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Abstract

In reliability analysis and life-testing experiments, the researcher is often interested in the effects of changing stress
factors such as “temperature”, “voltage” and “load” on the lifetimes of the units. Step-stress (SS) test, which is a
special class from the well-known accelerated life-tests, allows the experimenter to increase the stress levels at
some constant times to obtain information on the unknown parameters of the life models more speedily than under
usual operating conditions. In this paper, a simple SS model from the exponentiated Lomax (ExpLx) distribution
when there is time limitation on the duration of the experiment is considered. Bayesian estimates of the parameters
assuming a cumulative exposure model with lifetimes being ExpLx distribution are resultant using Markov chain
Monte Carlo (M.C.M.C) procedures. Also, the credible intervals and predicted values of the scale parameter,
reliability and hazard are derived. Finally, the numerical study and real data are presented to illustrate the proposed
study.

Key Words: Bayesian estimation, M.C.M.C method, credible interval, cumulative damage, exponentiated Lomax
distribution.

1. Introduction and motivation

Generally, there are two well-known types of SS loadings which are concerned in accelerating life tests ALTs: The
1%t is the linearly increasing stress and the 2nd is the stable stress. There are two types of real data which are found
from ALT. The 1st type is the whole data set in which failure time (FT) of each unit is seen and the 2" is the censored
data in which FT of every sample unit mayn’t be observed yet.

Miller and Nelsen (1983) studied finest test plans which is employed to minimize the asymptotic variance (Asy-Var.)
of the MLE of the mean life at a plan (use) stress for the two-step ALT (2S- ALT) when every units are gone to death.
Bai et al. (1989) further studied optimum 2S- ALT where a pre-determined censoring time is considered. Rene et al.
(1996) developed a Bayesian estimation and studied the inferences of data from ALT. Li (2002) studied a Bayesian
method for estimating the failure rate (FR) for exponential (Exp) distribution. For studies about the ALT see (DeGroot
and Goel (1979), Nelson (1990), Dorp et al. (1996), Sha and Pan (2014), Dorp and Mazzuchi (2005), Lee and Pan
(2010), Lee and Pan (2011), Chandra and Khan (2016), Ismail (2017), Jaheen (2017), Jaheen (2017)).

The major aim and motivation of this article is to provide a model for 2-SS ALTSs based on the ExpLx model. We
reflect the Bayesian estimation of the scale parameter, reliability, hazard rate of the distribution of FTs under regular
operating conditions and the SS ALT model based on cumulative break that helps a log linear model. We find the
probability density and cumulative distribution functions (P-D-F & C-D-F) for lifetimes from the ExpLx model.
Finally, the performance of these methods is illustrated by a M.C.M.C simulation study and application under
censoring type-I.
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2. Basic assumption SS ALT model
The following basic assumptions are taken in the experiment of SS testing

For any stress t; < t, < -+ < t, the lifetime model is ExpLx (6, 8, 1). The P-D-F is written as

=(B+1)
_ ] ﬁ' ).j(1+ﬂ.jtij)
f(ti,0.8,%) = =G+t By |(t1j.0.8.250,j=12,...ki=1,..7)) - @

6 and f are constants with respect to stress x, and the scale parameter A is an affected by stress x; ,j = 1,2, ..., k
through the log linear model in the form

A;j = exp (a + bx;),

where both a & b are unknown parameters. Suppose that for a certain pattern of stress x , units run at stress
x; starting at time 7;_,)and going to time

Tj|(j:1,z,...,k,10:o)-
The conduct of these units is as follows:
At step 1, the population portion F; (t) of units failing by time t under steady stress x; is
-8 6
F(®) = [1— 1+ exp(a+ bx;) ) P] |oct<r,anp,650) -

Let F(t) be the population C-D-F of units failing (dying) under SS, then in the 1% step let F(t) = F;(t),0 < t < 14,
where 7, is the time when the stress is grown from x; to be x,.

When the 2" step starts, units which have same age u, created the alike fraction unsuccessful seen at the termination
of the step.

In other meaning, the stayers at the time 7, will be converted to a certain stress x,, stating at u,, which can be controlled
as the result of

Fy(uy) = F,(ug)F; (19),
-B 6
Fy(uy) = [1 — (1 + exp(a + bxj)uj_l) ]

P
F(uy) = [1 — (1 + exp(a + bx;)(8j—; + u;j_3)) ] ,

where Ay=t; — To, Uy = 0 and Aj_,= Tj_1 — Tj—2, j=2,3,...,k, by taking the root 6 and taking the root - 3 to two
sides, the cumulative exposure model for j steps is written as follows

-B 0
F(t) = [1 - [1 + exp(a + bxj)(t T+ uj_l)] ] ,

where

Uiy = —exp (b(xj_1 - xj)) (Aj=z +uj—y).
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It seen that F(t), for a SS pattern next F(t), can be printed in the form:

0, t<T1
Fy(uy), To<t<T
F&) = p(r " o 0
F](t - Tj—l + uj_l), Tj—l <t< Tj,] = 2, ,k -1
Fie(t — T-1 + Up-1) Tg-1 St =
and the associated P-D-F f(t), is presented as the following form:
fl(t)l To <t< T1
f(t) _ f)(t — Tj—l + u]'_l), Tj—l <t< Tj,j = 2, ,k -1 . (3)
Fk(t — Tk-1 + uj_l), Tk-1 <t<L ™
0 elsewhere

In this work, the ML process is consumed for the SS model. The P-D-F for each test is shown in (3) and it is the time
derivative of the C-D-F given in (2). The sample likelihood is the product of such P-D-F’s evaluated at FTs if the
uncensored data is used or the seen P-D-F’s of such survival function (SF) evaluated at censoring time when censoring
is put on. It is indicated that F(t), differs for units with unlike SS forms.

The MLE on Type | when there are 2 SS as special case. A special circumstance, we let k=2, 7, is the time at which
the stress will change from x; to be x, and L is the time at which the experiment is finished (censoring time). In time
SS, the stress x;_; is grown to x; at tj_q,j = 2, ..., k. Itis implicit that the test is stayed till all components die or until
time L. The likelihood function has the identical form as

5.

nq (9ﬁ exp(a+bX1)(1+EXP(a+bX1)ti1)_ﬁ_1> :

™ -1
(1-(1+exp (a+bx1)fi1)_ﬁ)

L(ﬁ,@,/lj;g)= (4)

i=ni+1 6-1

1
N <B[s’ exp(a+bx,)(1+exp(a+bx,)(ti;—T1 +u1))‘ﬁ‘1>5’2]
l—[ 2

(1—(1+exp (a+bxy)(tiy —rl+u1))_ﬂ)

The log likelihood function £ can be presented as
6;1(a + bx,)

& +1og(6 + B)
t= Z +6;,(—B — Dlog(1 + exp(a + bx,)t;1)
= +8;1(60 — Dlog(1 — (1 + exp(a + bx;)t;;) )

Siz(a + bxy)
. +log(0 + B)
+ 22041 +68;,(=B — Dlog(1 + exp(a + bx,) (ti, — 71 + uy)) )

+8,,(60 — 1)log (1 - (1 +exp (a+ bx;)(t;, — 71 + ul))_ﬁ)
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3. Bayesian analysis

In this section, we introduce Bayesian estimation of the unknown parameters, reliability and hazard rate functions (H-
R-Fs) of the SS ExpLx model based squared error loss (SEL) function and censoring from the type I.

Due to Sinha (1998), the Jeffrey’s rule for picking the non-informative prior P-D-F for the unrelated random variables
(RVs) a, b, 6, B are studied as well-known uniform distribution.

The joint non-informative prior density function of the random parameters is found as
®(a,b,0,8) X P10,0304, 11 < A < plp, i3 < b < Uy, s < B < o, by < 0 < g, (6)

The informative prior P-D-F of a, b, 8, 8 have a lognormal (LogN) distribution which are totally uncorrelated with
the location and scale parameters v, , v,, V3, Vs, Us , Vg, V7 , Vg, Fespectively. It has the following P-D-F

1 (In(a)—vy)*
m (@) = =exp [~ 5 las oy )
1 (ln(b) v3)?
m2(b) = o= exp [~ 5 s oy ®
(In(B)-vs)?
m3(B) = G P [~ s> oy ©
(In(6)—v,)? ]
7T4(9) ov m exp[ 2”8 |(9>0)1 (10)
The joint informative prior P-D-F of the random parameters is given as
(n(@)-v? Un(b)-v3)? (Un(B)-vs)? (In(8)—v7)?
M(ab. 6 _ e 2v3 2v% 2v% 2v% 11
(a,b,6,8) = oabvs Breboa (22 labop>0y  (11)

and hence the posterior P-D-F with non-informative prior is provided as follows

®,(a,b,0,8) x ®(a,b,0,8)L(B,6,a,b;t),

then
q)l(a; b; H,ﬁ ) X @1@2@304
= 8B exp(a + bx,) (1 + exp(a + bxy)t;;)F~1 Si1
X 1_[ _B 0-1
g X (1 — (1 + exp(a + bxy)t;;) )
8z
6B exp(a + bx,)

X H?=2n1+1 x (1 4+ exp(a + bx,)(ti; — 11 +uy)) P71 , (12)

x (1 —(1+exp(a+bxy)(t; — 7, + u1))_ﬁ)9_1

and hence the posterior P-D-F with informative prior is presented as follows
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My(a,b,6,B) xM(ab,6,8)L(,6,ab;t) ab,6,5>0

then

_(n(@) —vy)? _ (n(b) —vs)*

2v3 207
exp ) )
_n®) - vs)® _ (In() - v;)
2v 2v
,(ab,0, 2 &
1@ B« av,bv, Brg0vg(21)?

niy

6B exp(a + bx;) (1 + exp(a + bx;)t;;)F1
X -1
n( X (1—(1+exp(a+ bxl)til)‘ﬁ)e )

81
i=1
8z

- -p-1
6B exp(a + bx,) (1 + exp(a + bx,)(t;, — T4 +uy)) > 13)

x H?—zn +1< -1
= X (1—(1+exp(a+bxy)(ti, — 71 +u))F)

It is obvious that from the posterior P-D-F the usual Bayesian methods of parameter estimation with integration is
hard so one of the M.C.M.C methods are spent to simulate or make direct draws from some the complex model. Then,
we shall study the SEL function to get the a consistent estimators from the marginal posterior P-D-Fs.

4. Bayesian estimators under the squared loss function

It is well known that the Bayesian estimate based on SEL function, is the posterior mean. The SEL function is a
symmetric loss function and reads as

SEL(a,d) = c(@ — a)?,

where ¢ denotes a constant and @ is an estimator. The Bayesian estimators of a, b, 8, fof SS ExpLx(a, b, 8, ) under
SEL can be got when the parameters are unknown, respectively as follows

dsp, = Ey(at) = [ 7 f, (@ — a)?®,(a,b,0, 8 )dbdodp,
bog, = Ev(ble) = [ [ c(b — b)"®,(a,b, 6, 8 YdadOdp,
Bser = Ey(8]t) = [} J; J; ¢(6— 6)" ®1(a,b, 6,8 Ydadbdp,

Bser = Es(Ble) = [° [ [ c(B — B) @1 (a,b, 0, 8 Ydbdbda, (14)

5. Credible intervals

The confidence intervals (CIs) estimation in Bayesian technique is straighter than the non-Bayesian method which
build on Cls. Once the marginal P-D-F of ¢ has been derived, a symmetric 100(1 — w )% two-sided Bayesian
probability interval estimate of ¢, denoted by [L,, ,U,, ], can be built easily. The Bayesian equivalent to the Cls is
called a credibility interval. Generally, we have

p(LE) <9 <U©) =P m(abosl)d =1-0, (15)
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for the limits L,, and U,, . Another time, these equations are not in closed forms, so we concern proper numerical
techniques to find a solution of these non-linear equations.

6. Numerical illustration

Under Bayesian estimation, we shall assume three M.C.M.C chains with dissimilar initial values for many levels of
integration necessary to find the standardizing constant and the marginal posterior P-D-Fs.

M.C.M.C simulation is the simplest way to get consistent simulation results exclusive of evaluating the complex
integrals (see Gelman et al. (2003)). M.C.M.C algorithm is valuable in upper dimensional problems is the alternating
conditional sampling called Gibbs sampling.

WinBUGS Spiegel halter et al. (2003), a specialized software package for implementing M.C.M.C simulation and
Gibbs sampling is applied in this section.

7. The simulation Algorithm

Accelerated life data from ExpLx model are generated using R language at different samples of size (n=40, n=60),
A =2, 8 =2,8 = 3. Two accelerated stress stages

x; = land x, = 1.5 are measured and the normal levels is determined as x,, = 0.5.

Since, the three chains with different initials run at the same time of simulation. Each chain stays for N=50000
iterations. The values of starting solution for a, b, 8, B are shown where the 1% chain is with initial valuesa = 0.5,b =
0.5, = 0.9 and B =1.The 2" is with initial valuesa = 0.4,b = 0.6,0 = 0.5 and = 0.9, and the 3" is with
initial values a =0.3, b =0.7,8 = 0.5 and 8 = 0.5. The reliability (;,7,) and H-R-F (hy, h,) are predicted at
natural conditions as x,, = 0.5,t, = 0.5,0.7.

If the experiment is ended once wholly the objects fail or when a fixed censoring time t is reached (Type |
censoring). Whenn, = n, = 20,t;; = 0.90,0.80 andn; = n, = 30,t;; = 0.90,0.80, respectively. The
analogous likelihood function is found in (4).

Table 1: Priors distributions for Bayesian approach

Types a b 6 B
P-1 U(0,6) uU(0,3) u(0,7) U(0,5)
P-11 Inor(0.0001,1000) Inor(0.0001,1000) Inor(0.0001,1000) Inor(0.0001,1000)

where P-1=the non-informative prior, U= uniform distribution and P-11= informative prior, Inor =LogN. The
posterior mean and variance of ¢,,, given t can be designed, respectively, as follows

E(ty (c)t) = [t f(tp () |2)d iy (x), (16)

and

V(tyID) = [ 6500 — ECtpGe))]’ £ (6 () [E)dty (), (17)

where
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and p is the pt™ percentile.
7. An application

A real data set of FTs of “84 aircrafts windshield” is used to compare the fits of the Exp-Lx model. We consider the
data on FTs for a specified model windshield given in Murthy et al. (2004). These data were analyzed by Ramos et al.
(2013) and El-Bassiouny et al. (2015). The FTs of “84 Aircraft Windshield” are given in the Appendix. The initial
values of a; b, # and @ in 3 chains and priors distribution used in this real data set are the similar in the simulation
work. The results of the application are listed in Tables 4.

8. Concluding remarks

In this paper, a simple SS model under the ExpLx model when there is time limitation on the duration of the experiment
is considered. Bayesian estimates of the parameters assuming a cumulative exposure model with lifetimes being
ExpLx are resultant using Markov chain Monte Carlo (M.C.M.C) procedures. Credible intervals and predicted values
of the scale parameter, reliability and H-R-F are derived. Finally, the numerical study and real data are presented to
illustrate the proposed study.

Table 2 Posterior statistics of model parameters when sample size, n=40.

Non-informative

t.; = 0.80 t.; = 0.90

E mean | Sd MC 25% | Medi | 97.5 mean | Sd MC 25 Medi | 975

error an % error % an %

i 5.994 0.0057 | 0.0800 5.979 5.996 6.0 5.994 0.0059 | 0.803E-5 | 5.979 | 5.996 6.0

b 2.994 0.0063 2.0E-5 | 2977 299 | 3.0 2.994 0.0063 | 2.092E5 | 2.977 | 2.99 3.0
i 6.969 0.0309 | 5.483E-5 | 6.886 6.978 6.999 6.969 0.0309 | 9.483E-5 | 6.886 | 6.978 6.999
i 0.8101 | 0.0528 | 9.973E-5 | 0.7102 | 0.8089 | 0.9172 | 0.8101 | 0.0528 | 9.973E-5 | 0.710 | 0.8089 | 0.917
A, | 17920 [ 1176 0.03746 | 1762.0 | 1795 1806.0 | 1792.0 | 11.76 | 0.03746 | 1762 | 1795 1806
A, 80050 | 68.26 0.2218 7834.0 | 8021 8091.0 | 8005.0 | 68.26 | 0.2218 7834 | 8022 8091
1, | 357700 | 3945 1.294 34760 3586 | 36250 | 35770 | 3945 1.294 4760 | 35860 | 36250
fys | 00296 | 00106 | 0.016E-5 [ 0.0135 | 0.028 | 0.0544 | 0.0296 | 0.0105 | 2016E-5 | 0.013 | 0.0281 [ 0.054
fy, | 00173 | 00068 | 1311E5 | 0.0072 | 0.017 0.0335 | 0.0172 | 0.0068 | 1.311E-5 | 0.007 | 0.0161 | 0.033
Ry, | 159 0.1115 | 2.101E-4 | 1.385 1.596 1.822 1.598 0.1115 | 2.101E-4 | 1.385 | 1.596 1.822
Ry, | 08038 [00547 | 1.032E-4 | 06994 | 0.8028 | 0.9139 | 0.8038 | 0.0547 | 1.032E-4 | 0.699 | 0.8028 | 0.913
fp(xu) 0.04E-5 | 9.9E-7 | 0.004598 | 0.0025 | 0.0034 | 9.9E-7 | 0.0034 | 9.9E-7 | 0.003372 | 0.002 | 5.2E-4 | 9.E-7
fp(xl) 767E-4 | 1.2E-4 | 2.217E-7 | 00010 | 0.7E-4 | 76E-4 | 7.6E-4 | 12E-4 | 2.217E-7 | 7E-4 | 5.7E-4 | 7E-4
fp(xh) 171E-4 | 0.6E-5 | 4.967E-8 | 2.3E-4 | 16E-4 | 5E-5 | 1.7E-4 | 26E-5 | 4967E-8 | 2E-4 | 1.6E-4 | 1E-4

informative
t;y = 0.90 t.; = 0.80

3 1.233 0.0436 | 8.117E-5 | 1.15 1.232 1.321 1.231 0.0434 | 7672E5 | 1.148 | 1.23 1.318
b 1.207 0.0419 | 7.358E-5 | 1.127 1.206 1.291 1.202 0.0418 | 7.782E5 | 1.123 | 1.202 1.286
[ 1.248 0.0394 | 7.182E-5 | 1.173 1.248 1.327 1.249 0.0394 | 7.3426-5 | 1.174 | 1.248 1.328
8 1.168 0.0357 | 6.634E-5 | 1.099 1.167 1.239 1.153 0.035 6.57E-5 1.086 | 1.152 1.223
A, 6.283 0.3033 | 5.569E-4 | 5.723 6.271 6.911 6.252 03012 | 5.306E-4 | 5.697 | 6.239 6.874
A 11.49 0.6924 | 0.00125 | 10.22 11.46 12.94 11.41 0.6878 | 0.001226 | 10.16 | 11.38 12.85

21.03 1.606 0.002871 | 18.13 20.95 24.41 20.84 1.593 0.002877 | 17.96 | 20.76 24.2
0.2322 | 0.0157 | 2.739E-5 0.202 0.232 0.2638 | 0.2382 | 0.0159 | 2.858E-5 0.208 | 0.2379 | 0.27
0.1218 | 0.0106 | 1.845E-5 0.1019 | 0.1216 | 0.1434 | 0.1261 | 0.0107 | 1.942E-5 0.106 | 0.1258 | 0.148
1.723 0.0589 1.049E-4 1.61 1.722 1.841 1.698 0.0578 | 1.057E-4 1.587 | 1.697 1.813
0.994 0.0318 | 5.765E-5 0.933 0.9935 1.058 0.9801 | 0.0312 | 5.775E-5 0.920 | 0.9796 1.043

ol (5 [
N [
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£,(x,) | 00507 | 0.0040 | 7.089E-6 | 0.0590 | 0.0506 | 0.0432 | 0.0518 | 0.0041 | 7.493e-6 | 0.06 [ 0.0516 | 0.044
£,(x) | 00277 | 0.0024 | 425366 | 0.0327 | 0.0276 | 0.0233 | 0.0284 | 0.0024 | 4471E-6 | 0033 | 0.0283 | 0.023
£,(x,) | 00152 | 00014 [ 2.637e-6 | 00183 | 0.0151 | 0.0124 [ 0.0156 | 0.0015 | 2.771E-6 | 0.018 [ 0.0155 [ 0.012
Table 3 Posterior statistics of model parameters when sample size, n=60.
Non-informative
t., = 0.80 t, = 0.90
E mean Sd MCerror | 2.5% Median 97.5% mean Sd MC 2.5% 97.5%
error Media
n
a 5994 | 00059 | 1.856E-5 | 5978 | 5.996 6.0 5.994 0.0058 | 1.8E-5 | 2.978 3.996 | 4.0
b 2.994 | 00063 | 1.9196-5 | 2.977 | 2.996 3.0 2.994 0.0064 | 2.0E-5 | 2.976 299 | 3.0
i 6.969 | 0.0305 | 9.583E-5 | 6.887 | 6.979 6.999 6.969 0.0308 | 9.9E-5 | 6.886 6.978 | 6.999
i 0.8538 | 0.0560 | 1.012E-4 | 0.747 | 0.8524 0.9674 | 0.8516 0.0559 | 9.9E-5 | 0.7456 0.850 | 0.9649
A, | 17920 | 1192 | 003747 | 1761 1795.0 1806.0 | 1792.0 11.91 | 0.037 1761.0 1795 | 1806.0
A 80040 | 68.84 | 0.2141 7831. | 8020.0 8091.0 | 8004.0 69.1 0.216 7831.0 8020. | 8091.0
1, 35760 | 396.7 1.223 34760 | 35850.0 | 36250 | 357600 | 399.2 | 1.251 34750.0 | 35850 | 36250
fos | 00223 | 0.0086 | 1.554E-5 | 0009 [ 002101 | 00425 | 0.02262 | 00085 | 1.56-5 | 0.00982 | 0.021 | 0.0429
fo; | 00125 | 0.0053 | 9.816E-6 | 0005 | 001169 | 0.0255 | 0.01279 | 0.0053 | 1.0E-5 | 0.00504 | 0.012 | 0.0258
Rgs | 0.0223 | 0.008 1.554E-5 | 0.009 | 0.02101 | 0.0425 | 1.685 0.1168 | 2.08E-4 | 1.462 1.683 | 1.919
Ro, | 00125 | 0.0053 | 9.816E-6 | 0.004 | 0.01169 | 0.0255 | 0.8466 0.0575 | 1.02E-4 | 0.7369 0.845 | 0.9622
£,(x,) | 0003 | 4564 | 8194E-7 | 0.0040 | 0.003 0.0023 | 0.003062 | 4.54E-4 | 8.18E-7 | 0.00408 | 0.003 | 0.0023
£,(x) | 6.81E-4 | 1.00E-4 | 1.836E-7 | 9.086-4 | 671564 | 5.13E-4 | 6.853E-4 | 1.01E-4 | 1.83E-7 | 9.134E-4 | 6.7E-4 | 5.16E-4
£,(x,) | 1.52E-4 | 2.2565 | 4.121E-8 | 2.03E-4 | 1.503E-4 | 1.156-4 | 1.534E-4 | 2.27E-5 | 4.10E-8 | 2.0456-4 | 1.56-4 | 1.15E-4
informative
t., = 0.90 [ t., = 0.80
B 1.235 0.0436 | 8.065E-5 | 1.152 | 1.234 1.322 1.234 0.0437 | 7.79€-5 | 1.151 1.234 | 1.322
b 1.207 0.0420 | 7.626E-5 | 1.127 | 1.206 1.292 1.207 0.0419 | 7.72€-5 | 1.127 1.206 | 1.291
9 1.248 0.0393 | 6.839E-5 | 1.172 | 1.247 1.326 1.248 0.0394 | 7.176-5 | 1.172 1.247 | 1.326
g 1.169 0.0358 | 6.882E-5 | 1.101 | 1.169 1.241 1.169 0.0357 | 6.29E-5 | 1.1 1.168 | 1.24
1, | 6.293 0.3034 | 5.5E-4 5733 | 6.281 6.923 6.291 0.3039 | 5.32E-4 | 5.731 6.279 | 6.921
A 11.52 0.6936 | 0001241 | 1024 | 11.48 12.96 11.51 0.6942 | 0.00121 | 10.24 11.48 | 12.96
A, | 21.08 1.61 0.002869 | 18.17 | 20.99 2448 | 21.07 161 0.00284 | 18.15 2099 | 24.46
fos | 02313 | 00157 | 2.834E-5 | 0.2011 | 0.2311 0.2628 | 0.2316 0.0157 | 2.69E-5 | 0.2015 0.231 | 0.2631
fo; | 01212 | 00105 | 1.9226-5 | 0.1013 | 0.121 0.1427 | 0.1214 0.0105 | 1.80E-5 | 0.1016 0.121 | 0.143
hes | 1.726 0.0591 | 1.101E-4 | 1.613 1.726 1.845 1.725 0.0589 | 1.00E-4 | 1.612 1.724 | 1.843
Ro, | 09956 | 00319 | 6.036E-5 | 09343 | 0.9951 1.06 0.9949 0.0318 | 5.50E-5 | 0.9337 0.995 | 1.059
£,(x,) | 0.05057 | 0.0040 | 7.048E-6 [ 0.0588 [ 0.05043 | 0.0431 [ 0.05061 | 0.0040 | 7.06E-6 | 0.05888 | 0.050 | 0.0432
£,(x) | 002767 | 0.0023 | 4.2276-6 | 0.0326 | 0.02758 | 0.0232 | 0.0277 0.0023 | 4.21E-6 | 0.03265 | 0.027 | 0.0233
£,(x,) | 001514 | 0.0015 | 2.631E-6 | 0.0182 | 0.01508 | 0.0124 | 0.01516 | 0.0015 | 2.61E-6 | 0.01824 | 0.015 0236
Table 4 Posterior statistics of model parameters when sample size, n=84.
Non-informative
t., = 0.90 t., = 0.80
E mean Sd MCerror | 2.5% Median 97.5% mean Sd MC 2.5% Median 97.5%
error
B 5.999 | 6.64E-4 | 2.041E-6 | 5998 | 6.0 6.0 5.999 | 6.64E-4 | 2.01E-6 | 5.998 6.0 6.0
b 2.999 | 5.31E-4 | 1.707E-6 | 2.998 | 3.0 3.0 2.999 | 5.33E-4 | 1.59E-6 | 2.998 3.0 3.0
[ 6.996 | 0.0039 | 1.264E-5 | 6.985 | 6.997 7.0 6.996 | 0.0039 | 1.22E-5 | 6.985 6.997 7.0
g 2.116 | 0.0502 | 9.364E-5 | 2.019 | 2.115 2.215 2.101 | 0.0501 | 8.65E-5 | 2.004 2.101 2.201
A 1806.0 | 1.291 | 0.003957 | 1803.0 | 1807.0 1808.0 | 1806.0 | 1.291 | 0.0039 | 1803.0 1807.0 1808.0
A 8093.0 | 6.877 | 0.02124 | 8076.0 | 8095.0 8102.0 | 8093.0 | 6.879 | 0.0209 | 8076.0 8095.0 8102.0
Ay 36260 | 37.57 | 0.1171 36170 | 36270.0 | 36310.0 | 36260. | 37.62 | 0.1138 | 36170.0 | 36270.0 36310.0
fos | 4.12E-6 | 1.43E-6 | 2.72E-9 1.97E-6 | 3.905E-6 | 7.54E-6 | 4.54E-6 | 1.58E-6 | 2.83E-9 | 2.175E-6 | 4.308E-6 | 8.321E-6
fo; | 9.65E-7 | 3.72E-7 | 7.07E-10 | 9.02E-7 | 1.864E-6 | 9.65E-7 | 1.07E-6 | 4.15E-7 | 4.73E-7 | 1.006E-6 | 2.077E-6 | 1.074E-6
Ry | 4227 | 01004 | 1.871E-4 | 4033 | 4.226 4.426 4198 | 01002 | 1.73E-4 | 4.004 4.197 4397
hy 2.115 | 0.0502 | 9.359E-5 | 2.017 | 2.114 2.214 2.1 0.0501 | 8.65E-5 | 2.003 2.1 2.2
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fp(xu) 6.16E-4 | 2.08E-5 | 3.882E-8 6.58E-4 | 6.161E-4 | 5.77E-4 6.22E-4 | 2.11E-5 | 3.66E-8 | -6.65E-4 | -6.221E-4 -5.824E-
4
fp (x) 1.37E-4 | 4.64E-6 | 8.669E-9 1.47E-4 | 1.375E-4 1.28E-4 1.38E-4 | 4.73E-6 | 8.18E-9 1.486E-4 1.388E-4 1.3E4
fp (xp) | 3.07E-5 | 1.03E-6 | 1.936E-9 3.28E-5 | 3.069E-5 2.87E-5 3.10E-5 | 1.05E-6 | 1.82E-9 | 3.316E-5 | 3.099E-5 2.901E-5
informative
t., = 0.90 t., = 0.80
a 4.824 0.0195 | 3.664E-5 | 4.785 4.824 4.862 4.825 0.0195 3.57E-5 | 4.787 4.825 4.863
b 1.01 6.642E- | 1.353E-6 1.009 1.01 1.011 1.01 6.59E-4 | 1.34E-6 | 1.009 1.01 1.011
9 3.348 0.0251 | 4.59E-5 3.298 3.348 3.397 3.348 0.0251 4.56E-5 | 3.298 3.348 3.397
ﬁ 3.178 0.0610 | 1.126E-4 | 3.057 3.178 3.297 3.148 0.0616 1.08E-4 | 3.026 3.148 3.268
iu, 206.3 4.035 0.007553 | 198.4 206.3 214.2 206.5 4.034 0.0074 198.7 206.5 214.4
/'All 341.9 6.689 0.01252 328.8 341.9 355.0 342.2 6.688 0.0122 329.2 342.2 355.4
/'Alh 566.5 11.09 0.02076 544.9 566.5 588.3 567.0 11.09 0.0203 545.5 567.0 588.9
Tos 1.35E-6 | 3.93E-7 | 7.27E-10 7.46E-7 | 1.296E-6 2.27E-6 1.54E-6 | 4.55E-7 | 108.E-7 | 1.484E-6 | 2.619E-6 1.549E-6
Y 1.53E-7 | 5.15E-8 | 9.60E-11 7.73E-8 | 1.453E-7 2.76E-7 1.79E-7 | 6.96E-8 1.0E-10 | 1.7E-7 3.258E-7 1.797E-7
hys 6.295 0.1208 | 2.226E-4 | 6.056 6.295 6.53 6.236 0.122 2.15E-4 | 5.995 6.236 6.472
flw 3.163 0.0607 1.119E-4 3.043 3.163 3.281 3.133 0.0613 1.08E-4 | 3.012 3.133 3.252
Ep(xu) 0.0017 | 4.98E-5 | 8.927E-8 0.0018 | 0.001716 | 0.00162 | 0.0017 | 5.09E-5 | 8.91E-8 | 0.00183 0.001734 0.00163
fp (x) | 0.0010 | 5.38E-8 | 0.001036 | 0.0010 | 0.001036 | 9.79E-4 0.001 3.07E-5 | 5.38E-8 | 0.00111 0.001046 9.884E-4
fp (xp) 6.25E-4 | 1.81E-5 | 0.2E-8 6.62E-4 6.251E-4 5.91E-4 6.31E-4 | 1.85E-5 | 3.25E-8 | 6.693E-4 6.314E-4 5.965E-4
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Appendix: 70.040, 1.8660, 2.385, 3.4430, 0.301, 1.8760, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 2.010,
2.688, 3.924, 1.2810, 2.038, 2.4810, 3.467, 0.3090, 1.899, 2.610, 3.4780, 0.5570, 1.9110, 2.625, 3.5780, 3.117,
4.4850, 1.652, 2.2290, 3.166, 4.570, 1.652, 2.300, 3.344, 2.0890, 2.902, 4.1670, 1.4320, 4.6020, 1.7570, 2.324,
0.9430, 1.912, 2.6320, 3.5950, 1.070, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278,
1.506, 2.190, 2.82, 3.000, 4.0350, 1.281, 2.0850, 2.890, 4.1210, 1.3030, 3.000, 4.305, 1.5680, 2.194, 3.103, 4.3760,
1.615, 2.2230, 3.114, 4.4490, 1.619, 2.224, 3.3760, 4.6630”.
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