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Abstract 
The Poisson regression is popularly used to model count data but real life data often do not satisfy the 

essential assumption of equality of the mean and variance of the Poisson distribution.  The Conway-Maxwell-

Poisson (COM-Poisson) distributions is one of the models that have been proposed for handling cases of 

over- and under-dispersion. Nevertheless, the parameterization of the COM-Poisson distribution still remains 

a major challenge in practice as the location parameter of the original COM-Poisson distribution rarely 

represents the mean of the distribution. As a result, this paper proposes a new parameterization of the COM-

Poisson distribution via the central location (mean) so that more easily-interpretable models and results can 

be obtained.  The nonlinear equations resulting from the re-parameterization were solved using the efficient 

and fast derivative free spectral algorithm. The proposed parameterization is used to present useful numerical 

results concerning the mean of the COM-Poisson distribution and the location parameter in the original 

COM-Poisson parameterization. Application of the re-parameterization is further illustrated by fitting COM-

Poisson probability models to real life datasets. 

 

Keywords: Count Data; Dispersion Parameter; Overdispersion; Spectral Algorithm; 

Underdispersion. 
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1. Introduction 

Count data occur in many fields such as public health, medicine, business, physics, and 

epidemiology among others. Examples of such data include the number of viruses in a 

solution, the number of defective teeth per person, the number of focal lesions in virology, 

the number of victims of specific diseases, the number of cancer deaths, and the number of 

infant deaths in a certain locality in a given year, among others. For such count data the 

Poisson distribution is the classical statistical model. A key property of the Poisson model, 

commonly referred to as equidispersion, is that the mean and the variance are equal (Ismail 

& Jemain, 2007). Real-life data, however, rarely satisfy this property of equal mean and 

variance (Cox, 1983; Bohning et al., 1999; Dean, 1992; Prentice, 1986). In most cases, the 

observed variance is larger than the theoretical variance which is the mean, a phenomenon 

known as overdispersion. If the overdispersion is ignored, statistical inference results in an 

inaccurate conclusion because the standard errors of the estimates are underestimated (Cox, 
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1983). On the other hand, in cases where the observed variance is less than the mean, it 

leads to what is referred to as underdispersion. In this case using the Poisson model leads 

to overestimation of the standard errors and might result to inaccurate inference concerning 

estimates (Sellers & Shmueli, 2010; Cui et al., 2006).Consequently, the Poisson model 

despite its simplicity is usually inappropriate and there is need for models which allow 

wider range of dispersion levels. 

Some of the models that have been proposed for handling cases of dispersion where the 

Poisson model fails include the Negative Binomial (Lawless, 1987; Booth et al, 2003), 

Generalized Poisson (Famoye, 1993; Cui et al., 2006), Double Poisson (Efron, 1986; 

Shoukri, 1982; Zou et al., 2013), Hyper-Poisson (Saez-Castillo & Conde-Sanchez, 2013), 

exponentially-weighted Poisson (Ridout & Besbeas, 2004), the Gamma-count (Zeviani et 

al., 2014) and the Conway-Maxwell Poisson (COM-Poisson) models (Conway & Maxwell, 

1962;Shmueli et al., 2005; Sellers & Shmueli, 2010) amongst others. The Negative 

Binomial model is popular for handling only overdispersion while both overdispersion and 

underdispersion can be handled by the Generalized Poisson, Double Poisson, Hyper-

Poisson, exponentially-weighted Poisson, the Gamma-count model and the Com-Poisson 

models. Among the methods which can handle underdispersion, the Generalized Poisson 

and COM-Poisson models have gained wide usage and popularity. Nevertheless, these 

models still have certain limitations. The Generalized Poisson model can only model a 

limited degree of underdispersion while the COM-Poisson model has parameterization 

issues despite having desirable properties such as being a member of the exponential family 

of distributions; the ability to handle any level of dispersion and being a generalization of 

important distributions which include the Poisson, Bernoulli and the Geometric 

distributions. 

The Conway-Maxwell-Poisson (COM-Poisson) distribution was developed by Conway 

and Maxwell (1962) primarily for studying the processes involved in queues. The basic 

properties of the COM-Poisson distribution were studied by Shmueli et al. (2005). The 

distribution is a two way parameter extension of the Poisson distribution; it possesses 

unique properties such that it can effectively fit count data with varying dispersion levels. 

The probability mass function (PMF) of the COM-Poisson for the discrete count 𝑦, 

according to Shmueli et al. (2005), is given as: 

                                                            𝑝(𝑦 ;  𝜆, 𝜈) =
𝜆𝑦

(𝑦!)𝜈𝑍(𝜆, 𝜈)
                                                (1) 

where 

𝑍(𝜆, 𝜈) =  ∑
𝜆ℎ

(ℎ!)𝜈

∞

ℎ=0

 

𝜆 > 0, 𝜈 ≥ 0, 𝑦 = 0, 1,2, … 

From the Probability Mass Function above 𝜆 is the parameter representing the location 

parameter of the distribution, 𝜈 is the shape parameter while 𝑍 is the normalizing constant. 

The dispersion parameter 𝜈 = 1 represents equidispersion (Poisson distribution), 𝜈 >
1  represents underdispersion while 𝜈 < 1 refers to overdispersion. According to Shmueli 

et al. (2005), the mean and variance of the distribution are given by: 

                                                         𝐸(𝑌) =
𝜕 ln(𝑍(𝜆, 𝜈))

𝜕 ln 𝜆
                                                           (2) 

                                                           𝑉𝑎𝑟(𝑌𝑖) =
𝜕²𝑍(𝜆, 𝜈)

𝜕(ln 𝜆)2
                                                           (3) 
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The mean and variance of the distribution can also be expressed as 

                                     𝐸(𝑌) =
𝜆𝜕 ln(𝑍(𝜆, 𝜈))

𝜕𝜆
= ∑

ℎ𝜆𝑖
ℎ

𝑍(𝜆, 𝜈)(ℎ!)𝜈

∞

ℎ=0

                                         (4) 

and 

                                                       𝑉𝑎𝑟(𝑌) =
𝐸(𝑌)

𝜕 ln 𝜆
                                                                      (5) 

respectively. Shmueli et al. (2005) used an asymptotic expression to derive an 

approximation for 𝑍 and gave approximations of the mean and variance as: 

                                                            𝐸(𝑌) ≈ 𝜆
1

𝜈 + 1
2𝜈⁄ − 1

2⁄                                                (6) 

                                                        𝑉𝑎𝑟(𝑌) ≈  
1

𝜈
𝜆

1

𝜈                                                                        (7) 

Shmueli et al. (2005) noted that these approximations may not be accurate for 

underdispersed data (𝜈 > 1)orfor values of 𝜆
1

𝜈 < 10. 

A major drawback in the standard Com-Poisson formulation given by (1) is that the 

location parameter 𝜆 would represent the mean of the distribution only when 𝜈 is equal to 

one. In situations when 𝜈 is not equal to 1, 𝜆 would no longer represent the mean of the 

distribution, thereby making the use and interpretation of the COM-Poisson model for 

modelling overdispersed or underdispersed data less straight forward compared to other 

competing models like the Poisson, Negative Binomial and Generalized Poisson, since the 

conditional mean is central to estimation and interpretation in the modelling of count data 

especially in the regression setting. Some methods of circumventing the problem of 

parameterization have been proposed. Guikema & Coffelt (2008) proposed a re-

parameterization of the COM-Poisson distribution by substituting 𝜃 = 𝜆1 𝜈⁄  to provide a 

clear centering parameter. Notwithstanding, 𝜃 still doesn’t represent the mean of the 

distribution and this obscures clear interpretation of estimates in terms of the mean. 

Parameterization via the approximate mean in (6) was proposed by Dikko et al. (2017). 

They used the parameterization within the mixed effects models framework to model 

clustered overdispersed and underdispersed data. Huang (2017) showed how the COM-

Poisson regression can be done via the mean although the details on solving the nonlinear 

equations involved was not mentioned. 

In this paper, we present a re-parameterization of the COM-Poisson distribution via the 

central location (mean) by solving nonlinear system of equations using the derivative-free 

spectral algorithm (DF-SANE). The motivation behind this approach is to provide a fast 

technique for fitting COM-Poisson models with easy interpretation as other competing 

models such as the Poisson, Generalized Poisson and the Negative Binomial distributions 

while retaining the attractive properties of the standard COM-Poisson distribution.  The 

proposed technique was implemented in R (R Core Team, 2018) and demonstrated to 

obtain some results regarding the relationship between the parameter 𝜆 and the mean of the 

COM-Poisson distribution at different dispersion levels. The proposed technique was 

further used to fit COM-Poisson distribution to four real life datasets. The computation 

time using the R implementation of our method is also evaluated. 

The rest of this paper is organized as follows. In Section 2, we propose a new re-

parameterization of the COM-Poisson distribution as well as resulting nonlinear equations. 

We introduce the Derivative-Free Spectral Algorithm for Solving Nonlinear Equations 

(DF-SANE) in Section 3. In Section 4, empirical demonstrations of our proposed technique 

on real life datasets are presented alongside some numerical results relevant to the 
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relationship between the parameter 𝜆 and the mean of the COM-Poisson distribution. 

Concluding remarks are given in section 5 while Proofs are given in the Appendix. 

2. Re-Parameterization through the mean 

In this section, we introduce a new parameterization of the COM-Poisson distribution. This 

technique is described as follows. Let the mean of the distribution be expressed as 𝐸(𝑦) =
𝜇, from (2), one can see that 𝜇 is clearly a function of 𝜆 and 𝜈, so 𝜆 is a function of 𝜇 and 

𝜈 also. Hence, we set 𝜆 = 𝑔(𝜇) and we express the COM-Poisson PMF as 

                                    𝑃(𝑦;  𝜇, 𝜈) =
[𝑔(𝜇)]𝑦

(𝑦𝑖!)𝜈𝑍(𝑔(𝜇), 𝜈)
,   𝜇 > 0, 𝜈 ≥ 0.                                   (8) 

Note that 𝜆 is a function of both 𝜇 and 𝜈 but for simplicity’s sake we write 𝑔(𝜇). In this 

formulation, the PMF is expressed in terms of the mean 𝜇, but to carry out computations 

using (8) the value of 𝜆 = 𝑔(𝜇) has to be determined. The value of 𝜆 = 𝑔(𝜇) is therefore 

obtained by solving the following nonlinear equation: 

                                                                  𝜇 −
𝜆𝜕 ln(𝑍(𝜆, 𝜈))

𝜕𝜆
= 0.                                               (9) 

Equation (9) can also be expressed as 

                                                                 𝜇 − ∑
ℎ𝜆ℎ

𝑍(𝜆, 𝜈)(ℎ!)𝜈

∞

ℎ=0

= 0                                           (10) 

or 

                                                                        ∑(𝜇 − ℎ)
𝜆ℎ

(ℎ!)𝜈

∞

ℎ=0

= 0.                                          (11) 

Given values of 𝜇 and 𝜈 we can solve for the value of 𝜆 and if we have 𝜆 we can solve for 

𝜇 from any of the above equations. 

One of the useful application of the proposed parameterization is in the estimation of the 

parameters. Given a random sample 𝑦1, 𝑦2, … , 𝑦𝑛, it can be easily shown that the ML 

estimator of 𝜇 is the sample mean (see Appendix A), that is, 𝜇̂ = 𝑦̅ =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
. The sample 

mean is easy to calculate, so to obtain the estimate of 𝜆 one just needs to solve (9) with 𝜇 

replaced by the sample mean 𝜇̂ = 𝑦̅. Incidentally, the resulting 𝜆̂ is equivalent to the ML 

estimate of 𝜆 (see Appendix B for proof). 

Under the regression setting, this approach allows the modeling of 𝐸(𝑌𝑖) = 𝜇𝑖 as a function 

of covariates 𝑋𝑖 = [𝑋𝑖1𝑋𝑖2  . . . 𝑋𝑖𝑞] directly instead of through 𝜆. So, the linear predictor of 

the COM-Poisson generalized linear model using the approach proposed in this study is  

𝜇𝑖 = exp(𝑋𝑖
𝑇𝛽), 

where 𝛽 is the vector of regression coefficients. In this approach, interpretation of 𝛽 is 

straightforward just as in the case of Poisson regression whereas interpretation in the 

standard COM-Poisson model where 𝜆𝑖 = exp (𝑋𝑖
𝑇𝛽) as used by Sellers and Shmueli 

(2010) is more complex. The re-parameterization we are proposing is also better in terms 

of interpretation compared to the method proposed by Guikema and Coffelt (2008) where 

the relationship with covariates is modelled through 𝜃𝑖 = 𝜆𝑖
1 𝜈⁄

= exp (𝑋𝑖
𝑇𝛽) which only 

represents an approximation of the mean of the distribution. 
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2.1 Estimating 𝝂 

Estimating 𝜈 is equally an important task when using the COM-Poisson distribution to 

model count data. The loglikelihood of the model is given as  

𝑙 = ln[𝜆] ∑ 𝑦𝑖

𝑛

𝑖=1

− 𝜈 ∑ ln 𝑦𝑖!

𝑛

𝑖=1

− 𝑛 ln[𝑧(𝜆, 𝜈)]. 

Hence, we propose that 𝜈 be estimated as the solution to the following equation:  

                                                 
∑ ln(𝑦𝑖!)

𝑛
𝑖=1

𝑛
− ∑

ln(ℎ!) 𝑔(𝜇)ℎ

(ℎ!)𝜈𝑍(𝑔(𝜇), 𝜈)

∞

ℎ=0

= 0.                                (12) 

which is obtained by setting 
𝜕𝑙

𝜕𝜈
= 0. The resulting 𝜈̂ is the maximum likelihood (ML) 

estimator of 𝜈. Given a random sample 𝑦1, 𝑦2, … , 𝑦𝑛, 𝜇 is replaced with the sample mean 

𝑦̅. The values of 𝜆̂ and 𝜈̂ can be obtained simultaneously by solving both (9) and (12) 

iteratively. 

 

2.2 Solving the Equations 

Solutions to equation (9) or any of its equivalents do not exist in closed form expressions 

and there is need to adopt an iterative nonlinear equation solver. The most common 

methods for solving equations are the Newton’s method and the Quasi-Newton’s methods 

(Ortega and Rheinboldt 1970; Dennis and Schnabel 1983). Some modern methods 

(Bellavia and Morini, 2001; Brown and Saad, 1990; Brown and Saad, 1994; Kelley, 1995) 

use the Krylov subspace iterative solvers. For this work, we adopt more recent nonlinear 

equation solvers known as the spectral algorithms (La Cruz and Raydan, 2003; La Cruz et 

al, 2006; Varadhan and Gilbert, 2009). Brief details on the derivative-free spectral 

algorithm for solving nonlinear equations (DF-SANE) (La Cruz et al., 2006), which is one 

of the spectral methods, are given in the next section. 

3. Derivative-Free Spectral Algorithm for Solving Nonlinear Equations (DF-

SANE) 

In the previous section, we present a parameterization of the COM-Poisson distribution via 

the mean which will lead to solving nonlinear system of equations with no closed form 

solution. In this section we describe the derivative free spectral algorithm for solving 

nonlinear equations like (9) and (12) numerically. 

Consider a problem of solving the nonlinear system of equation 

                                                                               𝐹(𝑥) =  0,                                                        (13) 

where 𝐹: ℝ𝑝 → ℝ𝑝is a nonlinear function with continuous partial derivatives. Newton’s 

method iteratively improves a working linear approximation to F(x) around an estimate of 

the solution until convergence is achieved and a solution is obtained. The working equation 

at each iteration is given as 

𝑥𝑘+1 = 𝑥𝑘 −  𝐽(𝑥𝑘 )
−1 𝐹(𝑥𝑘 ), 

where 𝐽(𝑥𝑘 ) is the Jacobian of 𝐹 evaluated at 𝑥𝑘 . Usually, the Jacobian of 𝐹 is either 

unavailable or requires a very high amount of computing storage. Quasi-Newton methods 

replace 𝐽(𝑥𝑘 ) by suitable approximations but consequently solve a system of linear 

equation at each iteration which can be computationally expensive. 

The spectral algorithm for solving nonlinear equations (SANE) proposed by (La Cruz and 

Raydan, 2003) and its derivative-free version (DF-SANE) (La Cruz et al., 2006) are 

efficient algorithms for solving large-scale nonlinear systems of equations. The spectral 
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methods (La Cruz and Raydan, 2003; La Cruz et al, 2006), which are extensions of the 

Barzilai-Borwein method for finding local minimum (Barzilai and Borwein 1988; Raydan 

1997), use ±𝐹(𝑥) as search directions in a systematic way, with one of the spectral 

coefficients as steplength, and a non-monotone line search technique for global 

convergence. The algorithm which is robust for solving nonlinear systems is 

computationally cheap because of the simplicity of search direction and steplength. The 

spectral approach for solving (13) is defined by the following iteration: 

                                                   𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0, 1, 2, . . .                                (14) 

where 𝛼𝑘 is the spectral steplength, and 𝑑𝑘 is the search direction. In this work we adopt 

the DF-SANE for solving (9) and (12) since it is generally more economical than SANE in 

terms of number of evaluations of the objective function (Varadhan and Gilbert, 2009), and 

because it does not require the derivatives of equations (9) and (12), thereby, avoiding the 

error that would have been incurred as a result of truncating the infinite sums involved in 

the derivatives. For the derivative free spectral algorithm (DF-SANE), 𝑑𝑘 = −𝐹(𝑥𝑘 ) but 

several authors have suggested different methods of calculating the steplength 𝛼𝑘. In our 

numerical examples and applications, we use the steplength proposed by Barzilai and 

Borwein (1988) instead of the one used in the original implementation by La Cruz et al. 

(2006) because it was found to outperform other alternatives by Varadhan and Gilbert 

(2009). The steplength we used is defined as 

𝛼𝑘 =
𝑠𝑘−1

𝑇 𝑦𝑘−1

𝑦𝑘−1
𝑇 𝑦𝑘−1

, 

where 𝑠𝑘−1 = 𝑥𝑘 − 𝑥𝑘−1 , and 𝑦𝑘−1 = 𝐹(𝑥𝑘 ) − 𝐹(𝑥𝑘−1). 

Furthermore, following Varadhan and Gilbert (2009), we set 𝛼0 = min(1, 1 ‖𝐹(𝑥𝑘)‖⁄ ), 

where ‖∙‖ represents the Euclidian norm, whereas La Cruz et al (2006) used 𝛼0 = 1. More 

details on the DF-SANE algorithm are given in La Cruz et al (2006) and Varadhan and 

Gilbert (2009).The DF-SANE algorithm with the steplength setting described above is 

implemented by the dfsane function in package BB (Varadhan and Gilbert, 2009) in R 

(R Core Team, 2018). We take advantage of this implementation of the robust DF-SANE 

to solve equations (9) and (12) which are classical cases of (13). 

4. Applications 

The proposed method was implemented in R using the implementation of DF-SANE in the 

R package BB (Varadhan and Gilbert, 2009) to solve the required nonlinear equations. In 

this section we show the usefulness of our approach in describing the relationship between 

𝜆 and the mean 𝜇. We also used the implementation of our proposal to fit COM-Poisson 

distributions to real life datasets. 

As pointed out earlier, one of the usefulness of our approach is that given values of 𝜇 and 

𝜈 we can obtain corresponding values of 𝜆 which makes COM-Poisson regression via the 

mean of the distribution possible. Table 1 gives values of 𝜆 for selected values of 𝜇 and 𝜈 

using our proposed technique. Our formulation also allows us to easily see the relationship 

between 𝜇 and 𝜆. Figure 1 shows the relationship between 𝜇 and 𝜆 for 𝜈 = 0.2 

(overdispersion) while Figure 2 represents the relationship between 𝜇 and 𝜆 for 𝜈 = 10 

(underdispersion). The plots reveal that 𝜇 and 𝜆 are directly proportional regardless of the 

type of dispersion. For 𝜈 = 0.2, the plot begins with a steep climb but stretches more and 

more horizontally as 𝜇 increases suggesting that the relationship between 𝜇 and 𝜆 is 
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logarithmic. In the case of 𝜈 = 10, the plot suggests that the relationship between 𝜇 and 𝜆 

is exponential with the value of 𝜆 increasing faster as 𝜇 increases. 

Table 1: Values of 𝜆 for some values of 𝜇 and 𝜈 

𝝂 
𝝁 

𝟎. 𝟖 𝟏 𝟓 𝟏𝟎 𝟏𝟓 𝟐𝟎 𝟐𝟓 𝟑𝟎 

𝟎 0.444 0.500 0.833 0.909 0.938 0.952 0.962 0.968 

𝟎. 𝟎𝟓 0.169 0.292 0.386 0.461 0.522 0.923 1.039 1.091 

𝟎. 𝟐 0.175 0.311 0.421 0.512 0.59 1.233 1.508 1.667 

𝟎. 𝟒 0.583 0.686 1.769 2.431 2.892 3.263 3.579 3.858 

𝟎. 𝟔 0.653 0.784 2.511 3.898 5.008 5.973 6.843 7.644 

𝟎. 𝟖 0.725 0.889 3.547 6.245 8.668 10.93 13.08 15.144 

𝟏 0.800 1.000 5.000 10.000 15.000 20.000 25.000 30.000 

𝟐 1.208 1.670 27.632 105.128 232.627 410.127 637.626 915.126 

𝟓 2.653 5.531 4624.298 121894.6 866910.9 3534773 10575581 25969436 

𝟏𝟎 9.201 31.983 23447358 1.55 × 1010 7.75 × 1011 1.28 × 1013 1.14 × 1014 6.85 × 1014 

𝟏𝟓 34.495 181.016 1.19 × 1011 1.98 × 1015 6.93 × 1017 4.63 × 1019 1.23 × 1021 1.81 × 1022 

𝟐𝟎 128.693 1023.992 5.86 × 1014 2.53 × 1020 6.20 × 1023 1.68 × 1026 1.33 × 1028 4.77 × 1029 

 

 

 
Figure 1: Plot of 𝜇 against 𝜆 for 𝜈 = 0.2 
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Figure 2: Plot of 𝜇 against 𝜆 for 𝜈 = 10 

 

4.1 Application in fitting COM-Poisson Models to Real Life Datasets 

To demonstrate the application of the proposed parameterization in fitting COM-Poisson 

models, we employ four datasets. The first dataset comes from a study that seeks to 

determine the prevalence of helminths in vegetables sold at the markets of Lokoja, Kogi 

state, Nigeria. A total of 48 vegetable samples were obtained from the markets over a 

period of 8 weeks. The second dataset consists of quarterly sales of a well-known brand of 

a particular article of clothing at stores of a large national retailer used in the paper by 

Shmueli et al. (2005). The third dataset from Rutherford and Geiger (1910) represent the 

2612 counts of number of alpha particles emitted from a source in a given time interval. 

The fourth dataset consists of numbers of dicentrics per cell for a dose of 1200 radiation in 

130 cells from a study by Janardan and Schaffer (1977). 

We fitted COM-Poisson models to these datasets using the proposed technique described 

earlier in sections 2 and 3. The results as well as computational time using a PC with 

Quadcore 2.4GHz processor and 4 Gigabyte RAM are given in Table 2. 

 

Table 2: Estimates of parameters of the COM-Poisson models for the real life datasets, 

corresponding goodness of fit test results and computation time 

 Helminth Sales Alpha Particles Dicentrics 

𝝁̂ 1.6458 3.5597 3.8767 4.6538 

𝝀̂ 1.1216 0.9748 4.1470 21.9481 
𝝂̂ 0.5664 0.1281 1.0452 1.9426 

𝝌𝟐 

(p value) 

16.312 

(0.017) 
19.172  

(0.6337) 
9.902 

(0.6872) 
11.582 

(0.2204) 

Computation time (sec.) 1.44 34.5 7.15 1.54 

 

The Helminth data and sales data with means 1.6458 and 3.5597 and variances 2.0633 and 

11.3138 respectively are overdispersed. The corresponding estimates of 𝜈 clearly indicate 

the overdispersion in the datasets. The Alpha particles data are almost equidispersed with 

variance (3.6960) slightly less than the mean (3.8767). The Dicentrics data with variance 
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2.4451 and mean 4.6538 are underdispersed as also indicated by the value of 𝜈̂ (1.9426). 

The chi-square and p values resulting from goodness of fit tests indicate that the COM-

Poisson distribution fits these data well except for the Helminth data which is characterized 

by a relatively low p value. The results in Table 2 also show that our implementation is 

quite fast with computations taking few seconds to complete. Our proposal provides an 

avenue to express the fitted COM-Poisson model in terms of just the sample mean and the 

estimated dispersion parameter 𝜈̂. For example, the fitted COM-Poisson probability model 

for the Sales data is given as 

𝑃(𝑦𝑖;  3.6,0.13) =
[𝑔(3.6)]𝑦𝑖

(𝑦𝑖!)0.13𝑍(𝑔(3.6), 0.13)
. 

5. Conclusion 

The COM-Poisson distribution is well known for its flexibility and robustness in the 

modelling of dispersed count data. In this paper, we have shown and demonstrated how the 

COM-Poisson distribution can be parameterized through the mean. One major advantage 

of this approach is that it allows resulting models to be interpretable easily just like other 

popular competing distributions like the Poisson and Negative Binomial distribution. The 

resulting re-parameterized distribution retains all the key properties of the standard COM-

Poisson distributions. We adopt the derivative-free spectral algorithm (DF-SANE) for 

solving the nonlinear equations involved in the parameterization and implemented our 

approach in R. In addition, we used the implementation of DF-SANE in package BB in R 

in our implementation. 

We used the proposed approach to obtain values of the location parameter in the standard 

COM-Poisson distribution given various values of the mean and dispersion parameter of 

the distribution. We further used the approach to fit the COM-Poisson distribution to four 

real life datasets. We observe that our implementation is quite fast for fitting COM-Poisson 

distributions to sample data. 

Extending this approach to the regression setting is not covered in this paper. Huang (2017) 

used a similar idea to demonstrate how the COM-Poisson regression can be done via the 

mean although the method of solving the nonlinear equations involved was not mentioned. 

Future work could consider fitting COM-Poisson regression models parameterized via the 

mean using spectral algorithms for solving the nonlinear equations involved. This will 

facilitate comparing COM-Poisson regression coefficients with those of the Poisson and 

Negative binomial regressions directly. 
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Appendix A: Proof that given sample 𝑦1, 𝑦2, … , 𝑦𝑛, the maximum likelihood estimator of 

𝜇 is given as  

𝜇̂ = 𝑦̅ =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
. 

The loglikelihood given sample data 𝑦1, 𝑦2, … , 𝑦𝑛 is given as 

𝑙 = ln [∏
[𝑔(𝜇)]𝑦𝑖

(𝑦𝑖!)𝜈𝑧(𝑔(𝜇), 𝜈)

𝑛

𝑖=1

]                                      

       = ln[𝑔(𝜇)] ∑ 𝑦𝑖

𝑛

𝑖=1

− 𝜈 ∑ ln 𝑦𝑖!

𝑛

𝑖=1

− 𝑛 ln[𝑧(𝑔(𝜇), 𝜈)]. 

Differentiating the loglikelihood 𝑙 with respect to 𝜇 gives 

𝜕𝑙

𝜕𝜇
= (

𝑔′(𝜇)

𝑔(𝜇)
∑ 𝑦𝑖

𝑛

𝑖=1

) − 𝑛
𝜕 ln[𝑧(𝑔(𝜇), 𝜈)]

𝜕𝜇
. 

Setting 
𝜕𝑙

𝜕𝜇
= 0 and solving for 𝜇 gives 

            
𝑔(𝜇)𝜕 ln[𝑧(𝑔(𝜇), 𝜈)]

𝑔′(𝜇)𝜕𝜇
=

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
.             (∗) 

Note that 𝑔′(𝜇) =
𝑔(𝜇)

𝜕𝜇
, so (∗) becomes 

𝑔(𝜇)𝜕 ln[𝑧(𝑔(𝜇), 𝜈)]

𝑔(𝜇)
=

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
. 

Recall that 𝑔(𝜇) = 𝜆, so we have 
𝜆𝜕 ln[𝑧(𝜆, 𝜈)]

𝜆
=

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
. 

But 𝜇 =
𝜆𝜕 ln[𝑧(𝜆,𝜈)]

𝜆
, so the maximum likelihood estimate of 𝜇 is  

𝜇̂ =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
= 𝑦̅. 

Appendix B: Proof that solving (9) with 𝜇 replaced by 𝜇̂ for 𝜆 yields the ML estimate of 

𝜆̂. 

The loglikelihood given sample data 𝑦1, 𝑦2, … , 𝑦𝑛 is given as 

𝑙 = ln[𝜆] ∑ 𝑦𝑖

𝑛

𝑖=1

− 𝜈 ∑ ln 𝑦𝑖!

𝑛

𝑖=1

− 𝑛 ln[𝑧(𝜆, 𝜈)] 

Differentiating the loglikelihood 𝑙 with respect to 𝜆 gives 

𝜕𝑙

𝜕𝜆
= (

∑ 𝑦𝑖
𝑛
𝑖=1

𝜆
) − 𝑛

𝜕 ln[𝑧(𝜆, 𝜈)]

𝜕𝜆
 

Setting 
𝜕𝑙

𝜕𝜆
= 0 and solving for 𝜆 gives 

𝜆𝜕 ln[𝑧(𝜆, 𝜈)]

𝜕𝜆
=

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
.               (∗∗) 

But 𝜇̂ =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
, so (∗∗) becomes 

𝜇̂ −
𝜆𝜕 ln[𝑧(𝜆, 𝜈)]

𝜕𝜆
= 0.                    (∗∗∗) 

Solving (∗∗∗) for 𝜆 yields the ML estimate of 𝜆 and is the same as (9) with 𝜇 replaced by 

𝜇̂. 


