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Abstract  

 

The combination of generalization Type-I hybrid censoring and generalization Type-II hybrid censoring schemes, 

scheme creates a new censoring called a Unified hybrid censoring scheme. Therefore, in this study, the E-Bayesian 

estimation of parameters of the inverse Weibull (IW) distribution is obtained under the unified hybrid censoring 

scheme, and the efficiency of the proposed method was compared with the Bayesian estimator using Monte Carlo 

simulation as well as, we use a real data set for practical purposes. Finally, we showed that in all schemes the E-

Bayesian estimation parameters are better than their Bayesian estimations. 
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1. Introduction  

Consider a lifetime test with 𝑛 units. Suppose that the units have independent and identically lifetime with the 

probability density function 𝑓(𝑥;  𝜃) and the cumulative distribution function𝐹(𝑥;  𝜃), and 𝑌1:𝑛 < ⋯ < 𝑌𝑛:𝑛 are the 

lifetime of the units until their failure. For the first time, Epstein (1954) investigated a scheme in a survival experiment 

in which the experiment ended at time 𝑇∗ = min(𝑌𝑟:𝑛 , 𝑇) and the values of 𝑇 and 𝑟 were pre-determined. Childs et 

al. (2003) called this Type-I hybrid censoring. In this scheme, there may be very few failures up to time T. Childs et 

al. (2003) investigated a scheme in which the experiment ended at time𝑇∗ = max(𝑌𝑟:𝑛 , 𝑇). This scheme was called 

the Type-II hybrid censoring scheme. Obviously, this scheme does not have a problem with the previous scheme. 

Even before time T, all units can fail, but the time to test is not predictable. Chandrasekar et al. (2004) introduced two 

Types of generalization hybrid censoring of Type I and II, so that the problem has somewhat improved the previous 

two schemes (not having the minimum failure in the Type-I hybrid censoring scheme and prolonging the test time in 

the Type-II hybrid censoring scheme). 

In generalization Type-I hybrid censoring scheme, suppose 𝑇 ∈ (0,∞) and the values of 𝑘 and 𝑟 such that 𝑘 < 𝑟 are 

predetermined. If the 𝑘th failure occurs before time 𝑇, the experiment at min (𝑌𝑟:𝑛 , 𝑇) and if, after time 𝑇, the 

experiment ends at 𝑌𝑘:𝑛. Therefore, this scheme guarantees at least 𝑘 failures. 

In general Type-II hybrid censoring scheme, assume that 𝑟 and 𝑇1, 𝑇2 ∈ (0,∞), so that 𝑇1 < 𝑇2, are constant and 

predetermined values. If the 𝑟th failure occurs before time 𝑇1, the experiment at time 𝑇1, if between 𝑇1 and 𝑇2, occurs 

at time 𝑌𝑟:𝑛, and if after 𝑇2, the experiment ends at 𝑇2. Therefore, this scheme guarantees that the experiment ends up 

at time 𝑇2.  
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The combination of the above scheme creates a new censoring called a Unified hybrid censoring scheme. This 

scheme was first introduced by Balakrishnan et al. (2008). In this scheme, the values 𝑇1, 𝑇2, 𝑟, and k, so that 𝑇1 < 𝑇2 

and 𝑘 < 𝑟, are predetermined before the experiment begins. If the 𝑘th failure occurs before time 𝑇1, the experiment at 

time min (max(𝑌𝑟:𝑛 , 𝑇1) , 𝑇2), if between 𝑇1 and 𝑇2, occurs at time min (𝑌𝑟:𝑛 , 𝑇2), and if after 𝑇2, the experiment ends 

at 𝑌𝑘:𝑛. In this censoring, one of the following six occurrences occurs. Suppose that for j = 1,2, 𝑑𝑗 the number of 

failures is up to 𝑇𝑗. In this case, we have six types of observations. 

1. If 0 < 𝑌𝑘:𝑛 < 𝑌𝑟:𝑛 < 𝑇1 < 𝑇2, the experiment ends at time 𝑇1 with 𝐷 failures. 

2. If 0 < 𝑌𝑘:𝑛 < 𝑇1 < 𝑌𝑟:𝑛 < 𝑇2, the experiment ends with the failure of 𝑟th. 

3. If 0 < 𝑌𝑘:𝑛 < 𝑇1 < 𝑇2 < 𝑌𝑟:𝑛, the experiment ends at time 𝑇2 with 𝑑2 failures. 

4. If 0 < 𝑇1 < 𝑌𝑘:𝑛 < 𝑌𝑟:𝑛 < 𝑇2, the experiment ends at time 𝑌𝑟:𝑛. 

5. If 0 < 𝑇1 < 𝑌𝑘:𝑛 < 𝑇2 < 𝑌𝑟:𝑛, experiment ends at time 𝑇2 with 𝑑2 failures. 

6. If 0 < 𝑇1 < 𝑇2 < 𝑌𝑘:𝑛 < 𝑌𝑟:𝑛, The experiment ends with the failure of 𝑘th. 

Note that in the first case, 𝑑1 = 𝑑2 = 𝐷, 𝑇1 < 𝑌(𝐷+1):𝑛 and 𝑟 ≤ 𝐷, so that the experiment (𝐷 + 1)th does not occur 

before 𝑇1, and in the third and fifth cases, 𝑇2 < 𝑌(𝑑2+1):𝑛 and 𝑘 ≤ 𝑑2 are such that That the (𝑑1 + 1)
th experiment 

does not occur before 𝑇2. If 𝑐 is the stopping point and 𝑑 is the number of failures until time 𝑐, then, the likelihood 

function of this hybrid censored sample is as follows: 

𝐿(𝜃|𝒚) =
𝑛!

(𝑛 − 𝑑)!
∏𝑓(𝑦𝑖:𝑛;  𝜃)

𝑑

𝑖=1

[1 − 𝐹(𝑐)]𝑛−𝑑                                                                           (1) 

where  𝒚 = (𝑦1:𝑛, … , 𝑦𝑑:𝑛), 𝑑𝜖{𝐷, 𝑑1, 𝑑2, 𝑘, 𝑟}, and 𝑐𝜖{𝑇1, 𝑇2, 𝑌𝑟:𝑛 , 𝑌𝑘:𝑛 }. 

If the random variable Y has a Weibull distribution with the pdf 

𝑓(𝑦; 𝛼, 𝜆) = 𝛼𝜆𝑦𝛼−1𝑒−𝜆𝑦
𝛼
,   𝑦 > 0, 

then the random variable 𝑋 =
1

𝑌
  has an IW distribution with the pdf 

𝑓(𝑥; 𝛼, 𝜆) = 𝛼𝜆𝑥−(𝛼+1)𝑒−𝜆𝑥
−𝛼
,   𝑥 > 0.                                                                                            (2) 

The quantities 𝛼 > 0 and 𝜆 > 0 are the shape and scale parameters respectively. From now on it will be denoted by 

IW(𝛼, 𝜆). If X follow IW(𝛼, 𝜆), then the distribution function of X is given by 

𝐹(𝑥; 𝛼, 𝜆) = 𝑒−𝜆𝑥
−𝛼
, 𝑥 > 0.                                                                                                         (3) 

The IW model has been derived as a suitable model for describing the degradation phenomena of mechanical 

components, such as the dynamic components of diesel engines, see for example Murthy et al. (2004).The physical 

failure process given by Erto and Rapone (1984) also leads to the IW model. Erto and Rapone (1984) showed that the 

IW model provides a good fit to survival data such as the times to breakdown of an insulating fluid subject to the 

action of constant tension, see also Nelson (1982). Interpretation of IW distribution in the context of load strength 

relationship for a component was provided by Calabria and Pulcini (1994). In reliability engineering research, IW 

distribution is often used in statistical analysis of life time and response time data. Khan et al. (2008) in their theoretical 

analysis of IW distribution mention that numerous failure characteristics such aswear out periods and infant mortality 

can be modeled through IW distribution. They mention about the wide range of areas in reliability analysis where IW 

distribution model can be used successfully. Shafiei et al. (2016) mention that IW distribution is an appropriate model 

for situations where hazard function is unimodal. They further mention the distribution as one of the popular 

distributions in complementary risk problems. 

The hierarchical Bayesian prior distribution was primarily introduced by Lindley and Smith (1972).Then it was 

examined by Han (1997), and E- Bayesian and hierarchical Bayesian methods were introduced. Recently, E-Bayesian 

and hierarchical Bayesian methods have been used by Han (2009, 2011) to estimate exponential distribution parameter 

and estimation of the reliability of the binomial distribution, by Jaheen and Okasha (2011) to estimate of the reliability 

of the Type 12 distribution based onType II progressive censoring samples, by Wang et al. (2012) and Yousefzadeh 

(2017) to estimate Pascal distribution parameters, by Yaghoobzadeh (2018) to estimate of scale parameter of gompertz 

distribution under type II censoring schemes based on fuzzy data. Also, Han (2017) gives the property of E-Bayesian 

estimation and hierarchical Bayesian estimation of the system reliability parameter. In this study, E-Bayesian of 𝛼 and 

𝜆 parameters of IW distribution Based On an unified hybrid censored sample using square error loss function ( 
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𝐿(�̂�, 𝜃) = (�̂� − 𝜃)
2
) are described in Section 2. A numerical example and a Monte Carlo simulation are presented in 

Section 3 for illustrative purposes. Section 4 is the conclusions. 

2. Estimating the E-Bayesian of 𝛂 and 𝝀 Parameters 

Suppose 𝑦1:𝑛 , ..., 𝑦𝑛:𝑛 is a random sample based on unified hybrid censored scheme, and are identical to the probability 

density function (2). Also, assume that A and B are independent, and each has a prior gamma distribution as follows 

𝜋1(𝛼|𝑎1, 𝑏1) ∝ 𝛼
𝑎1−1𝑒−𝑏1𝛼 , 𝛼 > 0, 

𝜋2(𝜆|𝑎2, 𝑏2) ∝ 𝜆
𝑎2−1𝑒−𝑏2𝜆, 𝜆 > 0 

Where𝑎1, 𝑏1, 𝑎2 , and 𝑏2 are positive and known values. The derivative of 𝜋(𝛼|𝑎1, 𝑏1) with respect to 𝛼 is 

𝑑𝜋(𝛼|𝑎1, 𝑏1)

𝑑𝛼
=
𝑏1
𝑎1𝛼𝑎1−2𝑒−𝑏1𝛼

𝛤(𝑎1)
((𝑎1 − 1) − 𝑏1𝛼) 

According to Han (1997), 𝑎1 and 𝑏1 should be chosen to guarantee that 𝜋(𝛼|𝑎1, 𝑏1) is a decreasing function of 𝛼. 

Thus, 𝑏1 > 0 and 0 < 𝑎1 < 1. Given 𝑎1  = 1, and the larger the value of 𝑏1, the thinner the tail of the density function 

is. Berger (1985) showed that the thinner tailed prior distribution often reduces the robustness of the Bayesian 

estimation. Consequently, the hyperparameter 𝑏1 should be chosen under the restriction 0 < 𝑏1 < 𝑐1, where 𝑐1 is a 

given upper bound (𝑐1 is a positive constant). In this study, we only consider the case when 𝑎1  = 1. In this case, the 

density function  𝜋(𝛼|𝑎1, 𝑏1) becomes 

𝜋(𝛼|𝑏1) = 𝑏1𝑒
−𝑏1𝛼 , 𝛼 > 0,                                                                                                        (4) 

Also, we consider the prior distribution 𝑏1 as 𝜋(𝑏1) =
1

𝑐1
 , 0 < 𝑏1 < 𝑐1. 

As the same way, 𝜋(𝜆|𝑎2, 𝑏2) becomes 

𝜋(𝜆|𝑏2) = 𝑏2𝑒
−𝑏2𝜆 , 𝜆 > 0,                                                                                                          (5) 

and 𝜋(𝑏2) =
1

𝑐2
 , 0 < 𝑏2 < 𝑐2. Therefore, the Bayesian estimation of each function of 𝛼 and 𝜆 as ℎ(𝛼, 𝜆), under 

square error loss function is as follows. 

ℎ̂ = 𝐸(𝛼, 𝜆|𝒚)(ℎ(𝛼, 𝜆)) = (∫ ∫ ℎ(𝛼, 𝜆)𝜋(𝛼,
∞

0

∞

0

𝜆|𝒚)𝑑𝛼𝑑𝜆) (∫ ∫ 𝜋(𝛼,
∞

0

∞

0

𝜆|𝒚)𝑑𝛼𝑑𝜆)⁄     (6) 

where 

𝜋(𝛼, 𝜆|𝒚) ∝ 𝛼𝑑 (∏𝑦𝑖:𝑛

𝑑

𝑖=1

)

−(𝛼+1)

𝑒−𝑏1𝛼∑
(−1)𝑗

𝑗! (𝑛 − 𝑑 − 𝑗)!

𝑛−𝑑

𝑗=0

𝑓𝜆|𝛼(𝑎1
∗, 𝑏1

∗, 𝑗) 

where 𝑓𝜆|𝛼(𝑎1
∗ , 𝑏1

∗, 𝑗) is the gamma distribution with the parameter 𝑎1
∗ = 𝑑 + 1 of shape and with the scale parameter 

as follows. 

𝑏1
∗ = 𝑏2 +∑𝑦1:𝑛

−𝛼

𝑑

𝑖=1

+ 𝑗𝑐−𝛼 

By considering ℎ(𝛼, 𝜆) = 𝛼 and ℎ(𝛼, 𝜆) = 𝜆 in relation (6), the Bayesian estimations for the 𝛼 and 𝜆 representing 

the symbols �̂�𝐵(𝑏1, 𝑏2) and �̂�𝐵(𝑏1, 𝑏2), respectively, are as follows. 

�̂�𝐵(𝑏1, 𝑏2) =

∑
(−1)𝑗

𝑗! (𝑛 − 𝑑 − 𝑗)!
∫ (

𝛼
𝑏1
∗)
𝑑+1

(∏ 𝑦𝑖:𝑛
𝑑
𝑖=1 )

−(𝛼+1)
𝑒−𝑏1𝛼𝑑𝛼

∞

0
𝑛−𝑑
𝑗=0

∑
(−1)𝑗

𝑗! (𝑛 − 𝑑 − 𝑗)!
∫

𝛼𝑑

𝑏1
∗𝑑+1

(∏ 𝑦𝑖:𝑛
𝑑
𝑖=1 )−(𝛼+1)𝑒−𝑏1𝛼𝑑𝛼

∞

0
𝑛−𝑑
𝑗=0

                             (7) 
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�̂�𝐵(𝑏1, 𝑏2) =

(𝑑 + 1)∑
(−1)𝑗

𝑗! (𝑛 − 𝑑 − 𝑗)!
∫

𝛼𝑑

𝑏1
∗𝑑+2

(∏ 𝑦𝑖:𝑛
𝑑
𝑖=1 )

−(𝛼+1)
𝑒−𝑏1𝛼𝑑𝛼

∞

0
𝑛−𝑑
𝑗=0

∑
(−1)𝑗

𝑗! (𝑛 − 𝑑 − 𝑗)!
∫

𝛼𝑑

𝑏1
∗𝑑+1

(∏ 𝑦𝑖:𝑛
𝑑
𝑖=1 )−(𝛼+1)𝑒−𝑏1𝛼𝑑𝛼

∞

0
𝑛−𝑑
𝑗=0

                  (8) 

The definition for E-Bayesian estimation was originally proposed by Han (2009), relate as follows. 

Definition 1: With �̂�𝐵(𝑏1, 𝑏2) being continuous, 

�̂�𝐸𝐵 = ∫∫ �̂�𝐵(𝑏1, 𝑏2)𝜋(𝑏1, 𝑏2)
𝐷

𝑑𝑏1𝑑𝑏2                                                                                   (9)       

is called the E-Bayesian estimation of 𝜃 (briefly E-Bayesian estimation, the full name should be expected Bayesian 

estimation), which is assumed to be finite, where 𝐷 is the domain of 𝑏1 and 𝑏2, �̂�𝐵(𝑏1, 𝑏2) is the Bayesian estimation 

of 𝜃 with hyper parameters 𝑏1 and 𝑏2, and 𝜋(𝑏1, 𝑏2) is the density function of 𝑏1 and 𝑏2 over 𝐷. Definition 1 indicates 

that the E-Bayesian estimation of 𝜃 is just the expectation of the Bayesian estimation of 𝜃 for all the hyperparameters. 

Therefore, with respect to (8) and (9) and definition (1), the E-Bayesian estimations 𝛼 (�̂�𝐸𝐵) and 𝜆 (�̂�𝐸𝐵) are as follows. 

�̂�𝐸𝐵 =
1

𝑐1𝑐2
∫ ∫

(

 
 
∑

(−1)𝑗

𝑗! (𝑛 − 𝑑 − 𝑗)!
∫ (

𝛼
𝑏1
∗)
𝑑+1

(∏ 𝑦𝑖:𝑛
𝑑
𝑖=1 )

−(𝛼+1)
𝑒−𝑏1𝛼𝑑𝛼

∞

0
𝑛−𝑑
𝑗=0

∑
(−1)𝑗

𝑗! (𝑛 − 𝑑 − 𝑗)!
∫

𝛼𝑑

𝑏1
∗𝑑+1

(∏ 𝑦𝑖:𝑛
𝑑
𝑖=1 )−(𝛼+1)𝑒−𝑏1𝛼𝑑𝛼

∞

0
𝑛−𝑑
𝑗=0

)

 
 
𝑑𝑏1𝑑𝑏2

𝑐2

0

𝑐1

0

 

�̂�𝐸𝐵 =
1

𝑐1𝑐2
∫ ∫

(

 
 
(𝑑 + 1)∑

(−1)𝑗

𝑗! (𝑛 − 𝑑 − 𝑗)!
∫

𝛼𝑑

𝑏1
∗𝑑+2

(∏ 𝑦𝑖:𝑛
𝑑
𝑖=1 )

−(𝛼+1)
𝑒−𝑏1𝛼𝑑𝛼

∞

0
𝑛−𝑑
𝑗=0

∑
(−1)𝑗

𝑗! (𝑛 − 𝑑 − 𝑗)!
∫

𝛼𝑑

𝑏1
∗𝑑+1

(∏ 𝑦𝑖:𝑛
𝑑
𝑖=1 )−(𝛼+1)𝑒−𝑏1𝛼𝑑𝛼

∞

0
𝑛−𝑑
𝑗=0

)

 
 
𝑑𝑏1𝑑𝑏2

𝑐2

0

𝑐1

0

 

3. Numerical Experiments 

In this section, a numerical example and a Monte Carlo simulation are presented to illustrate all the estimation methods 

described in the section 2. 

3.1. Simulation Study 

In this section, the simulation results are presented for comparing different unified hybrid censored schemes and the 

performance of estimation of Bayesian and E-Bayesian parameters are based on the mean square error (MSE) criterion. 

For this purpose, we generate a random sample of 50 of the IW distribution with 𝛼 = 2.5 and 𝜆 = 0.05. Then, the 

Bayesian, and E-Bayesian estimations of α and 𝜆 were estimated. The performance of all estimates have been 

compared numerically of the MSE value. This process, have been irritated 1000 times, and the average all estimates 

and their MSEs were estimated and are listed in Tables 1 to 4. The simulation is conducted by R software.  

Drawn upon the simulation results, we found out that: 

1. According to Tables 1 and 2, in both the cases (𝑏1, 𝑏2), for fixed 𝑟, 𝑘, and 𝑇2 , when 𝑇1 is increased, the 

performance of the E-Bayesian estimation of the parameters 𝛼 and 𝜆 is more than their Bayesian estimations. 

Also, the MSE of all estimators decreases with increasing 𝑇1, and the numerical value of the estimators 

approaches the real values of the parameters by increasing 𝑇1. 

2. According to Tables 3 and 4, in both the cases (𝑏1, 𝑏2), for fixed 𝑟, 𝑘, and 𝑇1 , when 𝑇2 is increased, the 

performance of the Bayesian estimation of the parameters 𝛼 and 𝜆 is more than their E-Bayesian estimations. 

Also, the MSE of all estimators decreases with increasing 𝑇2, and the numerical value of the estimators 

approaches the real values of the parameters by increasing 𝑇2. 
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Table 1. Estimate, the mean square error for 𝛼 and 𝑇2 = 100 

 

(𝑏1, 𝑏2) (𝑘, 𝑟) 𝑇1 �̂�𝐵 �̂�𝐸𝐵 MSE(�̂�𝐵) MSE(�̂�𝐸𝐵) 

(1.5, 2) (11, 20) 

 

80 1.0084356 1.3116907 0.9722919 0.9582604 

85 1.6295644 1.8872927 0.9291750 0.8110088 

95 2.2896661 2.5735351 0.8350252 0.7265117 

(15, 20) 80 0.9002296 1.4889474 1.2943128 1.0106295 

85 2.0657321 2.4462040 1.0263026 0.9604438 

95 2.3750732 2.6011219 0.9364447 0.8430386 

(18, 20) 80 0.9603170 1.2968166 0.7655433 0.7446662 

85 1.0417214 2.1999589 0.6260000 0.5859107 

95 1.8491109 2.5619906 0.5438144 0.4673512 

(12, 25) 80 3.968900 2.3963982 1.7479096 1.0443045 

85 2.897733 2.4516401 0.9601863 0.8931725 

95 2.753317 2.5567550 0.8093399 0.7713700 

(12, 35) 80 3.118313 2.2918441 1.0693892 0.9788446 

85 2.965890 2.3658907 1.0433348 0.8797319 

95 2.770518 2.5194235 0.8389121 0.6179893 

(2.5, 3) (11, 20) 

 

80 1.264413 1.6612946 1.2980096 1.2388655 

85 1.536037 2.2058489 1.1631997 1.1217848 

95 2.234662 2.5497267 0.9900068 0.9096081 

(18, 20) 80 1.860379 2.1271919 1.6419446 1.5753926 

85 2.0782481 2.2608274 0.9715295 0.8473973 

95 2.9904854 2.5826947 0.7014477 0.6473973 

(12, 25) 80 1.7583538 2.1329156 1.4209078 1.0292515 

85 2.0836629 2.2943991 1.0031588 0.9421133 

95 2.9015001 2.5290020 0.9064419 0.8547526 

(12, 35) 80 1.0192650 2.0194721 1.1086039 1.0041249 

85 1.8166442 2.2617467 0.9388403 0.8259847 

95 2.1086032 2.5030348 0.8166442 0.7741249 
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Table 2. Estimate, the mean square error for 𝜆 and 𝑇2 = 100 

 

(𝑏1, 𝑏2) (𝑘, 𝑟) 𝑇1 �̂�𝐵 �̂�𝐸𝐵 MSE(�̂�𝐵) MSE(�̂�𝐸𝐵) 

(1.5, 2) (11, 20) 

 

80 0.01002324 0.02018169 0.36583143 0.15168012 

85 0.01388574 0.02082876 0.24540068 0.11009306 

95 0.07551424 0.05698260 0.13283998 0.09900334 

(15, 20) 80 0.00854059 0.00881930 0.15417093 0.11921365 

85 0.00985218 0.02058568 0.08650327 0.07451532 

95 0.07288751 0.05165167 0.07900718 0.06650365 

(18, 20) 80 0.01298031 0.02154525 0.18194735 0.11264996 

85 0.02697772 0.03872098 0.11207455 0.09469526 

95 0.03939734 0.05098933 0.10112370 0.08978639 

(12, 25) 80 0.09020828 0.02195403 0.09984382 0.08134841 

85 0.08257069 0.03250745 0.07433193 0.06635288 

95 0.03631063 0.06295896 0.06405985 0.05471148 

(12, 35) 80 0.01250740 0.02827069 1.01471148 0.99984382 

85 0.01295896 0.03920828 0.88134841 0.78433193 

95 0.02195403 0.05631063 0.76635288 0.69405985 

(2.5, 3) (11, 20) 

 

80 0.01217904 0.02987496 0.72154542 0.66436972 

85 0.02047071 0.03594608 0.52135136 0.40379023 

95 0.03962807 0.05881317 0.30398702 0.28200912 

(18, 20) 80 0.01714689 0.02243666 0.68180587 0.51885518 

85 0.02714689 0.03948523 0.42243629 0.37489675 

95 0.03172106  0.04950494 0.27156115 0.11788791 

(12, 25) 80 0.01152291 0.02391643 0.63932464 0.51376332 

85 0.02841107 0.03120920 0.43404868 0.39150965 

95 0.03992588 0.05114683 0.27755420 0.14960132 

(12, 35) 80 0.01637617 0.03174601 0.21078954 0.10921629 

85 0.03275874 0.04146268 0.16296289 0.08314580 

95 0.04064067 0.05030860 0.12041944 0.07720966 
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Table 3. Estimate, the mean square error for 𝛼 and 𝑇1 = 45 

 

(𝑏1, 𝑏2) (𝑘, 𝑟) 𝑇2 �̂�𝐵 �̂�𝐸𝐵 MSE(�̂�𝐵) MSE(�̂�𝐸𝐵) 

(1.5, 2) (11, 20) 

 

90 0.9957537 0.6339161 1.062178 1.214407 

110 2.3118858 1.1531517 0.830641 0.719226 

150 2.6339161 1.7957537 0.762178 0.614407 

(15, 20) 90 1.7065898 0.8937124 1.037677 1.954498 

110 2.0185215 1.0552049 0.908985 1.490925 

150 2.4611235 1.4480276 0.836010 0.959404 

(18, 20) 90 1.1308251 0.8127624 0.831108 0.927974 

110 1.9309987 1.0086287 0.774999 0.864279 

150 2.5122400 1.8806394 0.658258 0.749992 

(12, 25) 90 1.1822798 0.9285195 0.8584485 0.9079119 

110 1.9889285 1.0088465 0.7596543 0.8111743 

150 2.4374748 1.8500879 0.6094413 0.7384733 

(12, 35) 90 1.5718727 1.1097288 1.3895278 1.4073459 

110 1.9807946 1.6409883 1.0069845 1.2506338 

150 2.6149597 2.0560069 0.84163644 0.9255014 

(2.5, 3) (11, 20) 

 

90 1.8285346 1.4242101 1.38407889 1.5504698 

110 2.1850752 1.8895607 1.11091642 1.4645827 

150 2.7077718 2.1627746 0.96143870 1.0019672 

(18, 20) 90 1.1078642 0.8345830 0.79081568 1.0080633 

110 2.1139134 1.1009293 0.73245607 0.8379379 

150 2.4554278 2.0875900 0.62469905 0.7161964 

(12, 25) 90 0.9926499 0.8910045 1.07836062 1.84205811 

110 1.1296560 0.7888355 0.79102405 0.82499218 

150 2.5287248 1.7491727 0.69914508 0.70318675 

(12, 35) 90 1.9232352 1.2534225 1.78851980 1.86673045 

110 2.2694444 1.7918619 1.06024561 1.73262390 

150 2.5128730 2.1681149 0.94087910 1.16673042 
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Table 4. Estimate, the mean square error for 𝜆 and 𝑇1 = 45 

 

(𝑏1, 𝑏2) (𝑘, 𝑟) 𝑇2 �̂�𝐵 �̂�𝐸𝐵 MSE(�̂�𝐵) MSE(�̂�𝐸𝐵) 

(1.5, 2) (11, 20) 

 

90 0.03067451 0.01754875 0.089908104 0.356086732 

110 0.04394579 0.02913630 0.070822873 0.236063086 

150 0.05279717 0.03434380 0.051552638 0.164494967 

(15, 20) 90 0.02808769 0.02030007 0.161504991 0.209289078 

110 0.03180027 0.02436261 0.127928345 0.178411826 

150 0.04985280 0.03367812 0.102193247 0.154849690 

(18, 20) 90 0.02733432 0.01501363 0.115439526 0.137946388 

110 0.04519281 0.02207054 0.082897327 0.106536726 

150 0.05386042 0.03622065 0.068481334 0.085626029 

(12, 25) 90 0.03302440 0.02761198 0.087186751 0.105403070 

110 0.04360056 0.03335961 0.080150728 0.091038057 

150 0.05222345 0.04173082 0.072282442 0.081038058 

(12, 35) 90 0.02557485 0.01339570 0.139337354 0.197229546 

110 0.03144091 0.02524225 0.107611978 0.172822455 

150 0.04888983 0.03173394 0.081336791 0.151957044 

(2.5, 3) (11, 20) 

 

90 0.02766431 0.01985449 0.142921258 0.184132366 

110 0.03932568 0.02065841 0.128337187 0.152294538 

150 0.05599842 0.04142739 0.088214903 0.124841527 

(15, 20) 90 0.01655514 0.01043330 0.221247390 0.269735181 

110 0.03960635 0.03177747 0.136787245 0.182609868 

150 0.04705481 0.03644419 0.091725247 0.099176133 

(18, 20) 90 0.02150275 0.01451502 0.097394016 0.124588687 

110 0.03133300 0.02014775 0.085431039 0.121805690 

150 0.04753325 0.03622597 0.062548587 0.107863095 

(12, 25) 90 0.01674199 0.01173110 0.090087877 0.153396965 

110 0.03900441 0.02676016 0.088175630 0.134686308 

150 0.51420139 0.03914584 0.060002891 0.115577656 

(12, 35) 90 0.01086794 0.01283105 0.111859032 0.245535310 

110 0.03178846 0.02982290 0.075802935 0.090254322 

150 0.04825255 0.03503170 0.061635373 0.078183760 

 

3.2 Application with real data set 

In this subsection, a real data set is used to analyze 𝛼 and 𝜆 estimation methods. The data set represent repair times 

(in h) for an airborne communication transceiver. They were first analyzed by Von Alven (1964). The data is presented 

in Table 5. Before analyzing the data, we fit the IW model to this data set. We used the Kolmogorov-Smirnov (K-S) 

distance between the fitted the empirical distribution functions, and corresponding p-values. It is observed that for this 

data, the K-S and corresponding p-value are 0.0815 and 0.9197, respectively. We observe the IW model fit quite well 

to this data set.  
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Table 5. Repair times (in h) for an airborne communication transceiver 

0.2   0.3    0.5    0.5    0.5   0.5    0.6    0.6    0.7   0.7    0.7   0.7   0.8   1.0   1.0   1.0   1.0 1.1   1.3    1.5   1.5     

1.5   1.5    2.0    2.0    2.2   2.5    2.7   3.0   3.0   3.3   3.3   4.0   4.0 4.5   4.7     5.0  5.4     5.4   7.0    7.5    8.8    

9.0  10.3   7.5   8.8   9.0   10.3 

 

To compute the Bayesian and E-Bayesian estimations, since we do not have any prior information, we assumed that 

𝑏1 = 𝑏2 = 0.01. Therefore, for 𝑐1 = 𝑐2 = 1, for these data, six unified hybrid censored schemes are considered under 

the following conditions. 

Scheme 1: 𝐾 = 14, 𝑟 = 30, 𝑇1 =3.5, 𝑇2 = 4.5 

Scheme 2: 𝐾 = 19, 𝑟 = 25, 𝑇1 = 1.5, 𝑇2 = 3 

Scheme 3: 𝐾 = 19, 𝑟 = 30, 𝑇1 = 1.5, 𝑇2 = 2 

Scheme 4: 𝐾 = 30, 𝑟 = 32, 𝑇1 = 2, 𝑇2 = 4 

Scheme 5: 𝐾 = 30, 𝑟 = 32, 𝑇1 = 1, 𝑇2 = 3 

Scheme 6: 𝐾 = 18, 𝑟 = 20, 𝑇1 = 1, 𝑇2 = 3 

In all schemes, the Bayesian and E-Bayesian estimates of the parameters have been obtained. These results are 

presented in Table 6. Also for this data, in a complete uncensored sample, the maximum likelihood estimation for 

parameters 𝛼 and 𝜆 are 1.011941 and 1.125229, respectively. 

Table 6. Bayesian and E-Bayesian estimations of parameters 𝛼 and 𝜆 

Scheme �̂�𝐵 �̂�𝐸𝐵 �̂�𝐵 �̂�𝐸𝐵 

1 0.075438204 0.094656141 0.827177291 1.144378477 

2 0.940139616 1.009714642 1.022434427 1.108393285 

3 0.983522234 1.013935819 1.772656778 1.031561386 

4 1.263046540 1.030439965 1.795299730 1.176216987 

5 0.925065487 1.013107987 2.348933240 1.025538408 

6 2.006398994 1.094094911 2.5755073419 1.500216398 

 

Table 6, shows that in all schemes, the E-Bayesian estimation of the parameters are closer to their estimated value in 

the complete sample. Therefore, estimating E-Bayesian parameters is better than their Bayesian estimations.  

4. Conclusion 

In this study, the Bayesian and E-Bayesian estimations of the inverse Weibull distribution parameters were obtained 

under the unified hybrid censored scheme with squared error loss function. In this study, six unified hybrid censored 

schemes are considered, and, using a real data set, we showed that in all schemes the E-Bayesian estimation parameters 

are better than their Bayesian estimations. Also, using Monte Carlo simulation, the conditions of superiority of the 

estimator were obtained with respect to each other. 
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