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Abstract

This paper, we firstly introduse a new extension of the exponentiated exponential distribution along
with sufficient set of its mathematical properties. Secondly, we construct a modified Chi-squared
goodness-of-fit test based on the Nikulin-Rao-Robson statistic in presence of censored and complete
data. We describe the theory and the mechanism of the Y 2

n statistic test which can be used in
survival and reliability data analysis. We use the maximum likelihood estimators based on the
initial non grouped data sets. Then, we conduct numerical simulations to reinforce the results. For
showing the applicability of our model in various fields, we illustrate it and the proposed test by
applications to two real data sets for complete data case and two other data sets in the presence of
right censored.

Keywords: Exponential distribution; Censored data; Goodness-of-fit; Nikulin-Rao-
Robson; Maximum Likelihood; Right Censoring; Simulation.

1. Introduction

The most popular continuous distributions which used for modeling lifetime data are
the gamma (G), the Weibull (W), lognormal (Log-N) and exponentiated exponential
(EE) distributions. However, these four models suffer from some serious drawbacks.
one of them, none these four models exhibit the bathtub shapes for their hazard rate
functions (H.R.F.s), the four models exhibit only monotonically decreasing, monoton-
ically increasing or constant hazard rates and this is a major weakness point because
most real-life systems exhibit bathtub shapes for their H.R.F.s. Secondly, at least
three of these four models exhibit constant hazard rates, and this is a very unrealistic
feature because there are hardly any real-life systems that have constant hazard rates.
The aim of this work is to introduce a new three parameter alternative to the EE dis-
tribution that overcomes these mentioned drawbacks and exhibits the monotonically
increasing, bathtub and monotonically decreasing shapes for its H.R.F., the main goal
of the work is to introduce a new EE model using the Odd Lindley (OL-G) family
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whish exhibits the monotonically increasing, bathtub, constant, the monotonically
decreasing hazard rates.

A random variable (R.V.) X is said to have the EE distribution (see Gupta et al.
(1998)) if its probability density function (P.D.F.) given by

g(θ,λ)(x) = θλ
(
1− e−λx

)θ−1
e−λx

[
(x≥0)
(λ>0, θ>0)

]
(1)

and cumulative distribution function (C.D.F.)

G(θ,λ)(x) =
(
1− e−λx

)θ [
(x≥0)
(λ>0, θ>0)

]
respectively, when θ = 1, we have the standard E model. The P.D.F. and C.D.F. of
the OL-G family of distribution (see Silva et al. (2017)) are given by

f(x; a, ϕ)|(a=1) =
1

2
exp

[
−G (x;ϕ) /G (x;ϕ)

]
g (x;ϕ)G (x;ϕ)−3 , (3)

and

F (x; θ, ϕ)|(a=1) = 1− 1

2

[
1 +G (x;ϕ)

]
exp

[
−G (x;ϕ) /G (x;ϕ)

]
G (x;ϕ)−1 , (4)

respectively. For more details about the OL-G family and its properties see Silva et al.
(2017). To this end, we use equations (1), (2) and (3) to obtain the three-parameter
OLEE density (5 ), a R.V. X is said to have the OLEE distribution if its P.D.F. and
C.D.F. are given by

f(x) = θλ
e−λx

(
1− e−λx

)θ−1

2
[
1− (1− e−λx)θ

]3 e

{
−(1−e−λx)

θ
/
[
1−(1−e−λx)

θ
]}
, x ≥ 0, (5)

and

F (x) = 1−
1 +

[
1−

(
1− e−λx

)θ]
2
[
1− (1− e−λx)θ

] e

{
−(1−e−λx)

θ
/
[
1−(1−e−λx)

θ
]}
, x ≥ 0, (6)

respectively. For θ = 1 the OLEE reduces to the OLiE (Silva et al. (2017)), For
λ = 1 the OLEE reduces to the one parameter OLEE model. The critical points of
the OLEE density function are the roots of the equation

d
dx

{
θλ
(
1− e−λx

)θ−1
e−λx

}
θλ (1− e−λx)θ−1 e−λx

+ 3
θλ
(
1− e−λx

)θ−1
e−λx

1− (1− e−λx)θ
−
θλ
(
1− e−λx

)θ−1
e−λx[

1− (1− e−λx)θ
]2 = 0.
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The critical points of the of the H.R.F. of the OLEE are obtained from the following
equation

d
dx

{
θλ
(
1− e−λx

)θ−1
e−λx

}
θλ (1− e−λx)θ−1 e−λx

+
θλ
(
1− e−λx

)θ−1
e−λx

1 +
[
1− (1− e−λx)θ

] + 2
θλ
(
1− e−λx

)θ−1
e−λx[

1− (1− e−λx)θ
]2 = 0.

We can examine the last two Equations to determine the local maximums and mini-
mums and inflexion points via most computer algebra systems. The P.D.F. of X in
(5) can be easily expressed as

f(x) =
∞∑

i,k=0

ξi,k g{[θ(2+i+k)],λ}(x)|
{

(x≥0)
(λ>0, [θ(2+i+k)]>0)

}
, (7)

where

ξi,k =
(−1)k Γ (i+ k + 3)

2i! [θ (2 + i+ k)] Γ (k + 3)
,

and

g{[θ(2+i+k)],λ}(x) = [θ (2 + i+ k)]λ e−λx
(
1− e−λx

)[θ(2+i+k)]−1 |
{

(x≥0)
(λ>0, [θ(2+i+k)]>0)

}
,

is P.D.F. of EE model with positive parameters [θ (2 + i+ k)] and λ. For more de-
tail about the EE model and its properties see Gupta and Kundu (2001), Gupta and
Kundu (2007) and Nadarajah (2011). Other useful works studied the E model such as
the one-parameter odd Lindley exponential model (Korkmaz and Yousof (2017)), the
two-parameter odd Lindley exponential model (see Silva et al. (2017)) and the log-
arithmic Burr-Hatke exponential (LogBrHE) distribution (see Abouelmagd (2018)).
The C.D.F. of X can be given by integrating (7) as

F (x) =
∞∑

i,k=0

ξi,k Π
(λ)
{[θ(2+i+k)],λ}(x)|

{
(x≥0)
(λ>0, [θ(2+i+k)]>0)

}
, (8)

where
Π{[θ(2+i+k)],λ}(x) =

(
1− e−λx

)[θ(2+i+k)] |
{

(x≥0)
(λ>0, [θ(2+i+k)]>0)

}
,

is P.D.F. of EE model with positive parameters [θ (2 + i+ k)] and λ.

We note that the P.D.F. of the OLEE model exhibits various important unimodal
shapes (SEE Figure 1), from Figure 2 we see that the H.R.F. of the OLEE distribu-
tion exhibits the monotonically increasing, constant, monotonically decreasing and
bathtub hazard rates.
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Figure 1. Plots of the OLEE P.D.F..

Figure 2. Plots of the OLEE H.R.F..

The major justification for the practicality of the OLEE model is based on the enor-
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mous use of the E and EE lifetime models. Also we are motivated to introduce the
OLEE lifetime model since it exhibits the monotonically increasing, bathtub, constant
and the monotonically decreasing hazard rates (see Figure 2). The new model can
be viewed as a mixture of the EE density. It can also be considered as a convenient
model for fitting the symmetric, the left skewed, the right skewed, and the unimodal
data (see Figure 1). The proposed lifetime model is much better than the exponential
exponential, Moment exponential, Log Butr Hatke exponential and the two parame-
ter odd Lindley exponential models, so the new lifetime model is a good alternative
to these models in modeling failure times data. Some properties of the new model
are given in Appendix A. Second, we construct a modied Chi-squared goodness-of-fit
test based on the Nikulin-Rao-Robson statistic in presence of censored and complete
data. We describe the theory and the mechanism of the Y 2

n statistic test which can
be used in survival and reliability data analysis. We use the maximum likelihood
estimators based on the initial non grouped data sets. Then, we conduct numerical
simulations to reinforce the results. For showing the applicability of our model in
various fields, we illustrate it and the proposed test by applications to two real data
sets for complete data case and two other right censored data sets.

2. Complete data modeling

2.1 Maximum likelihood estimation

Let x1, . . . , xn be a R.S. from the new distribution with parameter vector Ψ = (θ, λ, )ᵀ.
The log-likelihood function for Ψ, say ` = `(Ψ), is given by

` = `(Ψ) = −n log (2) + n log θ + n log λ+ (θ − 1)
n∑
i=1

log
(
1− e−λxi

)
−λ

n∑
i=1

xi − 3
n∑
i=1

log
[
1−

(
1− e−λxi

)θ]− n∑
i=1

(
1− e−λxi

)θ
1− (1− e−λxi)θ

. (9)(1)

Equation (9) can be maximized either via the different programs like R (optim func-
tion), SAS (PROC NLMIXED) or via solving the nonlinear likelihood equations obtained
by differentiating Equ. (9). The score vector elements, U (Ψ) = ∂`

∂Ψ
=
(
∂`
∂θ
, ∂`
∂λ

)ᵀ
,

exist and can easily to be obtained.

2.2 real data modeling

This data set {1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3,
1.7, 2.3, 1.6, 2} represents the lifetime data relating to relief times (in minutes) of pa-
tients receiving an analgesic (see Gross and Clark (1975) ). We shall compare thefits
of the new distribution with those of other competitive models, namely: the exponen-
tial E(λ), Moment exponential MomE(λ), Log Butr Hatke exponential LogBrHE(λ)
and the two parameter odd Lindley exponential OLE(a, λ) models. We consider some
other goodness-of-fit measures including the Akaike information criterion (AIC), con-
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sistent Akaike information criterion (CAIC), Hannan-Quinn information criterion

(HQIC), Bayesian information criterion (BIC) and −2̂̀, where ̂̀ is the maximized
log-likelihood,

AIC = −2̂̀+ 2p,

BIC = −2̂̀+ p log (n) ,

CAIC = −2̂̀+ 2pn/ (n− p− 1) ,

and
HQIC = −2̂̀+ 2p log [log (n)] ,

where p is the number of parameters and n is the sample size. Moreover, we consider
the Cramér-Von Mises and the Anderson-Darling WF and AF statistic. The WFand
AF statistics are given by

WF = (1 + 1/2n)
[
[1/ (12n)] +

∑n

j=1
cj

]
,

and
AF = d(n)

(
n+ n−1

∑n

j=1
dj

)
,

where
cj = [zi − (2j − 1) / (2n)]2 ,

d(n) = 1 +
9

4
n−2 +

3

4
n−1,

and
dj = (2j − 1) log [zi (1− zn−j+1)] ,

where zi = F (yj) and the yj’s values are the ordered observations.

Table 1: MLEs, SEs, C.I.s (in parentheses) values for the relief times data.

Models Estimates
E(λ) 0.526(0.117) (0.29, 0.75)

MomE(λ) 0.950(0.150) (0.66, 1.24)
LogBrHE(λ) 0.5263(0.118) (0.43, 0.63)
OLE(a, λ) 0.783(0.391), 0.68(0.164) (0, 1.56), (0.36, 1)

OLEE(θ, λ) 2.40(0.98), 0.74(0.12), (0.6, 4.2), (0.48, 1)

Table 2: AIC,BIC,CAIC,HQIC, AF, WF

Models AIC,BIC,CAIC,HQIC AF, WF

E(λ) 67.67,68.67,67.89,67.87 4.60, 0.96
MomE(λ) 54.32,55.31,54.54,54.50 2.76, 0.53

LogBrHE(λ) 67.67,68.67,67.89,67.87 0.62, 0.105
OLiE(a, λ) 50.89,52.88,51.6,51.3 1.39, 0.24

OLEE(θ, λ) 49.8, 51.8, 50.5, 50.2 1.19, 0.20
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Figure 3. Estimated P.D.F., Estimated H.R.F., and P-P plot for the relief times data.

From Table 3 we conclude that the proposed lifetime model is much better than
the exponential E(λ), Moment exponential MomE(λ), Log Butr Hatke exponential
LogBrHE(λ) and the two parameter odd Lindley exponential OLE(a, λ) models, so
the new lifetime model is a good alternative to these models in modeling relief times
data.

2.3 Simulations

In this step the OLEE model is considered. The data were simulated N = 10, 000
times; with parameter values θ = 0.9, λ = 0.5 and sample sizes n = 30, 100, 300, 500, 1000.
We use Barzilai-Borwein (BB) algorithm (see Ravi (2009)) in R software, for calcu-

lating the averages of the simulated values of the maximum likelihood estimators θ̂, λ̂
parameters and their mean squared errors (MSE) presented in Table 3. From Table
3. , we can notice that the maximum likelihood estimators for the OLEE model are
convergent.

Table 3: Maximum likelihood estimators
(
θ̂, λ̂
)

of the parameters and their MSEs.

N = 10000 n = 30 n = 100 n = 300 n = 500 n = 1000

θ̂ 0.86142 0.87156 0.92751 0.9214 0.9085
MSE 0.04875 0.04476 0.03924 0.02935 0.0108

λ̂ 0.4821 0.4963 0.4981 0.5107 0.5078
MSE 0.0348 0.0312 0.0275 0.0201 0.0143
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Figure 4. Simulated average absolute errors for MLEs θ̂, λ̂.

From the Figure 4, we confirm that all estimates of the OLEE distribution converge
faster than n−0.5, so our maximum likelihood estimators are

√
n - consistent.

3. Censored data modeling

3.1 Maximum likelihood estimation

Let T be a random variable distributed according to a OLEE distribution with ζ =
(θ̂, λ̂)T . For i (individual); Ti is the lifetime and Ci is the censorship time, where
Ti and Ci are independent random variables. The data consists of n independent
observations

ti = min(Ti, Ci) for i = 1, ..., n.

In case of non-informative censorship ( distribution of Ci does not depend on the
unknown parameters of Ti) , the likelihood function is given by:

L(t, ζ) =
n∏
i=1

λδi(ti, ζ)S(ti, ζ)|(
ζ=(θ,λ)T ,δi=1{Ti≤Ci}

).
Let Ti be a random variable distributed with the vector of parameters ζ = (θ, λ)T of
the OLEE model, so the likelihood function can be

L(t, ζ) =
n∏
i=1


1+
[
1−(1−e−λti)

θ
]

2
[
1−(1−e−λti)

θ
] e

{
−(1−e−λti)

θ
/
[
1−(1−e−λti)

θ
]}

×

[
θλe−λti(1−e−λti)

θ−1

2
[
1−(1−e−λti)

θ
]2{

1+
[
1−(1−e−λti)

θ
]}
]δi

 .
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The loglikelihood function is

l(t, ζ) =
n∑
i=1

ln
{

1 +
[
1−

(
1− e−λti

)θ]}− ln
{

2
[
1−

(
1− e−λti

)θ]}
−

n∑
i=1

(
1− e−λti

)θ
/
[
1−

(
1− e−λti

)θ]
n∑
i=1

δi
 ln

[
θλe−λti

(
1− e−λti

)θ−1
]

− ln

(
2
[
1−

(
1− e−λti

)θ]2 {
1 +

[
1−

(
1− e−λti

)θ]})

 ,

or

l(t, ζ) =
∑
i∈F

ln
[
θλe−λti

(
1− e−λti

)θ−1
]

−
∑
i∈F

ln

(
2
[
1−

(
1− e−λti

)θ]2 {
1 +

[
1−

(
1− e−λti

)θ]})

+
∑
i∈C

ln

1 +
[
1−

(
1− e−λti

)θ]
2
[
1− (1− e−λti)θ

]


−
∑
i∈C

(
1− e−λti

)θ
/
[
1−

(
1− e−λti

)θ]
,

where F is the set of uncensored data and C is the set of censored observations. The
score functions are

∂l(t, ζ)

∂θ
=

∑
i∈F

e−λti
(
1− e−λti

)1−θ [
ve−λti

(
1− e−λti

)θ−1
+ θλe−λti

(
1− e−λti

)θ−1
ln
(
1− e−λti

)]
θλ

+
∑
i∈F

 2
[
1−

(
1− e−λti

)θ]2 (
1− e−λti

)θ
ln
(
1− e−λti

)
−4
(
1− e−λti

)θ [
1−

(
1− e−λti

)θ]
ln
(
1− e−λti

) [
2−

(
1− e−λti

)θ]


2
[
1− (1− e−λti)

θ
]2 [

2− (1− e−λti)
θ
]

+
∑
i∈C

2
[
1−

(
1− e−λti

)θ]{(1−e−λti)
θ
[
2−(1−e−λti)

θ
]

ln(1−e−λti)

2
[
1−(1−e−λti)

θ
]2 − (1−e−λti)

θ
ln(1−e−λti)

2
[
1−(1−e−λti)

θ
]

}
2− (1− e−λti)

θ

−
∑
i∈C

(
1− e−λti

)θ
ln
(
1− e−λti

)
1− (1− e−λti)

θ
+

(
1− e−λti

)2θ
ln
(
1− e−λti

)(
1− (1− e−λti)

θ
)2 ,
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∂l(t, ζ)

∂λ
=

∑
i∈F

e−λti
(
1− e−λti

)1−θ [ ti(θ − 1)θλe−λtie−λti
(
1− e−λti

)θ−2

+θe−λti
(
1− e−λti

)θ−1 − θλtie−λti
(
1− e−λti

)θ−1

]
θλ

+
∑
i∈F

 2tiθe
−λti

[
1−

(
1− e−λti

)θ]2 (
1− e−λti

)θ−1

−4θtie
−λti

(
1− e−λti

)θ−1
[
1−

(
1− e−λti

)θ] [
2−

(
1− e−λti

)θ]


2
[
1− (1− e−λti)θ

]2 [
2− (1− e−λti)θ

]

+
∑
i∈C

2
[
1−

(
1− e−λti

)θ]{ tiθe
−λti(1−e−λti)

θ−1
[
2−(1−e−λti)

θ
]

2
[
1−(1−e−λti)

θ
]2 − tiθe

−λti(1−e−λti)
θ−1

2
[
1−(1−e−λti)

θ
]
}

2− (1− e−λti)
θ

−
∑
i∈C

tiθe
−λti

(
1− e−λti

)θ−1

1− (1− e−λti)
θ

+
tiθe

−λti
(
1− e−λti

)2θ−1[
1− (1− e−λti)

θ
]2 .

For solving this system of score functions, we can use the Monte Carlo method, the
Barzilai-Borwein (BB) and Newoton Raphson algorithms or other similar methods.

3.2 Simulations

The data from OLEE dostribution were simulated N = 10, 000 times; with sample
sizes n = 30, n = 100, n = 300, n = 500, n = 1000 and parameter values θ = 2.4, λ =
2. The averages of the simulated values of the maximum likelihood estimators θ̂, λ̂
Parameters, and their mean squared errors (MSE) are calculated and presented in

Table 4. From Table 4, one can say that the the maximum likelihood estimators θ̂, λ̂
are convergent.

Table 4: Maximum likelihood estimators
(
β̂, â, λ̂

)
of the parameters and their

MSEs (censored data)

N = 10000 n = 30 n = 100 n = 300 n = 500 n = 1000

θ̂ 2.3561 2.3741 2.3917 2.4142 2.4052
MSE 0.04847 0.04521 0.03841 0.2985 0.1542

λ̂ 1.9576 1.9664 1.9824 2.0977 2.0276
MSE 0.03214 0.04001 0.02761 0.02223 0.0160
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Figure 5. Simulated average absolute errors for MLEs θ̂, λ̂.

From Figure 5, all estimates converge faster than n−0.5, which affirm the fact that the
maximum likelihood estimators are

√
n - consistent.

4. Goodness-of-fit test

4.1 Nikulin-Rao-Robson statistic test

To verify the adequacy of mathematical models to data from observation, different
techniques are used. We can apply the based test Chi-squared of Pearson. Since the
middle of the last century, researchers have begun to propose modifications to take
into account unknown parameters. For the complete data, Nikulin (1973) and Rao
and Robson (1974) separately proposed a statistic known today as the N.R.R statistic
(Nikulin-Rao-Robson). This statistical test, is a natural modification of the Pearson
statistic. To test the hypothesis H0

H0 : P {Ti ≤ t} = F (t, ζ)|(t∈R, ζ=(ζ1,ζ2,··· ,ζs)T ),

where ζ represents the vector of unknown parameters, Nikulin (1973) and Rao and
Robson (1974) proposed Y 2 the N.R.R statistic defined as follows:

Observations T1, T2, · · · , Tn are grouped in r subintervals I1, I2, · · · , Ir mutually dis-
joint

Ij =]aj − 1; aj], j = 1; r

The limits aj of the intervals Ij are obtained such that

pj(ζ)|( j=1,2,··· ,r) =

∫ aj

aj−1

f(t, ζ)dt

where

aj|(j=1,··· ,r−1) = F−1

(
j

r

)
.

If
νj = (ν1, ν2, · · · , νr)T
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is the vector of frequencies obtained by the grouping of data in these Ij intervals

νj =
n∑
i=1

1{ti∈Ij} |(j=1,...,r).

The N.R.R statistic is given by

Y 2(ζ̂n) = X2
n(ζ̂n) + n−1LT (ζ̂n)(I(ζ̂n)− J(ζ̂n))−1L(ζ̂n)

where

X2
n(ζ) =

(
ν1 − np1(ζ)√

np1(ζ)
,
ν2 − np2(ζ)√

np2(ζ)
, · · · , νr − npr(ζ)√

npr(ζ)

)T

,

and J(ζ) is the information matrix for the grouped data defined by

J(ζ) = B(ζ)TB(ζ),

with

B(ζ)|(i=1,2,··· ,r and k=1,··· ,s) =

[
1
√
p
i

∂pi(ζ)

∂ζ

]
r×s

,

and

L(ζ) = (L1(ζ), ...,Ls(ζ))T , Lk(ζ) =
r∑
i=1

νi
pi

∂

∂ζk
pi(ζ),

where In(ζ̂n) represents the estimated Fisher information matrix and ζ̂n is the maxi-
mum likelihood estimator of the parameter vector. The Y 2 statistic follows a distri-
bution of chi-square χ2

α with (r − 1) degrees of freedom.

4.2 NRR statistic for the OLEE model

To verify if a sample T = (T1, T2, · · · , Tn)T is distributed according to the OLEE
model, P {Ti ≤ t} = FOLEE(t, ζ); with unknown parameters ζ = (θ, λ)T , a chi-square
goodness-of-fit test is constructed by fitting the N.R.R statistic developed in the
previous section. The maximum likelihood estimators ζ̂n of the unknown parameters
of the OLEE distribution are computed on the initial data. The statistic Y 2 does
not depend on the parameters, we can therefore use the Fisher information matrix
estimated In(ζ̂n).

4.3 Simulation studies (N.R.R statistics Y 2)

To test the null hypothesis H0 that a sample belongs to the OLEE model, we calculate
Y 2 the NRR statistic of 10, 000 simulated samples with sizes

n = 30, n = 50, n = 100, n = 300, n = 500, n = 1000,
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respectively. For different theoretical levels (ε = 0.02, 0.05, 0.01, 0.1), we calculate the
average of the non-rejection numbers of the null hypothesis, when Y 2 ≤ χ2

ε (r − 1) (see
Table 5) then, we present the results of the corresponding empirical and theoretical
levels in Table 5. As can be seen, the values of the empirical levels calculated are
very close to those of their corresponding theoretical levels. Thus, we conclude that
the proposed test is well adapted to the OLEE distribution.

Table 5: Empirical levels and corresponding theoretical
levels (ε = 0.02, 0.05, 0.01, 0.1)

N = 10000 ε = 0.02 ε = 0.05 ε = 0.01 ε = 0.1

n = 30 0.9841 0.9535 0.9921 0.9049
n = 50 0.9836 0.9528 0.9919 0.9043
n = 100 0.9821 0.9517 0.9918 0.9023
n = 300 0.9811 0.9506 0.9906 0.9012
n = 500 0.9803 0.9502 0.9902 0.9004
n = 1000 0.9801 0.9501 0.99004 0.9002

4.4 Simulated distribution of Y 2 statistic for OLEE model

The Y 2 statistic follows in the limit; a chi-squared distribution with k = r−1 degrees
of freedom. For demonstrating this fact, we compute N = 10, 000 times, the simulated
distribution of Y 2(ζ̂) under the null hypothesis H0 with different values of parameters,
and r = 10 intervals, versus the chi-squared distribution with k = r − 1 = 9 degree
of freedom. Their histograms are represented in Figure 6. versus the chi-squared
distribution with k = 9 degree of freedom.
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(a) ζ̂ = (θ̂ = 0.9, λ̂ = 1.8) (b) ζ̂ = (θ̂ = 1.8, λ̂ = 1.5)

(c) ζ̂ = (θ̂ = 2.6, λ̂ = 0.8)

Figure 6. Simulated distribution of the Y 2
n statistic under the null hypothesis H0, with

different parameters of ζ̂ and the chi-squared distribution with 9 degrees of freedom,
with n = 100, N = 10000.

From Figure 6, we can observe that the statistical distribution of Y 2 with different
values of parameters and different numbers k of grouping cells -for different number of
equiprobable grouping intervals and different value of parameters- ; in the limit follows
a chi-squared with k degrees of freedom within the statistical errors of simulation.
We can say that the limiting distribution of the generalized chi-squared Y 2 statistic
for OLEE model is distribution free.

4.5 Real data modeling

4.5.1 relief times data

To test the null hypothesis H0 that these data are adjusted by a OLEE distribu-
tion, we use the N.R.R statistic obtained previously. Using the R software and the
BB algorithm (Ravi, 2009), we compute the maximum likelihood estimators (MLE)

2.4047589, 0.7496595 θ̂ = 7.1524, λ̂ = 0.51149. The estimated Fisher information
matrix is then

I(ζ̂) =

 1.098541 2.04578 6.21866
24.91572 56.84276

12.85441

 .
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We then deduce the value of Y 2 = 6.954718. The critical value is

χ2
0.05(4− 1) = 7.814728,

then, the N.R.R Y 2 statistic is less than the critical value, this allows us to say that
these data correspond appropriately to the OLEE model.

5. Goodness-of-fit test for right censored data

Habib and Thomas (1986) considered the natural modifications of the N.R.R statis-
tic. These tests are based on the differences between two probability estimators, one
based on the Kaplan-Meier estimator, the other based on the maximum likelihood
estimators of the unknown parameters of the cumulative distribution function of the
Kaplan-Meier estimator. model tested. When to Bagdonavicius and Nikulin (2011);
Bagdonavicius et al. (2013), they proposed a modification of the N.R.R statistic that
takes into account random right censorship. This statistic, based on the maximum
likelihood estimators on the initial data, also follows a Chi-square distribution at the
limit. For more details on the construction of these statistics, we can see Voinov
et al. (2013). These techniques were used to adjust observations to the generalized
inverse Weibull model (Goual and Seddik-Ameur 2014), the distribution of Birbaurm
Saunders (Nikuli et al. (2013)), the kumaraswamy generalized inverse Weibull distri-
bution (Goual and Seddik-Ameur 2016) and others. In this paragraphe we develop
the approach proposed by Bagdonavicius and Nikulin (2011), Bagdonavicius et al.
(2013); to confirm the adequacy of OLEE model when the parameters are unknown
and data are censored. Let us consider the composite hypothesis

H0 : F (t) ∈ F0 = F0(t, ζ)|(t∈R1, ζ∈Ψ⊂Rs),

where
ζ = (ζ1, ..., ζs)

T ∈ Ψ ⊂ Rs

is an unknown m-dimensional parameter and F0 is a differentiated completely speci-
fied cdf with the support (0,∞). Let us consider a finite time interval only say [0, τ ],
where τ is the maximum time of the study, and divide it into k > s smaller intervals
Ij = (aj−1, aj], where

0 =< a0 < a1... < ak−1 < ak = +∞.

In this case the estimated âj is given by

âj = Λ−1

(
(Ej −

i−1∑
l=1

Λ(T(l), ζ̂))/(n− i+ 1), ζ̂

)
, âk = T(n), j = 1, ..., k,

where ζ̂ is the Maximum likelihood estimator of the parameter ζ, Λ−1 is the inverse
of cumulative hazard function Λ, T(i) is the ith element in the ordered statistics
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(T(1), , , T(n)) and

Ej = (n− i+ 1)Λ(âj, ζ̂) +
i−1∑
l=1

Λ(T(l), ζ̂),

and aj are random data functions such as the k intervals chosen have equal expected
numbers of failures ej. Usually in real application we fix k. Bagdonavicius et al.
(2010) and Greenwood and Nikulin (1996) give some recommendations for the choice
of intervals. The test is based on the vector

Z = (Z1, ...,Zk)
T , Zj =

1√
n

(Uj − ej), j = 1, 2, ..., k,

where Uj represent the numbers of observed failures in these intervals. The test for
hypothesis H0 can be based on the statistic

Y 2
n = ZT Σ̂−1Z

where
Σ̂−1 = Â−1 + Ĉ−1ÂT Ĝ−1ĈÂ−1

and
Ĝ = î− ĈÂ−1ĈT .

The test statistic can be written in the following form

Y 2
n =

k∑
j=1

1

Uj

(Uj − ej)2 + Q,

where

Âj = n−1Uj,

Ĝ = [ĝll′ ]s×s,

Uj =
∑

i:Xi∈Ij

δi,

Q = ŴT Ĝ−1Ŵ,

Ĉlj = n−1
∑

i:Xi∈Ij

δi
∂

∂ζ
ln
[
λi(ti, ζ̂)

]
,

Ŵl =
k∑
j=1

ĈljÂ
−1
j Zj, l, l′ = 1, ..., s,

Ŵ = (Ŵ1,Ŵ2, ....,Ŵs)
T ,

îll′ = n−1

n∑
i=1

δi
∂

∂ζl
ln
[
λi(ti, ζ̂)

] ∂

∂ζl′
ln
[
λi(ti, ζ̂)

]
,
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and

ĝll′ = îll′ −
k∑
j=1

ĈljĈl′jÂ
−1
j , Ĉlj = n−1

∑
i:Xi∈Ij

δi
∂

∂ζ
lnλi(ti, ζ̂),

The elements of the matrices Ŵ and Î are given in the Appendix B. The limit
distribution of the statistic Y 2

n is chi-square with r =rank(Σ) = tr(Σ−1Σ) degrees
of freedom. If G is non-degenerate then r = k. The hypothesis is rejected with
approximate significance level ε if Y 2

n > χ2
ε(r) where χ2

ε(r) is the quantile of chi-
square with r degrees of freedom. For more details, see Bagdonavicius and Nikulin
(2011) and Bagdonavicius et al. (2013).

5.1 Validation of OLEE model in case of censored data

In this section, we study the validity of the OLEE model, by a goodness-of-fit test
based on Y 2

n , the modified N.R.R statistic presented in the previous section. Suppose
H0 is checked (Ti follows OLEE distribution), the survival function is:

S(t, ζ) = 1− F (t; θ, λ) =
1 +

[
1−

(
1− e−λx

)θ]
2
[
1− (1− e−λx)θ

] e

{
−(1−e−λx)

θ
/
[
1−(1−e−λx)

θ
]}
,

when the baseline distribution is a OLEE model, the choice of âj , is given by

ΛOLEE(t, ζ) = − lnS(t, ζ) = − ln
{

1 +
[
1−

(
1− e−λx

)θ]}
+ ln

{
2
[
1−

(
1− e−λx

)θ]}
+
{
−
(
1− e−λx

)θ
/
[
1−

(
1− e−λx

)θ]}
,

Ej =
∑

i:Xi>aj

(Λ(aj ∧ ti, ζ̂)−Λ(aj−1, ζ̂) and Ek =
n∑
i=1

Λ(ti, ζ̂),

with this choice of intervals, for any j we have a constant value of ej = Ek/k .
Intervals can be estimated by iterative method (there is no explicit form of inverse
hazard function of OLEE distribution).

5.2 Simulation study

To test the null hypothesis H0 that a sample comes from a OLEE model, we calculate
Y 2
n the N.R.R statistic of 10, 000 simulated samples with sizes n = 30, 100, 300, 500, 1000,

respectively. For different levels of meaning (ε = 0.02, 0.05, 0.01, 0.1), we calculate the
mean of the number of no rejections of the null hypothesis when Y 2

n ≤ χ2
ε(r), then we

present the results of the empirical values and the corresponding theoretical values in
Table 6.
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Table 6: Empirical levels and corresponding theoretical levels
(ε = 0.02; 0.05; 0.01; 0.1).

N = 10000 ε = 0.02 ε = 0.05 ε = 0.01 ε = 0.1

n = 30 0.9830 0.9528 0.9918 0.9011
n = 100 0.9825 0.9515 0.9917 0.9010
n = 300 0.9810 0.9509 0.9907 0.9008
n = 500 0.9805 0.9505 0.9902 0.9001
n = 1000 0.9802 0.9501 0.9901 0.90005

According to this results, we find that the empirical signification levels of the Y 2
n

statistic coincide with those corresponding to the theoretical levels of the chi-square
distributions at r degrees of freedom. Therefore, we can say that the proposed test
can properly fit censored data from the OLEE distribution.

(a) ζ̂ = (θ̂ = 0.5, λ̂ = 0.5) (b) ζ̂ = (θ̂ = 2.4, λ̂ = 1.5)

(c) ζ̂ = (θ̂ = 1.7, λ̂ = 2)

Figure 7. Simulated distribution of the Y 2
n statistic under the null hypothesis H0, with

different parameters of ζ̂ and the chi-squared distribution with 9 degrees of freedom,
with n = 100, N = 10000.

5.3 Application to real data

5.3.1 Arm-A head and neck cancer data

The data considered below (was conducted by northern California oncology group)
was used by Efron (1988) for logistic distribution. Mudholkar et al. (1996) and
Nikulin and Haghighi (2006) reanalysed the same data and give the acceptable fit (chi-
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square type test) to the exponentiated Weibull and generalized Weibull distribution
families respectively.

The survival times in days for the patients (n = 51) were as below (δ = 42). 7, 34, 42,
63, 64, 74*, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157, 160,
160, 165, 173, 176, 185*, 218, 225, 241, 248, 273, 277, 279*, 297, 319*, 405, 417, 420,
440, 523*, 523, 583, 594, 1101, 1116*, 1146, 1226*, 1349*, 1412*, 1417. * censoring

We use the data after transforming the survival times in months (1 month=30.438

days). The maximum likelihood estimator θ̂ of the parameter vector θ is, if we suppose
that this data are distributed according to the OLEE distribution :

ζ̂ = (θ̂, λ̂)T = (1.8145, 2.0839)T

We choose r = 7 as a number of classes. The elements of the test statistic Y 2
n was

presented as follow :

âj 2.047 4.667 5.384 9.084 18.694 39.048 46.554

Ûj 3 14 6 9 10 5 4
ej 1.92475 1.92475 1.92475 1.92475 1.92475 1.92475 1.92475

Ĉ1j 1.2895 −0.2540 3.1784 0.9574 −2.5488 3.1574 −0.7845

Ĉ2j −0.1544 4.15578 −0.9854 −2.1441 5.1492 −6.2515 −0.9221

Ĉ3j 1.8541 2.1249 2.6588 −6.2298 1.3357 3.2549 0.0487

The Fisher’s estimated matrix is

Î =

(
0.55796 1.62871
1.62871 2.81154

)
,

after calculate, we find Y 2
n = 14.00924. The critical value

χ2
0.05(7) = 14.00924 > Y 2

n = 13.67849,

we can say that this data can be well modelised by the our OLEE model.

5.3.2 Aluminum reduction cells data

The data of Whitmore (1983), who considered the times of failures for 20 aluminum
reduction cells, and the numbers of failures in 1, 000 days units are : 0.468, 0.725,
0.838, 0.853, 0.965, 1.139, 1.142, 1.304, 1.317, 1.427, 1.554, 1.658, 1.764, 1.776, 1.990,
2.010, 2.224, 2.279*, 2.244*, 2.286*. (* censoring). Assuming that these data are
distributed according to the OLEE distribution, the maximum likelihood estimator
ζ̂ of the parameter vector ζ is

ζ̂ = (θ̂, λ̂)T = (1.6148, 0.92145, 0.84571)T

We choose r = 4 a number of classes. The elements of the statistic test Y 2
n are

presented below:
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âj 1.11584 1.6671 2.1843 2.2936

Ûj 5 7 4 4
ej 3.1046 3.1046 3.1046 3.1046

Ĉ1j 1.9658 −0.5147 3.5558 0.7423

Ĉ2j 1.2487 2.2293 −0.2849 −2.3691

Ĉ3j 2.0047 1.6497 −0.9782 1.1673

The Fisher’s estimated matrix is given by

Î =

(
1.7538 −4.00914
−4.00914 −3.6556

)
Then, we calculate the value of the statistic test Y 2

n = 9.49974. The critical value is

χ2
0.05(4) = 9.48773 > Y 2

n = 9.49974,

we reason that the data of Aluminum reduction cells is compatible with OLEE model.

6. Conclusions

This work aims to introduce a new extension of the exponentiated exponential model
called the odd Lindley exponentiated exponential model. The proposed distribution
can be viewed as a mixture of the exponentiated exponential density, the new density
exhibits monotonically increasing, constant, monotonically decreasing and bathtub
hazard rates. Some of its mathematical properties are derived. The new model can
also be considered as a convenient model for fitting the right skewed, the symmetric,
the left skewed and the unimodal data sets. The proposed lifetime model is much
better than the exponential exponential, Moment exponential, Log Butr Hatke expo-
nential and the two parameter odd Lindley exponential models, so the new lifetime
model is a good alternative to these models in modeling failure times data. We used
the well known modified goodness of fit statistics test Y 2

n proposed by Bagdonavicius
and Nikulin (2011a, b). This test statistisc is based on the NRR statistic. We have
validated our model in two cases: complete and censored data. We have calculated
all the theoritical elements of this two tests statistic (Y 2) for complete data and Y 2

n

for censored data). Simulation studies were performed in this work to demonstrate
the appropriateness of the model in defferent elds of life time data, we analyses three
real data of both complete and censored cases.
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Appendix A

The rth ordinary moment of X is given by µ′r =
∫∞

0
xr f (x) dx = E(Xr). Using (7),

we get

µ′r = θλ−rΓ (1 + r)
∞∑

i,k,w=0

ξi,kK
([θ(2+i+k)],r)
w |(r>−1), (A1)

where

K([θ(2+i+k)],r)
w =

τ ([θ (2 + i+ k)] , w)

(1 + w)1+r ,

τ ([θ (2 + i+ k)] , w) =
(−1)w Γ ([θ (2 + i+ k)])

Γ ([θ (2 + i+ k)]− w)
,
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Γ (1 + c) |(c∈R+) =
c−1∏
m=0

(c−m) = c (c− 1) (c− 2) ...1 = c!,

and ∫ ∞
0

ta−1 e−tdt = Γ (a) ,

is the complete gamma function. The rth incomplete moment of X, say Ir (t), is given
by Ir (t) =

∫ t
0
xr f (x) dx. Using (7), we obtain

Ir (t) = θλ−r
[
γ

(
1 + r,

λ

t

)] ∞∑
i,k,w=0

ξi,kK
([θ(2+i+k)],r)
w |(r>−1),

where γ (ζ, q) is the incomplete gamma function.

γ (c, q) |(c 6=0,−1,−2,...) =

∫ q

0

tc−1 exp (−t) dt

=
qc

c

{
(1)F(1) [c; c+ 1;−q]

}
=

∞∑
k=0

(−1)k

k! (c+ k)
qc+k,

where (1)F(1) [·, ·, ·] is a confluent hypergeometric function.

Let X1, . . . , Xn be a random sample (R.S.) from the OLEE model of distributions
and let X1:1, . . . , Xn:n be the corresponding order statistics, so the P.D.F. of the ith

order statistic, say Xi:n, can be expressed as

fi:n (x) = B−1(i, n− i+ 1)
n−i∑
j=0

(−1)j f(x)F (x)j+i−1

(
n− i
j

)
, (A2)

where B(·, ·) is the beta function. Substituting (5) and (6) in (A2), we obtain

fi:n (x) =
∞∑

m,p=0

k+n−i∑
j=0

ci,m,p g{[θ(2+j+m+p)],λ}(x)|
{

(x≥0)
(λ>0, [θ(2+j+m+p)]>0)

}
,

where

ci,m,p =
i−1∑
k=0

(−1)k+m

m! (2 + j +m+ p) B(i, n− i+ 1)

(
j +m+ p

j +m

)(
k + n− 1

j

)(
i− 1

k

)
,
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then, the zth moment of Xi:n is given by

E (Xz
i:n) = θλ−zΓ (1 + z)

∞∑
m,p,w=0

k+n−i∑
j=0

ci,m,pK
([θ(2+j+m+p)],z)
w |(z>−1) . (A3)

The quantile spread (QSO) of the R.V. W ∼OLEE(θ, λ) having C.D.F. (6) is given
by

[QSO]X (τ) |(τ∈(0.5,1)) =
[
F−1(τ)

]
−
[
F−1(1− τ)

]
,

which implies [
S−1(1− τ)

]
−
[
S−1(τ)

]
= [QSO]W (τ) ,

where
S(w) = 1− F (w) and F−1(τ) = S−1(1− τ)

is the survival function (SF). The QSO of a distribution describes how the probability
mass is placed symmetrically about its median and hence can be used to formalize
concepts like peakedness and tail weight traditionally associated with kurtosis. So
that, it allows us to separate concepts of kurtosis and peakedness for asymmetric
models. Let W1 and W2 be two R.V.s following the OLEE model with [QSO]W1

and
[QSO]W2

, respectively. Then W1 is called smaller than W2 in QSO, denoted as W1

≤[QSO] W2, if (
[QSO]W1

(τ) ≤ [QSO]W2
(τ)
)
|( τ∈(0.5,1)).

Following properties of the QSO order can be obtained:

1−The order
(
≤[QSO]

)
is location-free[

W1 ≤[QSO] W2 if (W1 + c) ≤[QSO] W2

]
|(c≥1).

2−The order
(
≤[QSO]

)
is dilative[

W1 ≤[QSO] cW1|(c≥1) and W2 ≤[QSO] cW2

]
|(c≥1).

3− Let FW1 and FW2 be symmetric, then[
W1 ≤[QSO] W2 if, and only if F−1

W1
(τ) ≤ F−1

W2
(τ)
]
|(τ∈(0.5,1)).

4− The order
(
≤[QSO]

)
implies ordering of the mean absolute deviation around the

median, say Υ(Wi)|(i=1,2),

E [| −Median(W1) +W1|] = Υ(W1),

and
E [| −Median(W2) +W2|] = Υ(W2),

where
W1 ≤[QSO] W2 ⇒ Υ(W1) ≤[QSO] Υ(W2),

finally
W1 ≤[QSO] W2 if, and only if −W1 ≤[QSO] −W2.
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The nth Moment of residual life (MRL) is given by

zn(t) = E
{

(X − t)n |
[

(n=1,2,...)
(X>t), (t>0)

]}
.

So the nth MRL of X can be given as

zn(t) =

∫∞
t

(x− t)ndF (x)

1− F (t)
,

subsequentlywe can write

zn(t) = [1− F (t)]−1
∞∑

i,k=0

n∑
r=0

(−t)n−r ξi,k
(
n

r

)
×
∫ ∞
t

xr g{[θ(2+i+k)],λ}(x)|
{

(x≥0)
(λ>0, [θ(2+i+k)]>0)

}
dx

= θλ−n
Γ
(
1 + n, λ

t

)
1− F (t)

∞∑
i,k,w=0

n∑
r=0

(−t)n−r
(
n

r

)
ξi,kK

([θ(2+i+k)],n)
w |(n>−1),

where

Γ (a, q) |(q>0) =

∫ ∞
q

ta−1e−tdt,

and
Γ (a, q) + γ (a, q) = Γ (a) .

The nth Moment of reversed residual life (MRRL) is given by

Zn(t) = E
{

(t−X)n |
[

(n=1,2,...)
(X≤t), t>0

]}
,

uniquely determines F (x), then we have

Zn(t) =

∫ t
0
(t− x)ndF (x)

F (t)
.

Then, the nth moment of the reversed residual life of X becomes

Zn(t) = F (t)−1

∞∑
i,k=0

n∑
r=0

(−1)r tn−r
(
n

r

)
ξi,k

×
∫ t

0

xr g{[θ(2+i+k)],λ}(x)|
{

(x≥0)
(λ>0, [θ(2+i+k)]>0)

}
dx

= θλ−n
γ
(
1 + r, λ

t

)
F (t)

∞∑
i,k,w=0

n∑
r=0

(−1)r tn−r
(
n

r

)
ξi,kK

([θ(2+i+k)],n)
w |(n>−1).
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Appendix B

The components of Ŵ and the information matrix Î are required for the statistic test
Y 2
n .

Calculation of the matrix Ŵ

The elements of the estimated matrix Ŵ defined by

Ŵl =
k∑
j=1

Ĉlj Â−1
j Zj|( l=1,2,3 and j=1,...,k),

are obtained as follow

Ĉlj = n−1
∑
i.ti∈Ij

δi
∂

∂θ
lnλ(ti, θ̂)

lnλ(t, θ̂) = ln

 θλe−λt
(
1− e−λt

)θ−1

2
[
1− (1− e−λt)θ

]2 {
1 +

[
1− (1− e−λt)θ

]}


= ln θ + lnλ− ln 2− λt+ (θ − 1) ln
(
1− e−λt

)θ−1

−2 ln
[
1−

(
1− e−λt

)θ]− ln
{

1 +
[
1−

(
1− e−λt

)θ]}
The expressions of the elements of the matrix Ĉlj are given as follows

Ĉ1j = n−1
∑
i.ti∈Ij

δi


(1−e−λti)

θ
ln(1−e−λti)

2−(1−e−λti)
θ

+(θ − 1) ln
(
ln
(
1− e−λti

))
lnθ−1

(
1− e−λti

)
+ lnθ−1

(
1− e−λti

)
+

2(1−e−λti)
θ

ln(1−e−λti)
1−(1−e−λti)

θ

 ,

Ĉ2j = n−1
∑
i.ti∈Ij

δi


θtie
−λti(1−e−λti)

θ−1

2−(1−e−λti)
θ

+
2θtie

−λti(1−e−λti)
θ−1

1−(1−e−λti)
θ +

(θ−1)2tie
−λti logθ−2(1−e−λti)

1−e−λti − ti

 .
Calculation of the matrix Î

The formulas of the elements of the Fisher’s information matrix Î = (̂ill′)3×3 is

îll′ = n−1
∑
i.ti∈Ij

δi
∂ lnλ(ti, θ̂)

∂θl

∂ lnλ(ti, θ̂)

∂θl′
.
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In our case we have:

î11 = n−1
∑
i.ti∈Ij

δi


(1−e−λti)

θ
ln(1−e−λti)

2−(1−e−λti)
θ

+(θ − 1) ln
(
ln
(
1− e−λti

))
lnθ−1

(
1− e−λti

)
+ lnθ−1

(
1− e−λti

)
+

2(1−e−λti)
θ

ln(1−e−λti)
1−(1−e−λti)

θ


2

,

î12 = n−1
∑
i.ti∈Ij

δii



(1−e−λti)
θ

ln(1−e−λti)
2−(1−e−λti)

θ

+(θ − 1) ln
(
ln
(
1− e−λti

))
lnθ−1

(
1− e−λti

)
+ lnθ−1

(
1− e−λti

)
+

2(1−e−λti)
θ

ln(1−e−λti)
1−(1−e−λti)

θ

×


θtie
−λti(1−e−λti)

θ−1

2−(1−e−λti)
θ

+
2θtie

−λti(1−e−λti)
θ−1

1−(1−e−λti)
θ +

(θ−1)2tie
−λti logθ−2(1−e−λti)

1−e−λti − ti




,

and

î22 = n−1
∑
i.ti∈Ij

δi


θtie
−λti(1−e−λti)

θ−1

2−(1−e−λti)
θ

+
2θtie

−λti(1−e−λti)
θ−1

1−(1−e−λti)
θ +

(θ−1)2tie
−λti logθ−2(1−e−λti)

1−e−λti − ti


2

.
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