function of MLR̂ . Define 

)()(ˆ 1 xHxRBoot

−=  for a given x . The approximate )%1(100 −  CI of R  is given by 

))2/1(ˆ),2/(ˆ(  −BootBoot RR . 

4. UMVUE of R  

In this Section, we have derived the expression for UMVUE of R  based on upper record 

values when the observations follow GIED with a common and known parameter  . The 

technique used for obtaining the UMVUE of R is similar to Khan and Arshad (2016). 

 Let ...,, 21 XX  be a sequence of iid random variables from GIED ),(  indicating the 

stress  in a reliability system and nrrrr ,...,, 21=  be the induced upper records from this  

sequence of random variables, then the joint  pdf  of n  upper records is given by 
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Similarly, let ...,, 21 YY  be another sequence of iid random variables from GIED ),( 

indicating the strength  in reliability system and mssss ,...,, 21=  be the induced upper 

records from this sequence of random variables, then the joint  pdf  of m  upper records is 

given by 
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  To obtain the UMVUE of R , we need an unbiased and complete sufficient statistics of 

  and  . Let )1ln( 1/
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is an unbiased estimator for R . From equation (4.1) and (4.2), it can be seen that 
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−−=  be the complete sufficient statistics for   

and   and have gamma distribution with parameters ),( n  and ),( m respectively. By 

the application of Lehman – Scheff e  theorem (Lehmann and Casella (1998)), the 

UMVUE of R  is given by 
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.where 111111 ,0,0);,( vuvvuuvuC mn = . 

Before solving the above integral, it is required to find the conditional distribution of 

nUU |1  and mVV |1 . By some algebraic simplification, we get. 
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Taking transformation 
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z 1=  and simplifying simultaneously, we get 
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Here, it can be seen that the integral value depends on the value of nu  and mv  . Hence, 

there arise two cases, mn vu   and mn vu  . 

Case-I: When mn vu  . In this case, 
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where, 
−− −=

1

0

11 )1(),( dxxxbaB ba  is the complete beta function. 

 

Case-II:  when mn vu  , we have 
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where, 
−− −=





0

11 )1(),( dxxxbaB ba  denotes the incomplete beta function with upper limit

 . Using the relation of incomplete beta and Gauss hyper-geometric function

);1;1,(),( 12 


 +−= abaF
a

baB
a

, equation (4.6) can also be written as 
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where );1;1,(12 +− abaF   is the Gauss hyper-geometric function. 

5. Bayesian Estimation  

This section presents a study of Bayesian estimation of R . We know that in Bayesian 

inference, we need some prior distributions for unknown parameters of parent 

distribution. we have considered gamma distributions as a prior distribution for  ,   

and   with pdf given as 
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where ),( 11  , ),( 22   and ),( 33   are hyper-parameters chosen to reflect prior 

knowledge about  ,   and  . 

From (2.2), the likelihood function can be re-written as 
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In order to find the posterior distribution of R , we need to obtain joint posterior 

distribution of  ,   and  . Using Bayes' theorem (Wasserman, 2003). 

From (5.1), (5.2), (5.3) and (5.4) the joint posterior distribution of  ,   and   is given 

by 
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after solving the above expression,  we get 
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(5.6) 

From the above equation, the joint posterior is very complicated and hence it is not 

possible to obtain a closed form or explicit expression for Bayes estimator of R . 

Therefore, to simulate the samples from the posterior distribution, we have considered the 

MCMC approach to find a sample based inferences. Solimon et al. (2013) considered the 

MCMC approach for stress-strength reliability model for the complete sample using 

modified weibull distribution.  

 

6. Simulation Study 
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In this section, a Monte Carlo simulation study is conducted to justify the performance of 

all estimators presented in the preceding sections for different sample sizes and different 

shape parameter values. Upper records sizes )5,8(),8,5(),5,5(),( =mn  and )8,8(  are 

considered and suppose  = 1=  and changing the value of   in such a way that we 

can obtained 9.0,...,2.0,1.0=R . In Bayesian estimation, we have taken an informative 

prior function by choosing the values of hyper-parameters as )1,1,1,1(),,,( 2121 = . 

10,000 replications are used for classical approache while we have taken 1000 repetition 

for Bayeian approach.The average biases and mean squared errors (MSE) for MLE and 

Bayes estimator and MSE for UMVUE are noted which are shown in Table-1. Moreover, 

to observe the behavior of different CIs in terms of different sample sizes and different 

parameter values, we obtained 95% coverage probability (CP) and expected width (EW) 

of various CIs and Bayesian credible interval which are given in Table-2. 

Table-1: MSE of UMVUE and Bias and MSE of MLE , Bayes estimator of R  

    MLE UMVUE Bayes Estimator 

    R  (n,m) Bias MSE MSE Bias MSE 

1 9 0.1 (5,5) 0.0008 0.0000006 0.0000004 -0.1170856 0.0137090 

   (8,5) 0.0018 0.0000034 0.0000009 -0.0876903 0.0076896 

   (5,8) 0.0023 0.0000052 0.0000703 -0.1338278 0.0179099 

   (8,8) -0.0004 0.0000021 0.0000014 -0.0923987 0.0085375 

 4 0.2 (5,5) 0.0034 0.0000112 0.0000079 -0.0768704 0.0059091 

   (8,5) 0.0032 0.0000102 0.0000013 -0.0578596 0.0033477 

   (5,8) 0.0012 0.0000013 0.0000280 -0.1001602 0.0100321 

   (8,8) 0.0023 0.0000052 0.0000024 -0.0591719 0.0035013 

 2.33 0.3 (5,5) 0.0018 0.0000032 0.0000027 -0.0412098 0.0016983 

   (8,5) 0.0030 0.0000088 0.0000047 -0.0528431 0.0027924 

   (5,8) 0.0038 0.0000145 0.0000167 -0.0532959 0.0028405 

   (8,8) -0.0010 0.0000011 0.0000006 -0.0459495 0.0021114 

 1.5 0.4 (5,5) -0.0055 0.0000307 0.0000120 -0.0043593 0.0000190 

   (8,5) -0.0018 0.0000032 0.0000131 -0.0166388 0.0002768 

   (5,8) 0.0040 0.0000157 0.0000084 -0.0378956 0.0014361 

   (8,8) 0.0020 0.0000039 0.0000012 -0.0687202 0.0047225 

 1 0.5 (5,5) -0.0074 0.0000542 0.0000317 -0.0086856 0.0000754 

   (8,5) 0.0053 0.0000276 0.0000325 -0.0031019 0.0000096 

   (5,8) 0.0047 0.0000225 0.0000140 0.0152529 0.0002327 

   (8,8) -0.0021 0.0000046 0.0000013 -0.0037939 0.0000144 

 0.67 0.6 (5,5) -0.0037 0.0000143 0.0000128 0.0164605 0.0002709 

   (8,5) -0.0053 0.0000387 0.0000156 0.0152787 0.0002334 

   (5,8) -0.0060 0.0000358 0.0000050 0.5844009 0.0002074 

   (8,8) 0.0028 0.0000138 0.0000044 0.0132183 0.0001747 

 0.43 0.7 (5,5) 0.0018 0.0000034 0.0000022 0.0442016 0.0019538 

   (8,5) -0.0054 0.0000297 0.0000049 0.0389809 0.0015195 

   (5,8) -0.0092 0.0000849 0.0000026 0.0428114 0.0018328 

   (8,8) 0.0023 0.0000054 0.0000011 0.0326244 0.0010644 

 0.25 0.8 (5,5) -0.0013 0.0000046 0.0000058 0.0561747 0.0031556 

   (8,5) 0.0020 0.0000040 0.0000015 0.0441383 0.0019481 

   (5,8) -0.0017 0.0000029 0.0000025 0.0506424 0.0025647 

   (8,8) 0.0041 0.0000098 0.0000036 0.0371154 0.0013776 

 0.11 0.9 (5,5) -0.0007 0.0000006 0.0000004 0.0465354 0.0021655 

   (8,5) 0.0009 0.0000008 0.0000005 0.0349021 0.0012182 

   (5,8) -0.0030 0.0000087 0.0000004 0.0408159 0.0016659 

   (8,8) 0.0002 0.0000009 0.0000006 0.0269263 0.0007250 
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Table-2:  EW and CP of confidence interval (CI) for various interval estimates of R  

with          (1- )=0.95 

R  (n,m) 

MLE Boot Asymptotic Bayes Estimator 

EWCI CP EWCI CP EWCI CP EWCI CP 

0.1 (5,5) 0.3260 0.974 0.3202 0.969 0.2102 0.938 0.3779 0.884 

 (8,5) 0.3362 0.887 0.3424 0.906 0.2167 0.940 0.3633 0.771 

 (5,8) 0.1353 0.873 0.2921 0.885 0.1706 0.930 0.3011 0.761 

 (8,8) 0.2433 0.980 0.2271 0.970 0.1748 0.941 0.2824 0.932 

0.2 (5,5) 0.4219 0.971 0.4545 0.971 0.3867 0.946 0.4370 0.759 

 (8,5) 0.3811 0.870 0.5089 0.902 0.3869 0.954 0.4118 0.891 

 (5,8) 0.3100 0.892 0.3291 0.883 0.3082 0.945 0.3684 0.667 

 (8,8) 0.3655 0.975 0.3478 0.978 0.3069 0.953 0.3393 0.877 

0.3 (5,5) 0.5405 0.976 0.5865 0.965 0.5122 0.962 0.4825 0.900 

 (8,5) 0.5625 0.874 0.5728 0.875 0.5111 0.969 0.4440 0.891 

 (5,8) 0.4204 0.898 0.3095 0.882 0.4034 0.955 0.4337 0.834 

 (8,8) 0.2214 0.981 0.3716 0.979 0.4071 0.961 0.3931 0.919 

0.4 (5,5) 0.6234 0.966 0.5390 0.969 0.5836 0.966 0.5108 0.892 

 (8,5) 0.5303 0.878 0.5696 0.891 0.5877 0.978 0.4682 0.92 

 (5,8) 0.5292 0.885 0.5718 0.864 0.4678 0.948 0.4607 0.876 

 (8,8) 0.4896 0.967 0.4717 0.973 0.4661 0.967 0.4266 0.918 

0.5 (5,5) 0.6195 0.978 0.6306 0.971 0.6119 0.969 0.5088 0.963 

 (8,5) 0.5683 0.873 0.4969 0.889 0.6118 0.987 0.4746 0.821 

 (5,8) 0.5041 0.887 0.5423 0.890 0.4837 0.950 0.4700 0.804 

 (8,8) 0.4921 0.983 0.4829 0.969 0.4837 0.971 0.4299 0.968 

0.6 (5,5) 0.6072 0.971 0.6111 0.972 0.5856 0.968 0.4960 0.925 

 (8,5) 0.5673 0.890 0.5556 0.867 0.5881 0.981 0.4644 0.818 

 (5,8) 0.5648 0.876 0.5481 0.884 0.4634 0.939 0.4569 0.907 

 (8,8) 0.3870 0.972 0.4964 0.974 0.4651 0.970 0.4182 0.914 

0.7 (5,5) 0.5916 0.982 0.5862 0.976 0.5158 0.954 0.4617 0.798 

 (8,5) 0.4291 0.884 0.4746 0.890 0.5086 0.972 0.4296 0.892 

 (5,8) 0.5726 0.914 0.5451 0.883 0.4021 0.929 0.4236 0.789 

 (8,8) 0.3373 0.974 0.4945 0.978 0.4081 0.955 0.3837 0.876 

0.8 (5,5) 0.6050 0.970 0.5542 0.976 0.3898 0.941 0.3977 0.892 

 (8,5) 0.3398 0.878 0.2419 0.901 0.3946 0.963 0.3634 0.826 

 (5,8) 0.5493 0.885 0.4742 0.869 0.3076 0.922 0.3591 0.743 

 (8,8) 0.4352 0.973 0.3561 0.977 0.3177 0.948 0.3186 0.789 

0.9 (5,5) 0.5378 0.963 0.4538 0.969 0.2188 0.931 0.2720 0.924 

 (8,5) 0.2545 0.881 0.2605 0.898 0.2221 0.902 0.2403 0.843 

 (5,8) 0.3253 0.879 0.3622 0.887 0.1696 0.907 0.2390 0.761 

 (8,8) 0.1686 0.980 0.1287 0.971 0.1744 0.939 0.2041 0.918 

 

From the results given in tables 1 and 2, we conclude that;  

 

  From Table-1, it is observed that MSE (MLE) > MSE (UMVUE) i.e. UMVUE perform 

better than MLE in the sense of MSE. In case of Bayes estimator, biases are negative 

(positive) when 5.0R  ( 5.0R ). Also, it can be seen that when the sample size increases, 

MSE of all the estimators decreases which is obvious. 
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 From Table-2, we observed that the EWCI for asymptotic distribution is less than the others 

and the CPs for the asymptotic distribution are less than the nominal level 0.95 while in other 

cases (MLE and bootstrap), CPs are greater than the nominal level 0.95. When 5.0=R , The 

width of the CIs is maximum and when moving to the extremes it gets reduces. When 

sample size increases, the length of the intervals decreases. 

7. Real data application 

 Consider a real data set as an application of the estimation method described in this 

paper. This data is a champion's league data in which the first goal scoring in minutes 

during the final stages matches in two consecutive years (2011-2012 and 2012-2013) are 

considered separately for the return matches and the first matches of the European 

Champion League. This data is available online at http://www.it.soccerway.com and used 

by Condino et al. (2018). The data-set is given below: 

We have considered only upper record values by taking the larger than the preceding 

largest. There are 8 upper records (0.033, 0.111, 0.344, 0.622, 0.633, 0.822, 0.833, 0.956) 

in data X and 4 upper records (0.267, 0.611, 0.711, 0.922) in data Y. Using the 

Kolmogorov-Smirnov (K-S) test, we conclude that 

Table-3: K-S statistics with distribution parameters Based on real data set. 

 K-S statistics p-value 

X ~ GIED(1,0.6) 0.25 0.9801 

Y ~ GIED(1,0.3) 0.26 0.9739 

where, GIED(a,b) denotes the generalized inverted exponential distribution with 

parameter a and b and the calculated value of R  is 0.6667. The largest upper record 

value from data X and data set Y are 0.956 and 0.922 respectively. From the upper record 

data, we have (n, m) = (8, 4), un = 0.956 and vm = 0.922. From (2.7) and (4.6), the MLE 

and UMVUE of R  are 0.6559 and 0.6914 respectively and the 95% corresponding 

confidence interval is (0.2568, 0.8650). Further, from (5.6), the Bayes estimators for 

different choices of hyperparameters ),,,( 2121   of prior distributions and 

corresponding 95% credible intervals are shown in table-4. 

Table-4: Bayes estimators and respective 95% credible intervals based on real data. 

 

),,,( 2121   
BayesR̂  Credible Interval 

(1,1,1,1) 0.6383 (0.3808, 0.8588) 

(1/2,1/2,1,1) 0.6494 (0.3826, 0.8731) 

(1,1,1/2,1/2) 0.6361 (0.3785, 0.8576) 

(1/2,1/2,1/2,1/2) 0.6473 (0.3803, 0.8720) 

(0,0,0,0) 0.6598 (0.3863,0.8862) 

 

Conclusions 

In this paper, we have obtained the MLE, UMVUE and Bayesian estimator of 

)( YXPR =  from GIED with a common scale and different shape parameters based on 

upper record values. We have obtained the Bayes estimator of R  by using squared error 

loss function. Asymptotic CI, Bootstrap CI using parametric percentile bootstrap method 

and the Bayesian credible interval are discussed. Further, a simulation study is being 
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carried out to compare the performances of MLE and UMVUE and observed that 

UMVUE perform better than MLE in the sense of MSE. Moreovr, it is noticed that 

asymptotic CI provided the smallest average width of CI for different sample sizes as 

compare to MLE and bootstrap CIs. 
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