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Abstract  

The purpose of this paper is to develop a latent variable model with nonlinear covariates and latent 

variables. Mixed ordered categorical and dichotomous variables and covariates with two different types of 

thresholds (with equal and unequal spaces) are used in Bayesian multi-sample nonlinear latent variable 

models and the Gibbs sampling method is applied for estimation and model comparison. Hidden 

continuous normal distribution (censored normal distribution) and (truncated normal distribution with 

known parameters) are used to handle the problem of mixed ordered categorical and dichotomous data. 

Hidden continuous normal distribution (truncated normal distribution with known parameters) is used to 

handle the problem of mixed ordered categorical and dichotomous data in covariates. Statistical analysis, 

which involves the estimation of parameters, standard deviations and their highest posterior density, are 

discussed. The proposed procedure is illustrated using psychological data with the results obtained from the 

OpenBUGS program.  

 

Keywords: Latent variable Models, Bayesian Analysis, Multi-Sample Data, Mixed 

Variables, Covariates. 

 

1. Introduction 

Latent variable models (LVMs) (Lee, 2007) are a statistical technique for modelling a 

sequence of correlated data to estimate the interrelationships among manifest and latent 

variables. 

In recent years, many researchers have proposed models that contain nonlinear terms 

among the manifest and latent variables. Some of these papers have been proposed by 

Lee and Song (2003), Lee (2006), Cai et al. (2008), Lee et al., (2010), Thanoon and 

Adnan (2015); Thanoon and Adnan (2016a), Thanoon and Adnan (2016b), Thanoon and 

Adnan (2016c), Thanoon et al., (2017), Thanoon and Adnan (2017), Thanoon and Adnan 

(2019). 
Lee and Song (2002) offer a specific method for applying the Bayesian approach in factor 

analysis. They created an analysis model that implements joint Bayesian estimates for the 

factor scores and structural parameters as they are related to the determined constraints 

allowing multiple findings to be determined simultaneously. This system, which uses the 
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Metropolis- Hastings algorithm in combination with the Gibbs model, has been proven 

efficient in generating computations of these estimates. 

Song and Lee (2006b) developed a Bayesian nonlinear latent variable model with 

nonlinear fixed covariates and latent variables in the structural model and linear fixed 

covariate and latent variables in the measurement model. Mixed continuous and 

dichotomous data are used in this study and hidden continuous normal distribution 

(truncated normal with unknown parameters) is presented to solve the problem of 

dichotomous data.  

Lee (2007) used underlying latent continuous normal distribution (truncated normal 

distribution with unknown parameters) to solve the problem of ordered categorical 

variables in Bayesian multi-sample nonlinear latent variable models, and Gibbs sampling 

method is used to estimate the parameters.  

The strategy of multi-sample analysis is very important in many applications, for 

instance, cross-cultural research. Practically, nonlinear effects, such as quadratic and 

interaction effects among the covariates and latent variables are important in establishing 

the substantive theory in many areas. The rapid growth of LVMs is due to the demand of 

subtle models and the related statistical methods for solving complex research problems 

in various fields. 

The Bayesian approach is developed with the Gibbs sampler algorithm (Geman and 

Geman, 1984), and the hidden continuous normal measurements and the latent variables 

in multi groups are treated as hypothetical missing data. Non-informative priors are used 

for the thresholds (cut points with equal and unequal distances) and conjugate priors are 

used for the structural parameters. 

The main objective of this paper is to propose a Bayesian approach for analysing multi-

sample nonlinear LVMs with mixed variables and covariates. The Deviance Information 

Criterion (DIC; see Spiegelhalter et al., 2002) is used for model comparison. 

The main idea is to handle the mixed variables and covariates in the Bayesian analysis 

and to treat the hidden continuous measurements as a missing data and augment them 

with the observed data in the posterior analysis. 

The paper is organized as follows. The model description is described in section 2.  The 

Bayesian estimation of multi-sample latent variable models that contain nonlinear models 

is described in Section 3. The comparison of models using DIC is described in Section 4. 

A case study of psychological data is presented in section 5. The results and discussion 

are described in section 6, and some concluding remarks are given in section 7. 

 

2. Model Description 

The latent variable models which have been suggested for application in this case have 

linear covariates and latent variables within the measurement equation. It also has 

nonlinear latent variables in the structural model, as well as nonlinear covariates. For 

example, the following LVM is considered. 

 

           
𝑣𝑖

(𝑔)
= 𝐴(𝑔)𝑐𝑖

(𝑔)
+ 𝛬(𝑔)𝜔𝑖

(𝑔)
+ 𝜀𝑖

(𝑔)
, 𝑖 = 1, . . . , 𝑛

                  
(1) 

where 𝑣𝑖
(𝑔)

= {𝑦(𝑔), 𝑢(𝑔)} has been established as a 𝑝 × 1 random vector of manifest 

variables, where  𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑠) is a subset of variables whose exact continuous 

measurements are unobservable, 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑟) is the remaining subset of variables 

such that 𝑝 ≥ 𝑠 = 𝑝 − 𝑟 ≥ 0 and the corresponding continuous measurements are 

unobservable, 𝐴(𝑔)(𝑝 × 𝑚1) 
is a vector of linear covariates, 𝑐𝑖

(𝑔)
(𝑚1 × 1) is a vector of 
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mixed ordered categorical  and dichotomous covariates, 𝛬(𝑔)(𝑝 × 𝑞) is thus a matrix with 

unknown parameters, which is usually considered the factor loading matrix,
 
𝜔𝑖

(𝑔)
 is a  

𝑞 × 1 random vector of latent variables, 𝜀𝑖
(𝑔)

 is a 𝑝 × 1 random vector of residuals. As a 

result, it is assumed that the resulting 𝑦𝑖
(𝑔),

𝑠is independent, and that 𝜔𝑖
(𝑔)

is then 

distributed independently as 𝑁[0,𝛷(𝑔)], Further,
 
𝜀𝑖

(𝑔)
 is independently distributed as

 
𝑁[0,𝛹𝜀

(𝑔)
], where 𝛹𝜀 is a diagonal matrix with diagonal elements 𝜓𝜀1, . . . , 𝜓𝜀𝑝. It has also 

been determined that, in this case, 𝜀𝑖
(𝑔)

and 𝜔𝑖
(𝑔)

are both independent as well. 

To carry out more complicated mathematical scenarios,𝜔𝑖, a latent vector, is subdivided 

into(𝜂𝑖
𝑇 , 𝜉𝑖

𝑇)𝑇, in which 𝜂𝑖(𝑞1 × 1) and 𝜉𝑖(𝑞2 × 1) are both vectors. 

More specifically, 𝜂𝑖(𝑞1 × 1) is the vector of the endogenous latent variables and 

𝜉𝑖(𝑞2 × 1) is the vector of the exogenous latent variables. In order to create an estimation 

of the potential significant causal effect of
 
𝑥𝑖(𝑚2 × 1), the vector of mixed ordered 

categorical and dichotomous covariates on 𝜂𝑖, however, if 𝑥𝑖 is non-normal, then 𝜉𝑖is 

non-normal also. Thus, it is important to solve the problem of mixed ordered categorical 

and dichotomous data in covariates.  

The latent variable is defined by the following general latent variable: 

 

        
𝜂𝑖

(𝑔)
= 𝐵(𝑔)𝜂𝑖

(𝑔)
+ 𝛤(𝑔)𝐹(𝑥𝑖

(𝑔)
, 𝜉𝑖

(𝑔)
)𝑖 = 1, . . . , 𝑛                          (2) 

 

where  

 
𝐵(𝑔)(𝑞1 × 𝑞1) 

is a matrix of unknown parameters, 𝐹(𝑥𝑖
(𝑔)

, 𝜉𝑖
(𝑔)

) = ( ) ( )

1( ( , ),...,g g

i if x 

𝑓𝑟(𝑥𝑖
(𝑔)

, 𝜉𝑖
(𝑔)

))𝑇is a vector-valued function with differentiable functions 𝑓1, . . . , 𝑓𝑟, and 

𝛤(𝑔)(𝑞1 × 𝑟) is a matrix of unknown parameters. For simplicity, (2) can be expressed as: 

𝜂𝑖
(𝑔)

= 𝛱(𝑔)𝐺(𝜂𝑖
(𝑔)

, 𝑥𝑖
(𝑔)

, 𝜉𝑖
(𝑔)

) + 𝛿𝑖
(𝑔)

 

where 𝛿𝑖
(𝑔)

(𝑞1 × 1) is a vector of error measurements, 𝛱(𝑔) = (𝐵(𝑔), 𝛤(𝑔)), 

and𝐺(𝑦𝑖
(𝑔)

, 𝑥𝑖
(𝑔)

, 𝜉𝑖
(𝑔)

) = (𝜂𝑖
(𝑔)𝑇

, 𝐹(𝑥𝑖
(𝑔)

, 𝜉𝑖
(𝑔)

)𝑇)𝑇. It must first be assumed that
 
𝜉𝑖

(𝑔)
is 

distributed as 𝑁[0,𝛷], further, 𝛿𝑖
(𝑔)

is distributed as
 
𝑁[0,𝛹𝛿], where 𝛹𝛿is representative 

of a diagonal matrix containing the elements𝜓𝛿1, . . . , 𝜓𝛿𝑞1, and for which𝛿𝑖
(𝑔)

and 𝜉𝑖
(𝑔)

are 

each independent.  

A more specific example of the generalized nonlinear latent variable defined in (2) that is 

associated with ( ),i i= 𝜉𝑖 = (𝜉𝑖1, 𝜉𝑖2)
𝑇 , and 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2)

𝑇 is: 

𝜂𝑖
(1)

= 𝛽1
(1)

𝑥𝑖1
(1)

+ 𝛽2
(1)

𝑥𝑖1
(1)

𝜉𝑖1
(1)

+ 𝛽3
(1)

𝑥𝑖1
(1)

𝜉𝑖2
(1)

+ 𝛽4
(1)

𝑥𝑖1
(1)

𝜉𝑖1
(1)

𝜉𝑖2
(1)

+ 𝛽5
(1)

𝑥𝑖1
(1)

𝜉𝑖1
(1)

𝜉𝑖2
(1)

+

𝛾1
(1)

𝜉𝑖1
(1)

+ 𝛾2
(1)

𝜉𝑖2
(1)

+  

𝛾3
(1)

𝜉𝑖1
(1)

𝜉𝑖1
(1)

+ 𝛾4
(1)

𝜉𝑖2
(1)

𝜉𝑖2
(1)

+ 𝛿𝑖
(1)

                                                                                  (3)      

𝜂𝑖
(2)

= 𝛽1
(2)

𝑥𝑖1
(2)

+ 𝛽2
(2)

𝑥𝑖1
(2)

𝜉𝑖1
(2)

+ 𝛽3
(2)

𝑥𝑖1
(2)

𝜉𝑖2
(2)

+ 𝛽4
(2)

𝑥𝑖1
(2)

𝜉𝑖1
(2)

𝜉𝑖2
(2)

+ 𝛽5
(2)

𝑥𝑖1
(2)

𝜉𝑖1
(2)

𝜉𝑖2
(2)

+ 𝛾1
(2)

𝜉𝑖1
(2)

+ 𝛾2
(2)

𝜉𝑖2
(2)

+ 

𝛾3
(2)

𝜉𝑖1
(2)

𝜉𝑖1
(2)

+ 𝛾4
(2)

𝜉𝑖2
(2)

𝜉𝑖2
(2)

+ 𝛿𝑖
(2)

                                                                                (4) 

Here, 𝛤(1) = (𝛽1
(1)

, 𝛽2
(1)

, 𝛽3
(1)

, 𝛽4
(1)

, 𝛽5
(1)

, 𝛾1
(1)

, 𝛾2
(1)

, 𝛾3
(1)

, 𝛾4
(1)

),  

𝛤(2) = (𝛽1
(2)

, 𝛽2
(2)

, 𝛽3
(2)

, 𝛽4
(2)

, 𝛽5
(2)

, 𝛾1
(2)

, 𝛾2
(2)

, 𝛾3
(2)

, 𝛾4
(2)

), 
and  
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𝐹(𝑥𝑖
(𝑔)

, 𝜉𝑖
(𝑔)

)

= (𝑥𝑖1
(𝑔)

, 𝑥𝑖1
(𝑔)

𝜉𝑖1
(𝑔)

, 𝑥𝑖1
(𝑔)

𝜉𝑖2
(𝑔)

, 𝑥𝑖1
(𝑔)

𝜉𝑖1
(𝑔)

𝜉𝑖2
(𝑔)

, 𝑥𝑖1
(𝑔)

𝜉𝑖1
(𝑔)

𝜉𝑖2
(𝑔)

, 𝜉𝑖1
(𝑔)

, 𝜉𝑖2
(𝑔)

, 𝜉𝑖1
(𝑔)

𝜉𝑖1
(𝑔)

, 𝜉𝑖2
(𝑔)

𝜉𝑖2
(𝑔)

)𝑇
 

where g = 1; 2. Further, 𝑥𝑖and 𝜉𝑖 are both quadratic terms of elements, which can be 

assessed via an appropriately defined LVM. As 𝑥𝑖may be drawn from the arbitrary 

distributions for covariates that are mixed ordered categorical and dichotomous data, the 

proposed nonlinear latent variable model can be used to manage a large variety of 

situations. Furthermore, with regard to nonlinear latent variable models, one must be 

careful to correctly interpret the mean vector, 𝑦𝑖, namely as it relates to𝜇. 

More specifically, allow 𝐴𝑘and 𝛬𝑘to stand for the kth row for each A and 𝛬. 

when 𝑘 = 1, . . . , 𝑝; it can be determined, as in Equation (1), that 𝜇𝑖𝑘 = 𝐸(𝑦𝑖𝑘) which is 

also= 𝐴𝑘𝑐𝑖 + 𝛬𝑘𝐸(𝑤𝑖). However, when 𝐸(𝜉𝑖) = 0, it can then be determined that in 

accordance with Equation (2), 𝐸(𝜂𝑖) ≠ 0if 𝐹(𝑥𝑖 , 𝜉𝑖) is a nonlinear function of𝜉𝑖. 

Therefore, going forward, both 𝐸(𝜔𝑖) ≠ 0, and𝜇𝑖𝑘 ≠ 𝐴𝑘𝑐𝑖. So, allow 𝛬𝑘 = (𝛬𝑘𝜂
𝑇 , 𝛬𝑘𝜉

𝑇 )𝑇to 

be a partition of 𝛬𝑘which corresponds with𝜔𝑖 = (𝜂𝑖
𝑇 , 𝜉𝑖

𝑇)𝑇, which is also a partition. If 

follows that 𝐸(𝜉𝑖) = 0, and 𝜂𝑖 = (𝐼 − 𝐵)−1𝛤𝐹(𝑥𝑖, 𝜉𝑖), it follows from Equation  (1) that 

             
𝜇𝑖𝑘 = 𝐴𝑘𝑐𝑖 + 𝛬𝑘𝜂𝐸(𝜂𝑖) = 𝐴𝑘𝑐𝑖 + 𝛬𝑘𝜂[(𝐼 − 𝐵)−1𝛤]𝐸(𝐹(𝑥𝑖, 𝜉𝑖)).                 (5) 

However, 𝐹(𝑥𝑖 , 𝜉𝑖) is generally uncomplicated when used in the practical application 

setting, and as such it can be expected that 𝐸(𝐹(𝑥𝑖 , 𝜉𝑖)) is also relatively simplistic, 

allowing the computation of 𝜇𝑖𝑘to be performed without any struggle. It is also valuable 

to study this indirect method for modeling covariates, similar to those demonstrated 

above, by first supplementing 𝑦𝑖with𝑥𝑖, and then by then managing each element of the 

latter as if it is exogenous latent variable which can be measured precisely with use of a 

single indicator. To manage the difficulties that arise as the result of mixed ordered 

categorical and dichotomous outcomes, assume that 𝑦𝑖
(𝑔)

is a 𝑠 × 1sub-vector of 

unobservable continuous responses, and that the information derived from it is reflected 

by an observable ordered categorical vector 𝑧𝑖
(𝑔)

. Generally speaking, in keeping with 

this idea, the ordered categorical variable, in this case 𝑧𝑚
(𝑔)

, can be defined according to 

the related latent continuous random variable 𝑦𝑚
(𝑔)

by: 

  

𝑧(𝑔) = [
𝑧1

(𝑔)

⋮

𝑧𝑠
(𝑔)

] 𝑖𝑓

[
 
 
 
 𝛼1,𝑧1

(𝑔)
(𝑔)

< 𝑦1
(𝑔)

≤ 𝛼
1,𝑧1

(𝑔)
+1

(𝑔)

⋮

𝛼
𝑠,𝑧𝑠

(𝑔)
(𝑔)

< 𝑦𝑠
(𝑔)

≤ 𝛼
𝑠,𝑧𝑠

(𝑔)
+1

(𝑔)

]
 
 
 
 

 

                                      (6)                            

such that it is also true that {−∞ = 𝛼𝑚,1
(𝑔)

< 𝛼𝑚,2
(𝑔)

<. . . < 𝛼𝑚,𝑏𝑚

(𝑔)
< 𝛼𝑚,𝑏𝑚 +1

(𝑔)
= ∞}is the 

set of threshold parameters which define the given categories, and 𝑏𝑚for which 𝑏𝑚stands 

for the number of categories for the ordered categorical variable𝑧𝑚
(𝑔)

.  

Also, when regarding the dichotomous data, the correlation between y and z can be 

determined according to the set of cut points in which x in Equation (8) signifies 

dichotomous variables, it follows that  

𝑧𝑖𝑘
(𝑔)

= {1𝑖𝑓𝑢𝑟
(𝑔)

> 0

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                                                                                         (7) 

To handle the problem of mixed ordered categorical and dichotomous data in cavariates, 

we will use hidden continuous normal distribution
 
𝑄𝑚

(𝑔)
 (truncated normal distribution 

with known parameters). For ordered categorical covariates data, it follows that: 
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𝑥(𝑔) = [
𝑥1

(𝑔)

⋮

𝑥𝑠
(𝑔)

] 𝑖𝑓

[
 
 
 
 𝛼1,𝑥1

(𝑔)
(𝑔)

< 𝑄1
(𝑔)

≤ 𝛼
1,𝑥1

(𝑔)
+1

(𝑔)

⋮

𝛼
𝑠,𝑥𝑠

(𝑔)
(𝑔)

< 𝑄𝑠
(𝑔)

≤ 𝛼
𝑠,𝑥𝑠

(𝑔)
+1

(𝑔)

]
 
 
 
 

 

                                         (8) 

To handle the problem of dichotomous data in cavariates 𝑋
(𝑔), we will use hidden 

continuous normal distribution 𝑄𝑚
(𝑔)

 (truncated normal distribution with known 

parameters). It follows that: 

𝑋𝑖𝑘
(𝑔)

= {1𝑖𝑓𝑗𝑟
(𝑔)

> 0

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                                                                                          (9) 

It should be understood, however, that for every mixed ordered categorical and 

dichotomous variable, the number of thresholds (cut points) for each group are 

equivalent. However, we use two types of thresholds (equal and unequal categories 

distances). 

Lee et. al., (1990) determined that a single-sample method could be implemented with 

mixed ordered categorical and dichotomous variables, but could not be identified with 

imposing special identification conditions.  

 

3.  Bayesian Analysis of Multi-sample Nonlinear Latent variable Models 

Allow 𝜃(𝑔) be an unknown parameter vector within the previously acknowledged model 

and similarly allow 𝛼(𝑔) be a vector of unknown thresholds for the mixed ordered 

categorical and dichotomous variables, which correspond to the gth group. This is 

selected because a select kind of parameter in 𝜃
(𝑔) is frequently identified as an invariant 

within group models in multi-sample analysis. For example, restrictions on cut points are 

subject to the following constraints: 

𝛬(1) =. . . = 𝛬(𝐺), 𝛷(1) =. . . = 𝛷(𝐺) and/or 𝛤
(1) =. . . = 𝛤(𝐺), are frequently implemented 

as thresholds on the model. Hence, when analyzing the data, we can allow certain 

common parameters, 𝜃(1) =. . . = 𝜃(𝐺). More specifically, we allow 𝜽 to be a vector 

containing the complete set of unknown distinct parameters𝛤(1) =. . . = 𝛤(𝐺), and allow 

𝛼to be the vector that encompasses all the unknown thresholds. 

Thus, the Bayesian estimate of 𝜽 and 𝛼are generated according to the Gibbs sampler. 

More specifically, allow 𝑍(𝑔) = (𝑧1
(𝑔)

, . . . , 𝑧𝑟
(𝑔)

) to stand for the observed ordered 

categorical data matrix, 𝑍(𝑔) = (𝑧1
(𝑔)

, . . . , 𝑧𝑠
(𝑔)

)
 
to represent the observed dichotomous 

data, and 𝑌(𝑔) = (𝑦1
(𝑔)

, . . . , 𝑦𝑛
(𝑔)

) and 𝛺(𝑔) = (𝜔1
(𝑔)

, . . . , 𝜔𝑛
(𝑔)

) to denote the matrices of 

latent variables and continuous measurements, respectively. 

Then, in the posterior analysis, augment the observed data with Y. Once Y has been 

established, all the data is accounted for, and considered continuous, so the problem will 

be simpler to manage. Also, be aware that the observation of𝜴, or the nonlinear structural 

and measurement equations to condense into a regular simultaneous regression model. 

Complications that arise as the result of the nonlinear relationships between the latent 

variables are significantly improved. 

Thus, issues associated with the more complex elements of the model can be dealt with 

by augmenting the data. Through posterior analysis, (Z), which represents the set of 

observed data, can be supplemented by(𝑌, 𝛺). Further, we will demonstrate the joint 

posterior distribution[𝜃, 𝛼, 𝑌, 𝛺|𝑍]. The Gibbs sampler, as developed by Geman and 
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Geman (1984), can be applied in order to create a series of observations from the related 

joint posterior distribution. 

As a result the Bayesian solution can be gained through a series of standard inferences 

based on the generated sample of observations. Further, by using the Gibbs sampler, we 

can use the iteration approach to create a set of sample observations from these 

conditional distributions: [𝛺|𝜃, 𝛼, 𝑌, 𝑍], [𝛼, 𝑌|𝜃, 𝛺, 𝑍] and[𝜃|𝛼, 𝑌, 𝛺, 𝑍]. In similar 

approach to the way previous cut point problems were handled, we can determine the 

non-informative previous to determining 𝛼such that the corresponding prior distribution 

is comparative to the constant. The conditional distribution [𝜃|𝛼, 𝑌, 𝛺, 𝑍] thus can be 

additionally decomposed into individual components which include a number of different 

structural parameters, according to the various group models. 

Some examples of non-nested competing models are:  

 
     

𝑀𝐴: No constraints 
   

𝑀1 = 𝜇(1) =. . . = 𝜇(𝐺), 𝑀2 = 𝛬(1) =. . . = 𝛬(𝐺)
    

    

𝑀3 = 𝛬𝜔
(1)

=. . . = 𝛬𝜔
(𝐺)

, 𝑀4 = 𝛷𝜔
(1)

=. . . = 𝛷𝜔
(𝐺)

 
𝑀5 = 𝛹𝜀

(1)
=. . . = 𝛹𝜀

(𝐺)
, 𝑀6 = 𝛹𝛿

(1)
=. . . = 𝛹𝛿

(𝐺)
 

These components become varied as different hypotheses are applied, or as competing 

methodologies are pursued. The components of the conditional distribution, known as 

[𝜃|𝛼, 𝑌, 𝛺, 𝑍] and the condition applied to prior distributions are somewhat dissimilar, or 

varying, when placed under various definitions of Mk as outlined above.  

To begin, the prior distributions for the unconstrained parameters from various groups are 

implicitly expected to act independently. Further, when creating an estimate for the 

unconstrained parameters, it becomes necessary to identify the specific value of its prior 

distribution, and to outline the data that belongs in the corresponding groupings, in order 

for them to be fully applied. In the case of constrained parameters across groups, a prior 

distribution for the associated constrained parameters is required, and all the related data 

groups are then combined for estimating (see Song and Lee, 2001).  

This section describes the Bayesian estimation and model comparison in the setting of 

multiple group nonlinear LVMs with ordered categorical variables. In completing the 

general scheme, the idea of data augmentation is used together with MCMC tools. 

Theoretically, a multiple group nonlinear LVM is a particular case of the two-level LVM, 

with some conditional distributions required in the Gibbs sampler which can be achieved 

from the outcomes. However, as specific constraints among the parameters in different 

groups are compulsory, it is essential to pay more attention in stipulating the equivalent 

prior distributions. Likewise, the model comparison in two-level LVMs requires some 

insight in applying the path sampling procedure (Lee and Song, 2012). 

The goal for this section is to define how to analyze the preceding nonlinear LVM, in the 

context of the mixed ordered categorical and dichotomous variables, using the Bayesian 

approach. Using this approach is beneficial to the overall application in several ways, 

including: (1) application of the prior knowledge can enhance the overall analysis when it 

is directly incorporated. More specifically, it generates more accurate parameter 

estimation. (2) As demonstrated by various researchers, sampling-based Bayesian 

methods are not reliant on asymptotic theory (Lee (2006); Lee et al. (2010); Lee et al., 

(2007); Song et al., (2011)  (3) Both Bayesian and ML estimates feature similar optimal 

asymptotic properties. Understanding these principles will allow us to strategically 

augment the data as termed in the Bayesian estimation of the latent variable models with 

mixed ordered categorical and dichotomous variables. 
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When using a Bayesian approach, θ is regarded as the parameter of prior distribution, and 

a prior density function, and can be defined as 𝑝(𝜃). The inferences are then based on 

observed data set, represented by Zr , Zs and 𝑝(𝜃). So let 𝑝(𝑍, 𝑉, 𝜃) stand for the joint 

probability density function of Z , V and θ under the variety of Mk.  

Based on a well-known identity in probability,𝑝(𝑍, 𝑉, 𝜃) = 𝑝(𝑍𝑟 , 𝑍𝑠|𝜃)𝑝(𝜃), where 

𝑝(𝑍𝑟 , 𝑍𝑠|𝜃) and 𝑝(𝜃|𝑍𝑟 , 𝑍𝑠) are conditional density functions. It follows that:  

             𝑙𝑜𝑔 𝑝(𝜃|𝑍𝑟 , 𝑍𝑠) ∝ 𝑙𝑜𝑔 𝑝 (𝑍𝑟 , 𝑍𝑠|𝜃) + 𝑙𝑜𝑔 𝑝 (𝜃)                                         (10)                     

The function 𝑝(𝜃|𝑍𝑟 , 𝑍𝑠) is called the posterior density function of the unknown 

parameters. 

This yields the posterior density function𝑝(𝜃|𝑍𝑟 , 𝑍𝑠), or unknown parameters. It also 

employs the use of sample information and prior knowledge, via the likelihood function 

𝑝(𝑍𝑟 , 𝑍𝑠|𝜃), and the prior density function 𝑝(𝜃). It should be noted, however, that 

𝑝(𝑍𝑟 , 𝑍𝑠|𝜃) is dependent on sample size, where 𝑝(𝜃) is not. As such, for problems with a 

large sample, 𝑝(𝜃) is less significant and𝑝(𝜃|𝑍𝑟 , 𝑍𝑠), the posterior density function, is 

more relevant, as it is most similar to the likelihood function𝑝(𝑍𝑟 , 𝑍𝑠|𝜃). So, both the 

Bayesian approach and ML model are asymptotically equivalent, and thus contain the 

same optimal asymptotical properties. However, continue to note that 𝑝(𝜃) is significant 

with regard to the Bayesian approach when the sample size is reduced or when the 

information derived from Z contains mixed ordered categorical and dichotomous data. In 

this case, MCMC methods are applied by allow yi to be the unobserved variables that 

parallel the manifest mixed ordered categorical and dichotomous variables in Zr , Zs. Also 

allow that 𝑌 = (𝑦1, . . . , 𝑦𝑛), 𝑈 = (𝑢1, . . . , 𝑢𝑛) and 𝛺 = (𝑤1, . . . , 𝑤𝑛) are unobserved 

continuous variables Y,U and latent variables Ω respectively. 

Also, one must allow 𝑌 = (𝑦1, . . . , 𝑦𝑛) and𝛺 = (𝑤1, . . . , 𝑤𝑛) when drawing a sufficient 

and generally large number of observations If we can draw a sufficiently large number of 

observations, represented by{(𝜃(𝑡), 𝛺(𝑡), 𝑌(𝑡), 𝑈(𝑡)); 𝑡 = 1, . . . , 𝑇} from the joint posterior 

distribution, defined by 𝑝(𝜃, 𝛺, 𝑌, 𝑈|𝑍𝑟 , 𝑍𝑠), then the Bayesian estimate for 𝜃 as well as 

any standard error estimates can be derived from the sample mean and variance matrices, 

respectively. 

 

𝜃̑ = 𝑇−1 ∑ 𝜃(𝑡)𝑇
𝑡=1 , 𝑣 ̑ 𝑎𝑟( 𝜃|𝑍𝑟 , 𝑍𝑠) = (𝑇 − 1)−1 ∑ (𝜃(𝑡)𝑇

𝑡=1 − 𝜃̑)(𝜃(𝑡) − 𝜃̑)′.      (11)          

This means that it is necessary to specifically identify the prior distribution for the related 

components in𝜃, even if developing the conditional distribution, (𝜃|𝛺, 𝑌, 𝑈, 𝑍𝑟 , 𝑍𝑠) 

described in Step (1). In generally, during Bayesian analysis, the conjugate prior 

distributions have proven to be both malleable and suitable to the purpose (Broemeling, 

1985). 

This kind of prior distribution has been widely applied to many Bayesian analysis in 

latent variable models, (see  Song and Lee, (2007). Hence, the following well-known 

conjugate prior distributions are used: 

       
𝑝(𝐴𝑘)~𝑁[𝐴0𝑘 , 𝐻0𝑎𝑘], 𝑝(𝜆𝑘)~𝑁[𝜆0𝑘, 𝐻0𝑘], 𝑝(𝜆𝜉𝑘|𝜓𝛿𝑘)~𝑁[𝜆0𝜉𝑘, 𝜓𝛿𝑘𝐻0𝜉𝑘],   

       
𝑝(𝛷−1)~𝑊𝑞[𝑅0, 𝜌0], 𝑝(𝜓𝛿𝑘

−1)~𝐺𝑎𝑚𝑚𝑎[𝛼0𝑘, 𝛽0𝑘]                                          (11)
       

 

Given the definition that 𝒑(⋅) ∼is the probability of 𝑝(⋅), and that 𝑝(⋅)is distributed 

according to,  𝝍𝜹𝒌, which is the kth diagonal element of 𝛹𝛿 , 𝜆𝑘
′
 and 𝜆𝜉𝑘

′
 are the kth rows 

of 𝛬 and 𝛬𝜉, respectively. 𝐻0𝑎𝑘 , 𝐻0𝑘 and
 
𝐴0𝑘 , 𝜆0𝑘, 𝜆0𝜉𝑘, 𝛼0𝑘, 𝛽0𝑘, 𝜌0, 𝜎0𝑘 , 𝐻0𝜉𝑘, and𝑅0 are 

assumed to be known as prior information. Generally speaking, prior information is 

obtained via causal observance, theoretical consideration, or analysis of past data. 
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More specifically, when using the Bayesian approach, it is necessary to evaluate the 

posterior distribution[𝛼, 𝜃, 𝛺|𝑍𝑟 , 𝑍𝑠, 𝑄] with the case of non-normal covariates 𝑥, but the 

distribution can become relatively complex. So, in order to correctly demonstrate the 

characteristics, an increased number of observations are drawn, so that the related 

empirical distribution of the resulting observations remains consistent with the true 

distribution. The Gibbs sampler makes an excellent candidate for this process, according 

to (Geman and Geman, 1984), because it can simulate 𝜶, 𝜽 and 𝛺, all from the 

conditional distribution. 

However, as a result of the existence of mixed ordered categorical and dichotomous 

variables and covariates in this case, the related conditional distributions can be made too 

complex to easily derive or simulating data from them. This encourages the additional 

augmentation of 𝒀,𝑼, 𝑿𝒓, 𝑿𝒔 the latent matrices, in the posterior analysis, and motivates 

attention to the joint posterior distribution[𝛼, 𝜃, 𝛺, 𝑌, 𝑈, 𝑋𝑟 , 𝑋𝑠|𝑍𝑟 , 𝑍𝑠, 𝑄, 𝐽]. To garner 

observations of this posterior distribution, using the Gibbs sampler, it is essential to begin 

with the starting values (𝛼(0), 𝜃(0), 𝛺(0), 𝑌(0), 𝑈(0), 𝑋𝑟
(0)

, 𝑋𝑠
(0)

). The following procedure is 

then implemented to simulate (𝛼(1), 𝜃(1), 𝛺(1), 𝑌(1), 𝑈(1), 𝑋𝑟
(1)

, 𝑋𝑠
(1)

) and so on. More 

specifically at the mth reiteration of the current values 
𝛼(𝑚), 𝜃(𝑚), 𝛺(𝑚), 𝑌(𝑚), 𝑈(𝑚), 𝑋𝑟

(𝑚)
, 𝑋𝑠

(𝑚)
. 

1. Generate 𝛺(𝑚+1) from𝑝(𝛺|𝜃
(𝑚+1)

, 𝛼(𝑚), 𝑌(𝑚), 𝑈(𝑚), 𝑋𝑟
(𝑚)

, 𝑋𝑠
(𝑚)

, 𝑍𝑟
(𝑚)

, 𝑍𝑠
(𝑚)

, 𝑄, 𝐽) 

2. Generate 𝜃(𝑚+1) from 𝑝(𝜃|𝛺
(𝑚+1)

, 𝛼(𝑚), 𝑌(𝑚), 𝑈(𝑚), 𝑋𝑟
(𝑚)

, 𝑋𝑠
(𝑚)

, 𝑍𝑟
(𝑚)

, 𝑍𝑠
(𝑚)

, 𝑄, 𝐽) 

3. Generate(𝛼(𝑚+1), 𝑌(𝑚+1), 𝑋𝑟
(𝑚+1)

, 𝑋𝑠
(𝑚+1)

) from 

𝑝(𝛼, 𝑌, 𝑈, 𝑋𝑟, 𝑋𝑠|𝜃
(𝑚+1), 𝛺(𝑚+1), 𝑍𝑟 , 𝑍𝑠, 𝑄, 𝐽)   

            (12) 

The cycle, as previously defined, will give 

us(𝛼(𝑚+1), 𝜃(𝑚+1), 𝛺(𝑚+1), 𝑌(𝑚+1), 𝑈(𝑚+1), 𝑋𝑟
(𝑚)

, 𝑋𝑠
(𝑚)

), only occurring after the mth 

repetition. So, as m approaches infinity, the joint distribution of the value of 

(𝛼(𝑚), 𝜃(𝑚), 𝛺(𝑚), 𝑌(𝑚), 𝑈(𝑚), 𝑋𝑟
(𝑚)

, 𝑋𝑠
(𝑚)

) can be proven to move toward the joint 

posterior distribution[𝛼, 𝜃, 𝛺, 𝑌, 𝑋𝑟, 𝑋𝑠|𝑍, 𝑄, 𝐽]. (see Geman and Geman, (1984);  Geyer, 

(1992). The sequences in which the quantities are replicated from the joint posterior 

distribution are then used during the calculation of the Bayesian estimates and other 

similarly related statistics. 

 

 

4.  Model Comparison 

 

A model comparison statistic DIC (see  Spiegelhalter et. al., 2002) is a generalization of 

the Akaike Information Criterion (AIC; Akaike, 1973) . Under a competing model 𝑀𝑘 

with a vector of unknown parameters 𝜃𝑘, the DIC is computed as follows: 

                            
𝐷𝐼𝐶𝑘 = 𝐷(𝜃𝑘) + 𝑑𝑘,                                                         (14) 

where 𝐷(𝜃𝑘)measures the goodness of fit of the model, and is defined as 

                        
𝐷(𝜃𝑘) = 𝛦𝜃𝑘

{−2 𝑙𝑜𝑔 𝑝 (𝑍|𝜃𝑘, 𝑀𝑘)|𝑍}.                                           (15) 

Here, 𝑑𝑘is the effective number of parameters in 𝑀𝑘, and is defined as 

𝑑𝑘 = 𝛦𝜃𝑘
[−2 𝑙𝑜𝑔 𝑝 (𝑍|𝜃𝑘, 𝑀𝑘)|𝑍] + 2 𝑙𝑜𝑔 𝑓 (𝑍|𝜃̃).                                         (16) 
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in which 𝜃̃ is the Bayesian estimate of 𝜃. Let {𝜃𝑘
(𝑡)

: 𝑡 = 1, . . . , 𝑇} be a sample of 

observations simulated from the posterior distribution. The expectations in Equations 

(15) and (16) can be estimated as follows: 

  
𝛦𝜃𝑘

{−2 𝑙𝑜𝑔 𝑝 (𝑍|𝜃𝑘 , 𝑀𝑘)|𝑍} = −
2

𝑇
∑ 𝑙𝑜𝑔 𝑝 (𝑍|𝜃𝑘

(𝑡)𝑇
𝑡=1 , 𝑀𝑘).                             (17)  

In Bayesian LVMs, the model with the smaller DIC value is selected.  

 

5. A Case Study of Psychological data 

 

Let us consider the data which can be used for deriving results of two different 

independent samples which are selected from the natural history based on the study of a 

rural drug found in Ohio (n=200) and Kentucky (n=200) in USA between the time 2003 

and 2005 (Booth, et. al, 2006). 

Further many amendments were made under the BSI-18 scale which involved 3 

categories of psychiatric disorders which was measured under this scale and considered 

aspects like somatization (SOM), depression (DEP), and anxiety (ANX). 

The data consists of sixteen variables and two covariates in each group. Moreover 9 of 

these variables were evaluated based on ordered categorical variables: (1, not at all; 2, a 

little bit; 3, moderately; 4, quite a bit; 5, extremely and the rest of variables are  

dichotomous variables and recoded as a dummy variable: 0, ‘not at all’ or ‘a little bit;’ 1, 

‘Moderately’ to ‘Extremely’ for the purpose of model demonstration (Wang and Wang, 

2012). 

A real data study is presented here to give some idea of the empirical performance of the 

proposed Bayesian approach in which 16 manifest variables are related to two basic 

latent variables (𝜂(𝑔), 𝜉𝑖1
(𝑔)

𝜉𝑖2
(𝑔)

) from multi-sample nonlinear LVMs defined in Equation 

(19) and Equation (20), respectively. Hence, some quadratic and interaction effects of the 

latent variables are considered. To illustrate the Bayesian methods in analysing linear and 

nonlinear latent variable models with mixed ordered categorical  and dichotomous 

variables, we use a real data set that is related to random vectors with G=1,2, 𝑧𝑖
(𝑔)

=

(𝑧𝑖1
(𝑔)

, 𝑧𝑖2
(𝑔)

, . . . , 𝑧𝑖16
(𝑔)

)′, let 𝑦𝑖
(𝑔)

= (𝑦𝑖1
(𝑔)

, 𝑦𝑖2
(𝑔)

, . . . , 𝑦𝑖16
(𝑔)

)′ be the latent continuous random 

vector, which corresponds to the mixed ordered categorical  and dichotomous variables 

𝑧𝑖1
(𝑔)

, 𝑧𝑖2
(𝑔)

, . . . , 𝑧𝑖16
(𝑔)

where
 
𝑧𝑖

(𝑔)
, 𝑖 = 1, . . . , 𝑛 are mixed ordered categorical  and dichotomous 

variables that are related to (3) latent variables
 

𝑤𝑖
(𝑔)

= (𝜂𝑖
(𝑔)

, 𝜉𝑖1
(𝑔)

, 𝜉𝑖2
(𝑔)

),𝜀𝑖
(𝑔)

=

(𝜀𝑖1
(𝑔)

, 𝜀𝑖2
(𝑔)

, . . . , 𝜀𝑖16
(𝑔)

), with the following values of the parameters in 𝛬(𝑔) =

(𝜆1
(𝑔)′

, 𝜆2
(𝑔)′

, . . . , 𝜆13
(𝑔)′

)′ 
𝛬(𝑔)

= 𝛬(1) [
1∗ 𝜆21

(1)
𝜆31

(1)

0∗ 0∗ 0∗

0∗ 0∗ 0∗

𝜆41
(1)

𝜆51
(1)

𝜆61
(1)

0∗ 0∗ 0∗

0∗ 0∗ 0∗

0∗ 0∗ 0∗

1 𝜆82
(1)

𝜆92
(1)

0∗ 0∗ 0∗

0∗ 0∗

𝜆102
(1)

𝜆112
(1)

0∗ 0∗

0∗ 0∗ 0∗

0∗ 0∗ 0∗

1 𝜆133
(1)

𝜆143
(1)

0∗ 0∗

0∗ 0∗

𝜆153
(1)

𝜆163
(1)

]

′

, 

𝛬(2) [
1∗ 𝜆21

(2)
𝜆31

(2)

0∗ 0∗ 0∗

0∗ 0∗ 0∗

𝜆41
(2)

𝜆51
(2)

𝜆61
(2)

0∗ 0∗ 0∗

0∗ 0∗ 0∗

0∗ 0∗ 0∗

1 𝜆82
(2)

𝜆92
(2)

0∗ 0∗ 0∗

0∗ 0∗

𝜆102
(2)

𝜆112
(2)

0∗ 0∗

0∗ 0∗ 0∗

0∗ 0∗ 0∗

1 𝜆133
(2)

𝜆143
(2)

0∗ 0∗

0∗ 0∗

𝜆153
(2)

𝜆163
(2)

]

′

, 

𝛷(𝑔) = 𝛷(1) [
𝜙11

(1)
𝜙12

(1)

𝜙21
(1)

𝜙22
(1)

] , 𝛷(2) [
𝜙11

(2)
𝜙12

(2)

𝜙21
(2)

𝜙22
(2)

].                              (18)         

where parameters with an asterisk are treated as fixed for identifying the model. 
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The relationships of the latent variables in 𝑤𝑖
(𝑔)

= (𝜂𝑖
(𝑔)

, 𝜉𝑖1
(𝑔)

𝜉𝑖2
(𝑔)

)  are assessed by the 

nonlinear latent variable, which is described in the following equations.
  

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

1 1 2 2 3 1 2 4 1 2 5 1 1 2 1 1i i i i i i i i i i ix x x x x x          = + + + + + +𝜸𝟐
(𝟏)

𝝃𝒊𝟐
(𝟏)

+

𝜸𝟑
(𝟏)

𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

+ 𝜸𝟒
(𝟏)

𝝃𝒊𝟐
(𝟏)

𝝃𝒊𝟐
(𝟏)

+ 𝜹𝒊
(𝟏)

                                                                    (19)                                         
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) ( 2) (2) (2) (2)

1 1 2 2 3 1 2 4 1 2 5 1 1 2 1 1i i i i i i i i i i ix x x x x x          = + + + + + +𝜸𝟐
(𝟐)

𝝃𝒊𝟐
(𝟐)

+

𝜸𝟑
(𝟐)

𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

+ 𝜸𝟒
(𝟐)

𝝃𝒊𝟐
(𝟐)

𝝃𝒊𝟐
(𝟐)

+ 𝜹𝒊
(𝟐)

                                                                 (20)                                                
 

Here,𝛤(1) = (𝛽1
(1)

, 𝛽2
(1)

, 𝛽3
(1)

, 𝛽4
(1)

, 𝛽5
(1)

, 𝛾1
(1)

, 𝛾2
(1)

, 𝛾3
(1)

, 𝛾4
(1)

), 

 and 𝛤(2) = (𝛽1
(2)

, 𝛽2
(2)

, 𝛽3
(2)

, 𝛽4
(2)

, 𝛽5
(2)

, 𝛾1
(2)

, 𝛾2
(2)

, 𝛾3
(2)

, 𝛾4
(2)

), 

and 𝐹(𝑥𝑖
(𝑔)

, 𝜉𝑖
(𝑔)

) =

(𝑥𝑖1
(𝑔)

, 𝑥𝑖2
(𝑔)

, 𝑥𝑖1
(𝑔)

𝑥𝑖2
(𝑔)

, 𝑥𝑖1
(𝑔)

𝜉𝑖2
(𝑔)

, 𝑥𝑖1
(𝑔)

𝜉𝑖1
(𝑔)

𝜉𝑖2
(𝑔)

, 𝜉𝑖1
(𝑔)

, 𝜉𝑖2
(𝑔)

, 𝜉𝑖1
(𝑔)

𝜉𝑖1
(𝑔)

, 𝜉𝑖2
(𝑔)

𝜉𝑖2
(𝑔)

)𝑇. The covariates 

𝑋𝑖 come from arbitrary distributions that give mixed ordered categorical and dichotomous 

data. 

The following accurate prior inputs of the hyperparameter values in the conjugate prior 

distributions of the parameters are considered: 

Prior I: Elements in 𝜇0,𝜆0𝑘 and 𝜆0𝜉𝑘 in Equation (12) are set equal to the following 

values with initial values equal to 0 in some parameters and 1 in other parameters for two 

groups of data;  

 𝑅0
−1 = 8𝛷,

 
𝐻0𝑢, 𝐻0𝑘and 𝐻0𝜉𝑘are taken to be 0.25 times the identity matrices; 𝛼0𝑘 = 10 , 

𝛽0𝑘 = 8 , 𝜌0 = 30. 

Prior II: Elements in𝜇0,𝜆0𝑘 and 𝜆0𝜉𝑘 in Equation (12) are set equal to the following 

values with initial values equal to 0.5 for two groups of data;  

 1

0 8− =R  𝐻0𝑢, 𝐻0𝑘and 𝐻0𝜉𝑘are taken to be 0.25 times the identity matrices; 𝛼0𝑘 = 10 , 

𝛽0𝑘 = 8 , 𝜌0 = 30.  

The prior is informative and can have a significant effect on the parameter estimates for a 

small sample size case. 

 

6. Results and Discussion 

 

The objective of this section is to present results of a simulation study to reveal the 

empirical performance of the Bayesian estimates and the DIC for model comparison. 

For nonlinear LVMs with covariates, we have the following proposed models for g=1,2: 

𝑀1: 𝜂𝑖
(𝑔)

= 𝛽1
(𝑔)

𝑥𝑖1
(𝑔)

+ 𝛽2
(𝑔)

𝑥𝑖1
(𝑔)

𝜉𝑖1
(𝑔)

+ 𝛽3
(𝑔)

𝑥𝑖1
(𝑔)

𝜉𝑖2
(𝑔)

+ 𝛾1
(𝑔)

𝜉𝑖1
(𝑔)

+ 𝛾2
(𝑔)

𝜉𝑖2
(𝑔)

+ 𝛿𝑖
(𝑔)

 
𝑀2: 𝜂𝑖

(𝑔)
= 𝛽1

(𝑔)
𝑥𝑖1

(𝑔)
+ 𝛽2

(𝑔)
𝑥𝑖1

(𝑔)
𝜉𝑖1

(𝑔)
+ 𝛽3

(𝑔)
𝑥𝑖1

(𝑔)
𝜉𝑖2

(𝑔)
+ 𝛽4

(𝑔)
𝑥𝑖1

(𝑔)
𝑥𝑖1

(𝑔)
𝜉𝑖2

(𝑔)
+ 𝛾1

(𝑔)
𝜉𝑖1

(𝑔)
+

𝛾2
(𝑔)

𝜉𝑖2
(𝑔)

+ 𝛿𝑖
(𝑔)

                                                                                                                                                           

𝑀3: 𝜂𝑖
(𝑔)

= 𝛽1
(𝑔)

𝑥𝑖1
(𝑔)

+ 𝛽2
(𝑔)

𝑥𝑖1
(𝑔)

𝜉𝑖2
(𝑔)

+ 𝛽3
(𝑔)

𝑥𝑖1
(𝑔)

𝜉𝑖1
(𝑔)

𝜉𝑖1
(𝑔)

+ 𝛾1
(𝑔)

𝜉𝑖1
(𝑔)

+ 𝛾2
(𝑔)

𝜉𝑖2
(𝑔)

+

𝛾3
(𝑔)

𝜉𝑖1
(𝑔)

𝜉𝑖1
(𝑔)

+ 𝛾4
(𝑔)

𝜉𝑖2
(𝑔)

𝜉𝑖2
(𝑔)

+ 𝛿𝑖
(𝑔)

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

4 1 1 2 2 3 1 2 4 1 2 5 1 1 2 1 1: i i i i i i i i i i iM x x x x x x          = + + + + + +𝜸𝟐
(𝟏)

𝝃𝒊𝟐
(𝟏)

+

𝜸𝟑
(𝟏)

𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

+ 𝜸𝟒
(𝟏)

𝝃𝒊𝟐
(𝟏)

𝝃𝒊𝟐
(𝟏)

+ 𝜹𝒊
(𝟏)
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TABLE 1. Bayesian Estimation of Nonlinear LVMs with Mixed Variables under Prior I 

and II Using Censored Normal Distribution with Equal Spaces of Thresholds 
Para Est. SE HPD Interval Para Est. SE HPD Interval 

λ 21
(1) 0.907 0.112 [0.699,  1.143 ] ɸ11

(1) 0.386 0.068 [0.268,  0.537 ] 

λ 31
(1) 0.688 0.096 [0.511,  0.886 ] ɸ12

(1)
 

0.297 0.053 [0.202,  0.412 ] 

λ 41
(1) 0.833 0.135 [0.583,  1.114 ] ɸ22

(1)
 

0.297 0.053 [0.202,  0.412 ] 

λ 51
(1) 0.874 0.115 [0.663,  1.117 ] ɸ11

(2) 0.397 0.068 [0.282,  0.549 ] 

λ 61
(1) 0.804 0.100 [0.617,  1.007 ] ɸ12

(2)
 

0.459 0.088 [0.318,  0.671 ] 

λ82 
(1) 0.939 0.156 [0.652,  1.262 ] ɸ22

(2)
 

0.360 0.067 [0.248,  0.507 ] 

λ 92
(1) 1.114 0.216 [0.720,  1.553 ] γ1

(1) 0.680 0.256 [0.177, 1.180] 

λ 102
(1) 1.272 0.232 [0.861,  1.768 ] γ2

(1)
 

0.720 0.250 [0.242, 1.211] 

λ 112
(1) 0.657 0.166 [0.367,  1.014 ] γ3

(1)
 

0.079 0.277 [-0.420, 0.675] 

λ 122
(1) 0.814 0.175 [0.507,  1.192 ] γ4

(1)
 

0.052 0.257 [-0.417, 0.606] 

λ 143
(1) 0.815 0.187 [0.497,  1.227 ] γ1

(2) 0.791 0.254 [0.313, 1.304] 

λ153 
(1) 0.397 0.157 [0.144,  0.752 ] γ2

(2)
 

0.609 0.258 [0.119, 1.136] 

λ 163
(1) 0.767 0.182 [0.453,  1.144 ] γ3

(2)
 

0.187 0.268 [-0.324, 0.708] 

λ 21
(2) 0.921 0.111 [0.715,  1.151 ] γ4

(2)
 

0.350 0.284 [-0.213, 0.911] 

λ 31
(2) 0.897 0.114 [0.685,  1.139 ] β1

(1) 0.503 0.182 [0.150, 0.854] 

λ 41
(2) 0.891 0.143 [0.637,  1.198 ] β2

(1)
 

0.439 0.146 [0.168, 0.748] 

λ 51
(2) 0.905 0.119 [0.686,  1.152 ] β 3

(1)
 

0.150 0.199 [-0.237, 0.531] 

λ 61
(2) 0.896 0.115 [0.686,  1.136 ] β 4

(1)
 

-0.246 0.241 [-0.716, 0.234] 

λ82 
(2) 1.168 0.167 [0.863,  1.508 ] β 5

(1)
 

0.230 0.281 [-0.302, 0.808] 

λ 92
(2) 0.184 0.184 [-0.168,0.555] β1

(2)
 

0.683 0.221 [0.280, 1.135] 

λ 102
(2) 0.101 0.165 [-0.216,0.435] β 2

(2)
 

0.387 0.186 [0.047, 0.767] 

λ 112
(2) 0.564 0.156 [0.325,  0.919 ] β 3

(2)
 

0.076 0.241 [-0.392, 0.549] 

λ 122
(2) 0.713 0.183 [0.416,  1.130 ] β 4

(2)
 

-0.280 0.266 [-0.787, 0.271] 

λ 143
(2) 0.751 0.177 [0.447,  1.127 ] β 5

(2)
 

0.564 0.308 [-0.015, 1.201] 

λ153 
(2) 0.287 0.114 [0.103,  0.545 ] ψεδ

(1)
 

0.502 0.107 [0.332,  0.747 ] 

λ 163
(2) 0.667 0.164 [0.385,  1.007 ] ψεδ

(2) 0.518 0.121 [0.328,  0.800 ] 
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TABLE 2. Bayesian Estimation of Nonlinear LVMs with  Mixed Variables under Prior I 

and II Using Censored Normal Distribution with Unequal  Spaces of Thresholds 
Para Est. SE HPD Interval Para Est. SE HPD Interval 

λ 21
(1) 0.852 0.116 [0.637,  1.095 ] ɸ11

(1) 0.299 0.051 [0.210,  0.408 ] 

λ 31
(1) 0.631 0.095 [0.456,  0.830 ] ɸ12

(1)
 

0.227 0.040 [0.157,  0.311 ] 

λ 41
(1) 0.794 0.143 [0.535,  1.097 ] ɸ22

(1)
 

0.227 0.040 [0.157,  0.311 ] 

λ 51
(1) 0.852 0.121 [0.633,  1.104 ] ɸ11

(2) 0.335 0.055 [0.243,  0.456 ] 

λ 61
(1) 0.699 0.098 [0.517,  0.894 ] ɸ12

(2)
 

0.365 0.068 [0.250,  0.512 ] 

λ82 
(1) 0.824 0.147 [0.552,  1.127 ] ɸ22

(2)
 

0.269 0.053 [0.179,  0.381 ] 

λ 92
(1) 1.191 0.225 [0.782,  1.658 ] γ1

(1) 0.710 0.259 [0.216,  1.236 ] 

λ 102
(1) 1.329 0.233 [0.907,  1.821 ] γ2

(1)
 

0.863 0.260 [0.370,  1.386 ] 

λ 112
(1) 0.676 0.158 [0.407,  1.035 ] γ3

(1)
 

0.065 0.303  [-0.507,   0.690 ] 

λ 122
(1) 0.824 0.184 [0.523,  1.224 ] γ4

(1)
 

0.036 0.266  [-0.474,   0.577 ] 

λ 143
(1) 0.875 0.202 [0.524,  1.300 ] γ1

(2) 0.908 0.261 [0.415,  1.459 ] 

λ153 
(1) 0.404 0.154 [0.148,  0.741 ] γ2

(2)
 

0.683 0.275 [0.165,  1.244 ] 

λ 163
(1) 0.777 0.180 [0.474,  1.179 ] γ3

(2)
 

0.272 0.309  [-0.399,   0.839 ] 

λ 21
(2) 0.848 0.113 [0.650,  1.097 ] γ4

(2)
 

0.373 0.273  [-0.153,   0.914 ] 

λ 31
(2) 0.825 0.119 [0.604,  1.076 ] β1

(1) 0.505 0.196 [0.129, 0.911] 

λ 41
(2) 0.789 0.140 [0.530,  1.080 ] β2

(1)
 

0.456 0.151 [0.166, 0.769] 

λ 51
(2) 0.864 0.120 [0.647,  1.115 ] β 3

(1)
 

0.189 0.209 [-0.221, 0.599] 

λ 61
(2) 0.826 0.116 [0.612,  1.065 ] β 4

(1)
 

-0.251 0.250 [-0.745, 0.238] 

λ82 
(2) 1.167 0.174 [0.856,  1.534 ] β 5

(1)
 

0.299 0.302 [-0.255, 0.956] 

λ 92
(2) 0.240 0.205  [-0.144,   0.669 ] β1

(2)
 

0.766 0.216 [0.370, 1.222] 

λ 102
(2) 0.125 0.181  [-0.214,   0.506 ] β 2

(2)
 

0.411 0.182 [0.059, 0.781] 

λ 112
(2) 0.558 0.149 [0.317,  0.887 ] β 3

(2)
 

0.064 0.248 [-0.436, 0.533] 

λ 122
(2) 0.744 0.184 [0.440,  1.168 ] β 4

(2)
 

-0.176 0.275 [-0.697, 0.372] 

λ 143
(2) 0.773 0.193 [0.446,  1.165 ] β 5

(2)
 

0.568 0.327 [-0.053,  1.247 ] 

λ153 
(2) 0.302 0.120 [0.105,  0.584 ] ψεδ

(1)
 

0.497 0.106 [0.329,  0.739 ] 

λ 163
(2) 0.621 0.160 [0.360,  0.984 ] ψεδ

(2) 0.512 0.121 [0.325,  0.792 ] 
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TABLE 3. Bayesian Estimation of Nonlinear LVMs with  Mixed Variables under Prior I 

and II Using Truncated Normal Distribution with Equal  Spaces of Thresholds 
Para Est. SE HPD Interval Para Est. SE HPD Interval 

λ 21
(1) 0.911 0.147 [0.642,  1.218 ] ɸ11

(1) 0.500 0.102 [0.332,  0.729 ] 

λ 31
(1) 0.694 0.129 [0.454,  0.960 ] ɸ12

(1)
 

0.393 0.075 [0.261,  0.553 ] 

λ 41
(1) 0.925 0.167 [0.613,  1.264 ] ɸ22

(1)
 

0.393 0.075 [0.261,  0.553 ] 

λ 51
(1) 0.845 0.146 [0.575,  1.145 ] ɸ11

(2) 0.520 0.093 [0.355,  0.719 ] 

λ 61
(1) 0.807 0.133 [0.561,  1.078 ] ɸ12

(2)
 

0.572 0.102 [0.394,  0.798 ] 

λ82 
(1) 0.917 0.164 [0.614,  1.252 ] ɸ22

(2)
 

0.455 0.089 [0.299,  0.648 ] 

λ 92
(1) 1.193 0.218 [0.803,  1.662 ] γ1

(1) 0.505 0.232 [0.046,  0.966 ] 

λ 102
(1) 1.280 0.221 [0.884,  1.751 ] γ2

(1)
 

0.612 0.233 [0.145,  1.068 ] 

λ 112
(1) 0.737 0.147 [0.484,  1.053 ] γ3

(1)
 

0.001 0.236 [-0.450,  0.446 ] 

λ 122
(1) 0.884 0.173 [0.590,  1.260 ] γ4

(1)
 

-0.011 0.252 [-0.502,  0.491 ] 

λ 143
(1) 0.935 0.182 [0.614,  1.329 ] γ1

(2) 0.666 0.247 [0.195,  1.157 ] 

λ153 
(1) 0.489 0.178 [0.174,  0.880 ] γ2

(2)
 

0.506 0.249 [0.032,  1.007 ] 

λ 163
(1) 0.882 0.172 [0.584,  1.262 ] γ3

(2)
 

0.131 0.270 [-0.389,  0.644 ] 

λ 21
(2) 0.970 0.143 [0.707,  1.271 ] γ4

(2)
 

0.193 0.249 [-0.292,  0.714 ] 

λ 31
(2) 0.935 0.140 [0.676,  1.221 ] β1

(1) 0.490 0.188 [0.132, 0.869] 

λ 41
(2) 0.947 0.156 [0.657,  1.271 ] β2

(1)
 

0.395 0.131 [0.153, 0.682] 

λ 51
(2) 0.921 0.137 [0.674,  1.203 ] β 3

(1)
 

0.166 0.183 [-0.187, 0.514] 

λ 61
(2) 0.895 0.143 [0.627,  1.198 ] β 4

(1)
 

-0.211 0.223 [-0.647, 0.229] 

λ82 
(2) 1.225 0.189 [0.871,  1.611 ] β 5

(1)
 

0.187 0.261 [-0.284, 0.741] 

λ 92
(2) 0.204 0.172 [-0.119,  0.554 ] β1

(2)
 

0.693 0.197 [0.321, 1.096] 

λ 102
(2) 0.111 0.155 [-0.187,  0.422 ] β 2

(2)
 

0.386 0.173 [0.056, 0.735] 

λ 112
(2) 0.583 0.120 [0.368,  0.824 ] β 3

(2)
 

0.090 0.232 [-0.354, 0.554] 

λ 122
(2) 0.793 0.161 [0.510,  1.142 ] β 4

(2)
 

-0.292 0.242 [-0.763, 0.176] 

λ 143
(2) 0.826 0.149 [0.555,  1.137 ] β 5

(2)
 

0.517 0.268 [0.014,1.068] 

λ153 
(2) 0.357 0.120 [0.151,  0.631 ] ψεδ

(1)
 

0.517 0.268 [0.014, 1.068] 

λ 163
(2) 0.705 0.158 [0.428,  1.042 ] ψεδ

(2) 0.441 0.091 [0.294, 0.650] 
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TABLE 4. Bayesian Estimation of Nonlinear LVMs with  Mixed Variables under Prior I 

and II Using Truncated Normal Distribution with Unequal  Spaces of Thresholds 
Para Est. SE HPD Interval Para Est. SE HPD Interval 

λ 21
(1) 0.852 0.155 [0.565,  1.170 ] ɸ11

(1) 0.432 0.095 [0.277,  0.648 ] 

λ 31
(1) 0.655 0.139 [0.403,  0.946 ] ɸ12

(1)
 

0.322 0.068 [0.203,  0.468 ] 

λ 41
(1) 0.894 0.174 [0.569,  1.252 ] ɸ22

(1)
 

0.322 0.068 [0.203,  0.468 ] 

λ 51
(1) 0.802 0.151 [0.523,  1.113 ] ɸ11

(2) 0.445 0.086 [0.300,  0.642 ] 

λ 61
(1) 0.762 0.141 [0.503,  1.054 ] ɸ12

(2)
 

0.507 0.108 [0.334,  0.751 ] 

λ82 
(1) 0.896 0.178 [0.570,  1.268 ] ɸ22

(2)
 

0.370 0.086 [0.233,  0.568 ] 

λ 92
(1) 1.278 0.234 [0.840,  1.760 ] γ1

(1) 0.570 0.247 [0.114,  1.079 ] 

λ 102
(1) 1.322 0.232 [0.885,  1.791 ] γ2

(1)
 

0.662 0.240 [0.190,  1.122 ] 

λ 112
(1) 0.756 0.151 [0.488,  1.070 ] γ3

(1)
 

-0.029 0.250 [-0.495,  0.477 ] 

λ 122
(1) 0.891 0.168 [0.599,  1.250 ] γ4

(1)
 

0.073 0.260 [-0.430,  0.595 ] 

λ 143
(1) 0.940 0.187 [0.607,  1.338 ] γ1

(2) 0.744 0.243 [0.284,  1.228 ] 

λ153 
(1) 0.466 0.163 [0.175,  0.817 ] γ2

(2)
 

0.517 0.253 [0.025,  1.014 ] 

λ 163
(1) 0.907 0.185 [0.585,  1.304 ] γ3

(2)
 

0.205 0.257 [-0.285,  0.746 ] 

λ 21
(2) 0.911 0.148 [0.639,  1.219 ] γ4

(2)
 

0.291 0.247 [-0.192,  0.779 ] 

λ 31
(2) 0.872 0.147 [0.601,  1.180 ] β1

(1) 0.453 0.194 [0.081,  0.855 ] 

λ 41
(2) 0.904 0.171 [0.592,  1.258 ] β2

(1)
 

0.428 0.140 [0.168,  0.719 ] 

λ 51
(2) 0.875 0.151 [0.589,  1.181 ] β 3

(1)
 

0.168 0.202 [-0.224,  0.571 ] 

λ 61
(2) 0.852 0.151 [0.577,  1.170 ] β 4

(1)
 

-0.180 0.250 [-0.678,  0.309 ] 

λ82 
(2) 1.210 0.195 [0.849,  1.610 ] β 5

(1)
 

0.299 0.299 [-0.232,  0.911 ] 

λ 92
(2) 0.250 0.189 [-0.106,  0.646 ] β1

(2)
 

0.761 0.195 [0.398,  1.163 ] 

λ 102
(2) 0.141 0.166 [-0.176,  0.473 ] β 2

(2)
 

0.376 0.182 [0.027,  0.759 ] 

λ 112
(2) 0.604 0.130 [0.374,  0.878 ] β 3

(2)
 

0.073 0.244 [-0.406,  0.569 ] 

λ 122
(2) 0.801 0.156 [0.525,  1.136 ] β 4

(2)
 

-0.103 0.265 [-0.629,  0.408 ] 

λ 143
(2) 0.874 0.164 [0.589,  1.223 ] β 5

(2)
 

0.448 0.286 [-0.073,1.037] 

λ153 
(2) 0.349 0.123 [0.142,  0.629 ] ψεδ

(1)
 

0.436 0.089 [0.294,  0.638 ] 

λ 163
(2) 0.688 0.155 [0.411,  1.026 ] ψεδ

(2) 0.489 0.104 [0.322,  0.726 ] 
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Table 5. Goodness of Fit Statistics (DIC) for LVMs with Mixed Variables and Equal 

Spaces of Thresholds under Prior I and II  
 Interval 

Censored Normal 
Interval Truncated Normal 

Group 1, n1=200 6583 7006 

Group 1, n2=200 6088 6450 

Total 12671 13456 

 

Table 6. Goodness of Fit Statistics (DIC) for LVMs with Mixed Variables and Unequal 

Spaces of Thresholds under Prior I and II  

 Interval 

Censored Normal 

Interval Truncated Normal 

Group 1, n1=200 6570 7146 

Group 1, n2=200 5838 6321 

Total 12408 13467 

 

                           

The estimated multiple group nonlinear latent variable using censored normal distribution 

with equal spaces of thresholds is given by 

𝜼𝒊
(𝟏)

= (𝟎. 𝟓𝟎𝟑)𝒙𝒊𝟏
(𝟏)

+ (𝟎.439)𝒙𝒊𝟐
(𝟏)

+ (𝟎.15𝟎)𝒙𝒊𝟏
(𝟏)

𝒙𝒊𝟐
(𝟏)

+ (−𝟎.246)𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

+

(𝟎.23𝟎)𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

+ (𝟎.68𝟎)𝝃𝒊𝟏
(𝟏)

+ (𝟎.72𝟎)𝝃𝒊𝟐
(𝟏)

+ (𝟎. 𝟎79)𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

+

(𝟎. 𝟎52)𝝃𝒊𝟐
(𝟏)

𝝃𝒊𝟐
(𝟏)

+ 𝜹𝒊
(𝟏)

                                (21)                                         

𝜼𝒊
(𝟐)

= (𝟎.683)𝒙𝒊𝟏
(𝟐)

+ (𝟎.387)𝒙𝒊𝟐
(𝟐)

+ (𝟎. 𝟎76)𝒙𝒊𝟏
(𝟐)

𝒙𝒊𝟐
(𝟐)

+ (−𝟎.28𝟎)𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

+

(𝟎.564)𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

+ (𝟎.791)𝝃𝒊𝟏
(𝟐)

+ (𝟎. 𝟔𝟎𝟗)𝝃𝒊𝟐
(𝟐)

+ (𝟎.187)𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

+

(𝟎.35𝟎)𝝃𝒊𝟐
(𝟐)

𝝃𝒊𝟐
(𝟐)

+ 𝜹𝒊
(𝟐)

                             (22)   

From the standard error estimates and the HPD intervals, we observe that all the linear 

effects of the covariates and the exogenous latent variables, and the interaction effects 

corresponding to 𝒙𝒊𝟏
(𝟏)

𝒙𝒊𝟐
(𝟏)

, 𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

, 𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

 in the first group (Ohio) are quite 

different from zero, 𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

, 𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

, 𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

, 𝝃𝒊𝟐
(𝟐)

𝝃𝒊𝟐
(𝟐)

 in the second group 

(Kentucky) are quite different from zero, while the quadratic interaction effects 

corresponding to 𝜉𝑖1
(1)

𝜉𝑖1
(1)

, 𝜉𝑖2
(1)

𝜉𝑖2
(1)

 in first group (Ohio) and 𝒙𝒊𝟏
(𝟐)

𝒙𝒊𝟐
(𝟐)

 in the second group 

(Kentucky) is small. Hence, the quadratic interaction causal effects of depression 

(𝜉𝑖1
(1)

𝜉𝑖1
(1)

), and also anxiety (𝜉𝑖2
(1)

𝜉𝑖2
(1)

) in the first group (Ohio) and 𝒙𝒊𝟏
(𝟐)

𝒙𝒊𝟐
(𝟐)

 
in the second 

group (Kentucky) is not significant when given the other linear and interaction effects in 

the latent variable. As 𝜉𝑖1
(1)

, 𝜉𝑖2
(1)

, 𝑥𝑖1
(1)

, 𝑥𝑖2
(1)

 and 𝜉𝑖1
(2)

, 𝜉𝑖2
(2)

, 𝑥𝑖1
(2)

, 𝑥𝑖2
(2)

 in the first and second 

groups is related to the mixed ordered categorical and dichotomous variables, the 

standard error estimate (0.241) and (0.281) correspond to 𝜷𝟒
(𝟏)

= (−𝟎.246), 𝜷𝟓
(𝟏)

=

(𝟎.23𝟎) is quite large, and the HPD interval, (-0.716, 0.234) and (-0.302, 0.808) is quite 

wide. However, as 𝜷𝟒
(𝟏)

= (−𝟎.246), 𝜷𝟓
(𝟏)

= (𝟎.23𝟎) is quite different from zero in 

magnitude. The standard error estimate (0.266), (0.308), (0.268) and (0.284) correspond 

to 𝜷𝟒
(𝟐) = (−𝟎.28𝟎), 𝜷𝟓

(𝟐) = (𝟎.564) and 𝜸𝟑
(𝟐)

= (𝟎.187), 𝜸𝟒
(𝟐)

= (𝟎.35𝟎) is quite 

large, and the HPD interval, (-0.787, 0.271), (-0.015, 1.201), (-0.324, 0.708) and (-0.213, 

0.911) is quite wide. Hence the corresponding interaction effect is substantial.                                                                    

The estimated multiple group nonlinear latent variable using censored normal distribution 

with unequal spaces of thresholds is given by 



Thanoon Y. Thanoon, Athar Talal Hamed, Robiah Adnan 

Pak.j.stat.oper.res.  Vol.XV  No. III 2019  pp627-645 642 

𝜼𝒊
(𝟏)

= (𝟎. 𝟓𝟎𝟓)𝒙𝒊𝟏
(𝟏)

+ (𝟎.456)𝒙𝒊𝟐
(𝟏)

+ (𝟎.189)𝒙𝒊𝟏
(𝟏)

𝒙𝒊𝟐
(𝟏)

+ (−𝟎.251)𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

+

(𝟎.299)𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

+ (𝟎.71𝟎)𝝃𝒊𝟏
(𝟏)

+ (𝟎.863)𝝃𝒊𝟐
(𝟏)

+ (𝟎. 𝟎65)𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

+

(𝟎. 𝟎36)𝝃𝒊𝟐
(𝟏)

𝝃𝒊𝟐
(𝟏)

+ 𝜹𝒊
(𝟏)

                               (23)                                         

𝜼𝒊
(𝟐)

= (𝟎.766)𝒙𝒊𝟏
(𝟐)

+ (𝟎.411)𝒙𝒊𝟐
(𝟐)

+ (𝟎. 𝟎64)𝒙𝒊𝟏
(𝟐)

𝒙𝒊𝟐
(𝟐)

+ (−𝟎.176)𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

+

(𝟎.568)𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

+ (𝟎. 𝟗𝟎𝟖)𝝃𝒊𝟏
(𝟐)

+ (𝟎.683)𝝃𝒊𝟐
(𝟐)

+ (𝟎.272)𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

+

(𝟎.373)𝝃𝒊𝟐
(𝟐)

𝝃𝒊𝟐
(𝟐)

+ 𝜹𝒊
(𝟐)

                            (24)                                                
 

From the standard error estimates and the HPD intervals, we observe that all the linear 

effects of the covariates and the exogenous latent variables, and the interaction effects 

corresponding to 𝒙𝒊𝟏
(𝟏)

𝒙𝒊𝟐
(𝟏)

, 𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

, 𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

 
in the first group (Ohio) are quite 

different from zero, 𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

, 𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

, 𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

, 𝝃𝒊𝟐
(𝟐)

𝝃𝒊𝟐
(𝟐)

 in the second group 

(Kentucky) are quite different from zero, while the quadratic interaction effects 

corresponding to 𝜉𝑖1
(1)

𝜉𝑖1
(1)

, 𝜉𝑖2
(1)

𝜉𝑖2
(1)

 in first group (Ohio) and 𝒙𝒊𝟏
(𝟐)

𝒙𝒊𝟐
(𝟐)

 in the second group 

(Kentucky) is small and not significant when given the other linear and interaction effects 

in the latent variable. As 𝜉𝑖1
(1)

, 𝜉𝑖2
(1)

, 𝑥𝑖1
(1)

, 𝑥𝑖2
(1)

 and 𝜉𝑖1
(2)

, 𝜉𝑖2
(2)

, 𝑥𝑖1
(2)

, 𝑥𝑖2
(2)

 in the first and 

second groups is related to the mixed ordered categorical and dichotomous variables, the 

standard error estimate (0.209), (0.250), (0.302) correspond to 𝜷𝟑
(𝟏)

= (𝟎.189), 𝜷𝟒
(𝟏)

=

(−𝟎.251), 𝜷𝟓
(𝟏)

= (𝟎.299) is quite large, and the HPD interval, (-0.221, 0.599), (-0.745, 

0.238) and (-0.255, 0.956) is quite wide. The standard error estimate (0.275), (0.327), 

(0.309) and (0.273) correspond to 𝜷𝟒
(𝟐)

= (−𝟎.176), 𝜷𝟓
(𝟐)

= (𝟎.568) and 𝜸𝟑
(𝟐)

=

(𝟎.272), 𝜸𝟒
(𝟐)

= (𝟎.373) is quite large, and the HPD interval, (-0.697, 0.372),       (-0.053,  

1.247), (-0.399,  (0.839  and (-0.153,  (0.914  is quite wide. Hence the corresponding 

interaction effect is substantial.                                                                    

The estimated multiple group nonlinear latent variable using truncated normal 

distribution with equal spaces of thresholds is given by 

𝜼𝒊
(𝟏)

= (𝟎.49𝟎)𝒙𝒊𝟏
(𝟏)

+ (𝟎.395)𝒙𝒊𝟐
(𝟏)

+ (𝟎.166)𝒙𝒊𝟏
(𝟏)

𝒙𝒊𝟐
(𝟏)

+ (−𝟎.211)𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

+

(𝟎.187)𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

+ (𝟎. 𝟓𝟎𝟓)𝝃𝒊𝟏
(𝟏)

+ (𝟎.612)𝝃𝒊𝟐
(𝟏)

+ (𝟎. 𝟎𝟎𝟏)𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

+

(−𝟎. 𝟎11)𝝃𝒊𝟐
(𝟏)

𝝃𝒊𝟐
(𝟏)

+ 𝜹𝒊
(𝟏)

                             (25)                                         

𝜼𝒊
(𝟐)

= (𝟎.693)𝒙𝒊𝟏
(𝟐)

+ (𝟎.386)𝒙𝒊𝟐
(𝟐)

+ (𝟎. 𝟎𝟗𝟎)𝒙𝒊𝟏
(𝟐)

𝒙𝒊𝟐
(𝟐)

+ (−𝟎.292)𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

+

(𝟎.517)𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

+ (𝟎.666)𝝃𝒊𝟏
(𝟐)

+ (𝟎. 𝟓𝟎𝟔)𝝃𝒊𝟐
(𝟐)

+ (𝟎.131)𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

+

(𝟎.193)𝝃𝒊𝟐
(𝟐)

𝝃𝒊𝟐
(𝟐)

+ 𝜹𝒊
(𝟐)

                            (26)   

From the standard error estimates and the HPD intervals, we observe that all the linear 

effects of the covariates and the exogenous latent variables, and the interaction effects 

corresponding to 𝑥𝑖1
(1)

𝑥𝑖2
(1)

, 𝑥𝑖1
(1)

𝜉𝑖2
(1)

, 𝑥𝑖1
(1)

𝜉𝑖1
(1)

𝜉𝑖2
(1)

 in the first group (Ohio) are quite 

different from zero, 𝑥𝑖1
(2)

𝜉𝑖2
(2)

, 𝑥𝑖1
(2)

𝜉𝑖1
(2)

𝜉𝑖2
(2)

, 𝜉𝑖1
(2)

𝜉𝑖1
(2)

, 𝜉𝑖2
(2)

𝜉𝑖2
(2)

 in the second group 

(Kentucky) are quite different from zero, while the quadratic interaction effects 

corresponding to 𝜉𝑖1
(1)

𝜉𝑖1
(1)

, 𝜉𝑖2
(1)

𝜉𝑖2
(1)

 in first group (Ohio) and 𝑥𝑖1
(2)

𝑥𝑖2
(2)

 in the second group 

(Kentucky) is small and not significant when given the other linear and interaction effects 

in the latent variable. Hence the corresponding interaction effect is substantial.                                                                    

The estimated multiple group nonlinear latent variable using truncated normal 

distribution with unequal spaces of thresholds is given by 
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𝜼𝒊
(𝟏)

= (𝟎.453)𝒙𝒊𝟏
(𝟏)

+ (𝟎.428)𝒙𝒊𝟐
(𝟏)

+ (𝟎.168)𝒙𝒊𝟏
(𝟏)

𝒙𝒊𝟐
(𝟏)

+ (−𝟎.18𝟎)𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

+

(𝟎.299)𝒙𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟐
(𝟏)

+ (𝟎.57𝟎)𝝃𝒊𝟏
(𝟏)

+ (𝟎.662)𝝃𝒊𝟐
(𝟏)

+ (−𝟎. 𝟎29)𝝃𝒊𝟏
(𝟏)

𝝃𝒊𝟏
(𝟏)

+

(𝟎. 𝟎73)𝝃𝒊𝟐
(𝟏)

𝝃𝒊𝟐
(𝟏)

+ 𝜹𝒊
(𝟏)

                             (27)                                         

𝜼𝒊
(𝟐)

= (𝟎.761)𝒙𝒊𝟏
(𝟐)

+ (𝟎.376)𝒙𝒊𝟐
(𝟐)

+ (𝟎. 𝟎73)𝒙𝒊𝟏
(𝟐)

𝒙𝒊𝟐
(𝟐)

+ (−𝟎. 𝟏𝟎𝟑)𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

+

(𝟎.448)𝒙𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟐
(𝟐)

+ (𝟎.744)𝝃𝒊𝟏
(𝟐)

+ (𝟎.517)𝝃𝒊𝟐
(𝟐)

+ (𝟎. 𝟐𝟎𝟓)𝝃𝒊𝟏
(𝟐)

𝝃𝒊𝟏
(𝟐)

+

(𝟎.291)𝝃𝒊𝟐
(𝟐)

𝝃𝒊𝟐
(𝟐)

+ 𝜹𝒊
(𝟐)

                            (28)  

From the standard error estimates and the HPD intervals, we observe that all the linear 

effects of the covariates and the exogenous latent variables, and the interaction effects 

corresponding to 𝑥𝑖1
(1)

𝑥𝑖2
(1)

, 𝑥𝑖1
(1)

𝜉𝑖2
(1)

, 𝑥𝑖1
(1)

𝜉𝑖1
(1)

𝜉𝑖2
(1)

 
in the first group (Ohio) are quite 

different from zero, 𝑥𝑖1
(2)

𝜉𝑖2
(2)

, 𝑥𝑖1
(2)

𝜉𝑖1
(2)

𝜉𝑖2
(2)

, 𝜉𝑖1
(2)

𝜉𝑖1
(2)

, 𝜉𝑖2
(2)

𝜉𝑖2
(2)

 in the second group 

(Kentucky) are quite different from zero, while the quadratic interaction effects 

corresponding to 𝜉𝑖1
(1)

𝜉𝑖1
(1)

, 𝜉𝑖2
(1)

𝜉𝑖2
(1)

 in first group (Ohio) and 𝑥𝑖1
(2)

𝑥𝑖2
(2)

 in the second group 

(Kentucky) is small and not significant when given the other linear and interaction effects 

in the latent variable. Hence the corresponding interaction effect is substantial.                                                                                                    

The results corresponding to the first and second groups and ordered categorical variables 

and covariates with hidden continuous normal distribution (censored normal distribution) 

for variables and hidden continuous normal distribution (truncated normal distribution 

with known parameters) as well as two types of thresholds (with equal and unequal 

distances for categories) are reported in Tables (1:2). We noticed that the SE values are 

small values in the first and second groups.  

The results corresponding to the first and second groups and ordered categorical variables 

and covariates with hidden continuous normal distribution (truncated normal distribution 

with known parameters) for variables and hidden continuous normal distribution 

(truncated normal distribution with known parameters) as well as two types of thresholds 

(with equal and unequal spaces for categories) are reported in Tables (3:4). We observed 

that the SE values are small values in the first and second groups.  

The highest posterior density (HPD) of all the parameters was calculated. We noticed that 

the effectiveness of the HPD intervals is convenient for ordered categorical variables 

when using censored normal distribution, truncated normal distribution. 

To reveal the effectiveness of DIC for model comparison, we reanalysed the data sets via 

a nonlinear latent variable model with interaction term in the latent variable model (M4). 

The DIC values obtained were compared to those obtained under the correct model. The 

results are presented in Tables (5:6). 

The DIC values of censored normal distribution, truncated normal distribution with equal 

spaces of thresholds, are (12671) and (13456) respectively.  

The model fitting DIC of LVMs with mixed data using censored normal distribution and 

is less than the model fitting DIC of LVMs with mixed data truncated normal 

distribution. However, it performs very well for the mixed variables with censored 

normal distribution. 

The DIC values of censored normal distribution, truncated normal distribution with 

unequal spaces of thresholds, are (12408) and (13467) respectively.  

The model fitting DIC of LVMs with mixed data using censored normal distribution and 

is less than the model fitting DIC of LVMs with mixed data using truncated normal 

distribution with unequal spaces of thresholds. However, it performs very well for the 

mixed variables with censored normal distribution. 
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The best fitted model with a smallest DIC value is a censored normal distribution with 

unequal spaces of thresholds (12408). Also, the DIC value of truncated normal 

distribution with equal spaces of thresholds is (13456). As a result, we observed that the 

performance of DIC is not satisfactory and would be worse with mixed data using 

truncated normal distribution with unequal spaces of thresholds.  

 

7. Conclusions and Recommendations 

 

The multi-sample nonlinear models which involving nonlinear effects with nonlinear 

covariates and latent variables are very common in social and behavioural sciences. The 

first purpose of this analysis was to use multi-sample nonlinear LVMs with nonlinear 

covariates and latent variables to obtain all the estimated parameters. The second purpose 

is to solve the problem of mixed variables by using hidden continuous normal 

distribution (censored normal distribution and truncated normal distribution) and to solve 

the problem of mixed ordered categorical and dichotomous covariates using hidden 

continuous normal distribution (truncated normal distribution with known parameters). 

The proposed procedures have been done using two types of thresholds (with equal and 

unequal categories distances). However, this assumption is likely to be violated in many 

practical applications.  

In this paper, a Bayesian approach is proposed for analysing multi-sample nonlinear 

models with mixed variables. In addition to point estimation, we provide statistical 

methods to obtain standard deviations estimates, and model comparison using the 

Deviance Information Criterion (DIC) owing to the complexity of the proposed model. 

As we have seen, difficulties arising from the nonlinear causal relationships among the 

latent variables and the discrete nature of mixed data manifest variables are alleviated by 

data augmentation with some MCMC methods. This strategy is very powerful and can be 

applied to other more complex models. 
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