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Abstract 

 

In this paper, we develop a new lifetime model and study some of its properties. The major justification for 

the practicality of theis model is based on the wider use of the Lomax model. We are also motivated to 

introduce the novel model since its density exhibits various important shapes such as the unimodal, right 

skewed and left skewed. The new model can be represented as a mixture of the exponentiated Lomax 

distribution. It can also be considered as a suitable model for fitting the symmetric, left skewed, right 

skewed and unimodal data. The maximum likelihood estimation method is used to estimate the model 

parameters. We show empirically the importance and flexibility of the novel model in modeling two types 

of aircraft windshield lifetime data sets. The proposed lifetime model is better fit than gamma Lomax, beta 

Lomax, exponentiated Lomax and Lomax models so the exponentiated Lomax, model is a good alternative 

to these models in modeling aircraft windshield data. 

 

Keywords: Lomax model; Order Statistics; Maximum Likelihood Estimation; Quantile 

function; Simulation; Generating Function; Moments.  

 

 

1.  Introduction 

 

A random variable (rv) � has the exponentiated Lx (ELx) distribution with three 

parameters � (power parameter), � and � if it has cumulative distribution function (CDF) 

(for � > 0) given by 

Π
,�,�
�� = �1 − 
���� + 1����


.                                 (1) 

Where � > 0, � > 0 and � > 0 are the shape and scale parameters, respectively. Then 

the corresponding PDF of (1) is 

�
,�,�
�� = �����
���� + 1��
�����1 − 
���� + 1����

��

,                      (2) 

when � = 1 we get the Lomax (Lx) or the Pareto type II model with  

 ��,�
�� = 1 − 
���� + 1���, 
and 

 ��,�
�� = ����
���� + 1��
����. 
The Lx model was originally pioneered for modeling business failure data by Lomax 

(1954). The Lx distribution has found a wide application in many fields such as 

biological sciences, ctuarial science, engineering, size of cities, income and wealth 

inequality, amedical and reliability modeling. It has been applied to model data obtained 

from income and wealth by Harris (1968) and Atkinson and Harrison (1978), firm size by 

Corbellini et al. (2007), reliability and life testing by Hassan Al-Ghamdi (2009), for 

modeling gauge lengths data by Afify et al. (2015), for modeling bladder cancer patients 

data and remission times data by Yousof et al. (2016), Yousof et al. (2018) and Yousof et 

al. (2019) for some new properties. The Lx  distribution has been also used by Adel 

Rastkhiz et al. (2019) for modelling entrepreneurial opportunities. Some new useful Lx 

extensions are recentely developd by Elsayed and Yousof (2019) and Gad et al. (2019). 
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Following Yousof et al. (2016), the CDF of the Burr X generator (BrX-G) is  

𝐹𝜃,𝛗(𝑥) = 2𝜃∫

𝐺𝛗(𝑥)

𝐺𝛗(𝑥)

0

𝑡 exp(−𝑡  
2
)[1 − exp(−𝑡2)]𝜃−1𝑑𝑡 

                     = {1 − exp [−(
𝐺𝛗(𝑥)

𝐺𝛗(𝑥)
)
2

]}

𝜃

. (3) 

The PDF of the BrX-G is given by  

𝑓𝜃,𝛗(𝑥) =
2𝜃𝑔𝛗(𝑥)𝐺𝛗(𝑥) 

𝐺𝛗(𝑥)3
{1 − exp [−(

𝐺𝛗(𝑥)

𝐺𝛗(𝑥)
)
2

]}

𝜃−1

exp [−(
𝐺𝛗(𝑥)

𝐺𝛗(𝑥)
)
2

], (4) 

where 𝜃 is the shape parameter, 𝑔𝛗(𝑥) and 𝐺𝛗(𝑥) denote the density and cumulative 

functions of the baseline model with parameter vector 𝛗 and 𝐺𝛗(𝑥) = 1 − 𝐺𝛗(𝑥). 

Inserting (1) in to (3), we get the the CDF of the Burr X ELx (BrXELx) as 

      𝐹𝜃,𝛼,𝜆,𝛽(𝑥) = [1 − exp(− {
[1−(𝑥𝛽−1+1)

−𝜆
]
𝛼

1−[1−(𝑥𝛽−1+1)−𝜆]
𝛼}

2

)]

𝜃

. (5) 

The PDF of the BrXELx is given by 

𝑓𝜃,𝛼,𝜆,𝛽(𝑥) = 2𝜃𝛼𝜆𝛽
−1(𝑥𝛽−1 + 1)−(1+𝜆)

[1 − (𝑥𝛽−1 + 1)−𝜆]
2𝛼−1

{1 − [1 − (𝑥𝛽−1 + 1)−𝜆]𝛼}3
 

× exp(− {
[1 − (𝑥𝛽−1 + 1)−𝜆]

𝛼

1 − [1 − (𝑥𝛽−1 + 1)−𝜆]𝛼
}

2

) 

                      × [1 − exp(− {
[1−(𝑥𝛽−1+1)

−𝜆
]
𝛼

1−[1−(𝑥𝛽−1+1)−𝜆]
𝛼}

2

)]

𝜃−1

, (6) 

when 𝛼 = 1 we get BrXLx and when when 𝛼 = 𝜃 = 1 we get a new two parametetrs 

BrXLx. A rv 𝑋 has the BrXELx distribution if it has the CDF and PDF as (5) and (6). 

The reliability function (RF) (𝑅(𝑥)), hazard rate function (HRF) (ℎ(𝑥)), reversed hazard 

rate function (RHRF) (𝑟(𝑥)) and cumulative hazard rate function (CHRF) (𝐻(𝑥)) of 𝑋 

are given, respectively, by 

𝑅𝜃,𝛼,𝜆,𝛽(𝑥) = 1 − [1 − exp(− {
[1 − (𝑥𝛽−1 + 1)−𝜆]

𝛼

1 − [1 − (𝑥𝛽−1 + 1)−𝜆]𝛼
}

2

)]

𝜃

, 

 

ℎ𝜃,𝛼,𝜆,𝛽(𝑥) = 2𝜃𝛼𝜆𝛽
−1
(𝑥𝛽−1 + 1)−(1+𝜆)[1 − (𝑥𝛽−1 + 1)−𝜆]

2𝛼−1

{1 − [1 − (𝑥𝛽−1 + 1)−𝜆]𝛼}3
 

×

exp(− {
[1−(𝑥𝛽−1+1)

−𝜆
]
𝛼

1−[1−(𝑥𝛽−1+1)−𝜆]
𝛼}

2

)

[1 − exp(− {[
[1−(𝑥𝛽−1+1)−𝜆]

𝛼

1−[1−(𝑥𝛽−1+1)−𝜆]
𝛼]}

2

)]

−(𝜃−1)
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 × {1 − [1 − exp(− {
[1−(𝑥𝛽−1+1)

−𝜆
]
𝛼

1−[1−(𝑥𝛽−1+1)−𝜆]
𝛼}

2

)]

𝜃

}

−1

, 

 

𝑟𝜃,𝛼,𝜆,𝛽(𝑥) = 2𝜃𝛼𝜆𝛽
−1(𝑥𝛽−1 + 1)−(1+𝜆)

[1 − (𝑥𝛽−1 + 1)−𝜆]
2𝛼−1

{1 − [1 − (𝑥𝛽−1 + 1)−𝜆]𝛼}3
 

×

exp(− {
[1−(𝑥𝛽−1+1)

−𝜆
]
𝛼

1−[1−(𝑥𝛽−1+1)−𝜆]
𝛼}

2

)

[1 − exp(− {
[1−(𝑥𝛽−1+1)−𝜆]

𝛼

1−[1−(𝑥𝛽−1+1)−𝜆]
𝛼}
2

)]

−1 

and 

𝐻𝜃,𝛼,𝜆,𝛽(𝑥) = −log{1 − [1 − exp(− {
[1 − (𝑥𝛽−1 + 1)−𝜆]

𝛼

1 − [1 − (𝑥𝛽−1 + 1)−𝜆]𝛼
}

2

)]

𝜃

}. 

 

 

2.  Linear representation and justification 

 

Consider the power series holds  

         (1 − 𝑠)𝜁−1 = ∑
𝜏=0

∞ (−𝑠)𝜏 Γ(𝜁)

𝜏! Γ(𝜁−𝜏)
|(|𝑠|<1and𝜁>0isarealnon−integer).            (7) 

 

Applying (7) to the last term in (6) gives 

𝑓𝜃,𝛼,𝜆,𝛽(𝑥) =  2𝜃𝛼𝜆𝛽
−1∑

𝑖=0

∞
(−1)𝑖 Γ(𝜃)

𝑖!  Γ(𝜃 − 𝑖)
 

×
(𝑥𝛽−1 + 1)−(1+𝜆)[1 − (𝑥𝛽−1 + 1)−𝜆]

2𝛼−1

{1 − [1 − (𝑥𝛽−1 + 1)−𝜆]𝛼}3
 

                   × exp(−(1 + 𝑖) {
[1−(𝑥𝛽−1+1)

−𝜆
]
𝛼

1−[1−(𝑥𝛽−1+1)−𝜆]
𝛼}

2

)

⏟                      

𝐴

.                                     (8) 

Applying the power series to the term 𝐴 , Equation (8) becomes 

𝑓𝜃,𝛼,𝜆,𝛽(𝑥) =  2𝜃 ∑
𝑖,𝑗=0

∞ (−1)𝑖+𝑗 (𝑖+1)𝑗Γ(𝜃)

𝑖! 𝑗!Γ(𝜃−𝑖)
 
{[1−(𝑥𝛽−1+1)

−𝜆
]
𝛼

}

2𝑗+1

{1−[1−(𝑥𝛽−1+1)−𝜆]
𝛼
}
2𝑗+3

⏟                    

𝐵

.                   (9) 

Consider the series expansion  

(1 − 𝑠)−𝜙 = ∑
𝑘=0

∞
𝑠𝑘Γ(𝜙+𝑘)

𝑘!Γ(𝜙)
|(|𝑠|<1,𝜙>0).                                      (10) 

Applying the expansion in (10) to (9) for the term 𝐵, Equation (9) becomes 
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 𝑓𝜃,𝛼,𝜆,𝛽(𝑥) = ∑
𝑗,𝑘=0

∞

𝜐𝑗,𝑘𝜋[1+(1+𝑘+2𝑗)𝛼],𝜆,𝛽(𝑥),                      (11) 

where 

𝜐𝑗,𝑘 = 
2𝜃(−1)𝑗Γ(𝜃)Γ(2𝑗 + 𝑘 + 3)

𝑗! 𝑘! Γ(2𝑗 + 3)[1 + (1 + 𝑘 + 2𝑗)𝛼]
∑

𝑖=0

∞
(−1)𝑖 (𝑖 + 1)𝑗

𝑖!  Γ(𝜃 − 𝑖)
 

and  

𝜋[1+(1+𝑘+2𝑗)𝛼],𝜆,𝛽(𝑥) = [1 + (1 + 𝑘 + 2𝑗)𝛼] 

× [1 − (𝑥𝛽−1 + 1)−𝜆]
(2𝑗+𝑘+1)𝛼

⏟                  

Π[(1+𝑘+2𝑗)𝛼],𝜆,𝛽(𝑥)

 

× 𝛼𝜆𝛽−1(𝑥𝛽−1 + 1)−(1+𝜆)[1 − (𝑥𝛽−1 + 1)−𝜆]
𝛼−1

⏟                              

𝜋𝛼,𝜆,𝛽(𝑥)

. 

Equation (9) reveals that the density of 𝑋 can be expressed as a linear mixture of ELx 

densities. So, several mathematical properties of the new moel can be obtained by 

knowing those of the ELx distribution. Similarly, the cdf of the BrXELx model can also 

be expressed as a mixture of ELx cdfs given by 

 𝐹𝜃,𝛼,𝜆,𝛽(𝑥) = ∑
𝑗,𝑘=0

∞

𝜐𝑗,𝑘Π[1+(1+𝑘+2𝑗)𝛼],𝜆,𝛽(𝑥)                      (12) 

where Π[1+(1+𝑘+2𝑗)𝛼],𝜆,𝛽(𝑥) is the cdf of the ELx model with power parameter [1 +

(1 + 𝑘 + 2𝑗)𝛼]. 
  

The major justification for the practicality of the new BrXELx model is based on the 

wider use of the Lx model. We are also motivated to introduce the BrXELx model since 

its density exhibits various important shapes such as the unimodal, the right skewed and 

the left skewed (see figure 1). The new model can be viewed as a mixture of the 

exponentiated Lomax distributions (see Subsection 2.1). It can also be considered as a 

suitable model for fitting the symmetric, left skewed, right skewed, and unimodal data 

sets (see aplications Section). The maximum likelihood estimation method is used to 

estimate the BrXELx parameters. We show empirically the importance and flexibility of 

the new Lx model in modeling two types of aircraft windshield lifetime data sets. The 

BrXELx model is better fit than some other competitive models so the BrXELx model is 

a good alternative to in modeling failure and service times data. 
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 Figure 1: Plots of the BrXELx PDF. 
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Figure 2: Plots of the BrXELx HRF. 

  

  

3.  Mathematical and statistical properties 

3.1  Moments and generating function 

 

The 𝑟𝑡ℎ ordinary moment of 𝑋 is given by 

𝜇𝑟
′ = 𝐄𝑋𝑟 = ∫

∞

−∞

 𝑥𝑟  𝑓(𝑥)𝑑𝑥. 

Then we obtain  

𝜇𝑟
′ = ∑

𝑗,𝑘=0

∞

∑

𝑟

𝑤=0

𝜐𝑗,𝑘𝛽
𝑟(−1)𝑤

[1 + (1 + 𝑘 + 2𝑗)𝛼]−1
(
𝑟
𝑤
)𝐁 ([1 + (1 + 𝑘 + 2𝑗)𝛼], 1 +

𝑤 − 𝑟

𝜆
) |(𝜆>𝑟), 

where  

𝐁(𝑎1; 𝑎2) = ∫
1

0

𝑧𝑎1−1(1 − 𝑧)𝑎2−1𝑑𝑧, 

is the complete beta function. Setting 𝑟 = 1 in 𝜇𝑟
′ , we have the mean of 𝑋  

𝐄𝑋 = 𝜇1
′ = ∑

𝑗,𝑘=0

∞

∑

1

𝑤=0

𝜐𝑗,𝑘𝛽(−1)
𝑤

[1 + (1 + 𝑘 + 2𝑗)𝛼]−1
(
1
𝑤
) 

× 𝐁([1 + (1 + 𝑘 + 2𝑗)𝛼], 1 +
𝑤 − 1

𝜆
) |(𝜆>1). 

Setting 𝑟 = 2.3 and 4 in (13), we have the 2 𝑛𝑑, 3 𝑟𝑑 and the 4 𝑡ℎ moments about the 

origin 

𝐄𝑋2 = 𝜇2
′ = ∑

𝑗,𝑘=0

∞

∑

2

𝑤=0

𝜐𝑗,𝑘𝛽
2(−1)𝑤

[1 + (1 + 𝑘 + 2𝑗)𝛼]−1
(
2
𝑤
)

× 𝐁([1 + (1 + 𝑘 + 2𝑗)𝛼], 1 +
𝑤 − 2

𝜆
) |(𝜆>2), 
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𝐄𝑋3 = 𝜇3
′ = ∑

𝑗,𝑘=0

∞

∑

3

𝑤=0

𝜐𝑗,𝑘𝛽
3(−1)𝑤

[1 + (1 + 𝑘 + 2𝑗)𝛼]−1
(
3
𝑤
)

× 𝐁([1 + (1 + 𝑘 + 2𝑗)𝛼], 1 +
𝑤 − 3

𝜆
) |(𝜆>3), 

and 

𝐄𝑋4 = 𝜇4
′ = ∑

𝑗,𝑘=0

∞

∑

4

𝑤=0

𝜐𝑗,𝑘𝛽
4(−1)𝑤

[1 + (1 + 𝑘 + 2𝑗)𝛼]−1
(
4
𝑤
)

× 𝐁([1 + (1 + 𝑘 + 2𝑗)𝛼], 1 +
𝑤 − 4

𝜆
) |(𝜆>4), 

which can be used to obtain the central moments. The moment generating function 

(MGF) 𝑀𝑋(𝑡) = 𝐄(𝑒
𝑡 𝑋) of 𝑋. Clearly, the first one can be derived from equation (10) as  

𝑀𝑋(𝑡) = ∑

𝑗,𝑘=0

∞

∑

𝑟

𝑤=0

𝜐𝑗,𝑘𝑡
𝑟𝛽𝑟(−1)𝑤

[1 + (1 + 𝑘 + 2𝑗)𝛼]𝑟!
(
𝑟
𝑤
) 

× 𝐁([1 + (1 + 𝑘 + 2𝑗)𝛼], 1 +
𝑤 − 𝑟

𝜆
) |(𝜆>𝑟), 

 

3.2  Incomplete moments and mean deviations 

 

The 𝑠𝑡ℎ incomplete moment, say 𝐈𝑠(𝑡), of 𝑋 can be expressed from (10) as  

 𝐈𝑠(𝑡) = ∫
𝑡

−∞
𝑥𝑠𝑓(𝑥)𝑑𝑥 

= ∑

𝑗,𝑘=0

∞

 ∑

𝑠

𝑤=0

𝜐𝑗,𝑘 𝛽
𝑠(−1)𝑤

[1 + (1 + 𝑘 + 2𝑗)𝛼]−1
(
𝑠
𝑤
) 

× 𝐁𝑡 ([1 + (1 + 𝑘 + 2𝑗)𝛼], 1 +
𝑤 − 𝑠

𝜆
) |(𝜆>𝑠), 

where 

𝐁𝑦(𝑎1; 𝑎2) = ∫
𝑦

0

𝑧𝑎1−1(1 − 𝑧)𝑎2−1𝑑𝑧, 

is the incomplete beta function. The mean deviations about the mean  

𝐌𝐃(𝐄𝑋) = 𝐄(|𝑋 − 𝐄(𝑋)|) = 2𝐄𝑋𝐹(𝐄𝑋) − 2𝐈1𝐄𝑋, 

and about the median 

𝐌𝐃(𝑀𝑒𝑑𝑖𝑎𝑛(𝑋)) = 𝐄(|𝑋 −𝑀𝑒𝑑𝑖𝑎𝑛(𝑋)|) = 𝐄𝑋 − 2𝐈1(𝑀𝑒𝑑𝑖𝑎𝑛(𝑋)), 

where 𝐹(𝐄𝑋) is easily calculated from (5) and 𝐼1(𝑡) is the first incomplete moment given 

by 𝐈𝑠(𝑡) with 𝑠 = 1. Now, we provide two ways to determine 𝑀𝐷(𝐄𝑋) and 

𝑀𝐷(𝑀𝑒𝑑𝑖𝑎𝑛(𝑋)). The 𝐈1(𝑡) can be derived from (14) as  

𝐈1(𝑡) = ∑

𝑗,𝑘=0

∞

 ∑

𝑠

𝑤=0

𝜐𝑗,𝑘𝛽(−1)
𝑤

[1 + (1 + 𝑘 + 2𝑗)𝛼]−1
(
1
𝑤
) 

× 𝐁𝑡 ([1 + (1 + 𝑘 + 2𝑗)𝛼], 1 +
𝑤 − 1

𝜆
) |(𝜆>1). 
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3.3  Probability weighted moments 

The probability weighted moment (PWMs) are expectations of certain functions of a 

random variable and they can be defined for any random variable whose ordinary 

moments exist. The PWM method can generally be used for estimating parameters of a 

distribution whose inverse form cannot be expressed explicitly. 

 

 The (𝑠, 𝑟)𝑡ℎ PWM of 𝑋 following the BrXELx model, say 𝜌𝑠,𝑟, is formally 

defined by 

 

𝜌𝑠,𝑟 = 𝐄{𝑋
𝑠 𝐹𝜃,𝜆,𝛽(𝑥)

𝑟} = ∫
∞

−∞

𝑥𝑠  𝐹𝜃,𝛼,𝜆,𝛽(𝑥)
𝑟 𝑓𝜃,𝜆,𝛽(𝑥) 𝑑𝑥. 

Using (5), (6) we can write  

𝐹𝜃,𝛼,𝜆,𝛽(𝑥)
𝑟 𝑓𝜃,𝛼,𝜆,𝛽(𝑥) = ∑

∞

𝑗,𝑘=0

𝑤𝑗,𝑘𝜋[1+(1+𝑘+2𝑗)𝛼],𝜆,𝛽(𝑥), 

where 

𝑤𝑗,𝑘 =
2𝜃(−1)𝑗Γ(2𝑗 + 𝑘 + 3)

𝑗! 𝑘! Γ(2𝑗 + 3)[1 + (1 + 𝑘 + 2𝑗)𝛼]
∑

∞

𝑖=0

(−1)𝑖(𝑖 + 1)𝑗 (𝜃
(𝑟 + 1) − 1
𝑖

). 

Then, the (𝑠, 𝑟)𝑡ℎ PWM of 𝑋 can be expressed as  

𝜌𝑠,𝑟 = ∑

∞

𝑗,𝑘=0

∑

𝑠

𝑤=0

𝑤𝑗,𝑘𝛽
𝑠(−1)𝑤

[1 + (1 + 𝑘 + 2𝑗)𝛼]−1
(
𝑠
𝑤
) 

× 𝐁([1 + (1 + 𝑘 + 2𝑗)𝛼], 1 +
𝑤 − 𝑠

𝜆
) |(𝜆>𝑠). 

 

 

3.4  Moments of the reversed residual life 

The 𝑛𝑡ℎ moment of the reversed residual life, say  

𝑀𝑛(𝑡) = 𝐄[(𝑡 − 𝑋)
𝑛]|(𝑋≤𝑡,𝑡>0,𝑛=1,2,… ) 

uniquely determines 𝐹𝜃,𝜆,𝛽(𝑥). We obtain  

𝑀𝑛(𝑡) =
1

𝐹𝜃,𝜆,𝛽(𝑥)
∫
𝑡

0

(𝑡 − 𝑥)𝑛𝑑𝐹𝜃,𝛼,𝜆,𝛽(𝑥). 

Then, the 𝑛𝑡ℎ moment of the reversed residual life of 𝑋 becomes 

 

𝑀𝑛(𝑡) = 𝐹𝜃,𝛼,𝜆,𝛽(𝑥)
−1 ∑

𝑗,𝑘=0

∞

∑

𝑛

𝑟=0

∑

𝑛

𝑤=0

𝜐𝑗,𝑘,𝑟,𝑤 

× 𝐁𝑡 ([1 + (1 + 𝑘 + 2𝑗)𝛼], 1 +
𝑤 − 𝑛

𝜆
) |(𝜆>𝑛). 

where 

𝜐𝑗,𝑘,𝑟,𝑤 = 𝜐𝑗,𝑘(−1)
𝑟+𝑤𝑡𝑛−𝑟[1 + (1 + 𝑘 + 2𝑗)𝛼]𝛽𝑛 (

𝑛
𝑟
) (
𝑛
𝑤
). 

The mean inactivity time (MIT) or mean waiting time (MWT) also called the mean 

reversed residual life function, is given by  

 𝑀1(𝑡) = 𝐄[(𝑡 − 𝑋)]|𝑋≤𝑡, 
and it represents the waiting time elapsed since the failure of an item on condition that 
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this failure had occurred in (0, 𝑡).The MIT of the BrXELx distribution can be obtained 

easily by setting 𝑛 = 1 in the above equation. Then, the 𝑛𝑡ℎ moment of the residual life 

of X comes from the 𝑀𝑛(𝑡)equation by changing 𝐹𝜃,𝜆,𝛽(𝑥) by 1 − 𝐹𝜃,𝜆,𝛽(𝑥). 

 

3.5  Order statistics 

Order statistics make their appearance in many areas of statistical theory and practice. Let 

𝑋1, … , 𝑋𝑛 be a random sample from the BrXELx distribution and let 𝑋1:𝑛, … , 𝑋𝑛:𝑛 be the 

corresponding order statistics. The PDF of 𝑖𝑡ℎ order statistic, say 𝑋𝑖:𝑛, can be written as  

𝑓𝜃,𝜆,𝛽
(𝑖:𝑛)(𝑥) =

𝑓𝜃,𝜆,𝛽(𝑥)

B(𝑖, 𝑛 − 𝑖 + 1)
 ∑

𝑛−𝑖

𝑗=0

 (−1)𝑗  (
𝑛 − 𝑖
𝑗

) 𝐹𝜃,𝜆,𝛽(𝑥)
𝑗+𝑖−1, 

where 𝐵(⋅,⋅) is the beta function. Using (5), (6) and 𝑓𝜃,𝜆,𝛽
(𝑖:𝑛)(𝑥) we get 

 

𝑓𝜃,𝜆,𝛽(𝑥)𝐹𝜃,𝜆,𝛽(𝑥)
𝑗+𝑖−1 = ∑

∞

𝑤,𝑘=0

𝑡𝑤,𝑘𝜋[1+(1+𝑘+2𝑤)𝛼],𝜆,𝛽(𝑥), 

where 

𝑡𝑤,𝑘 =
2𝜃(−1)𝑤Γ(2𝑤 + 𝑘 + 3)

𝑤! 𝑘! Γ(2𝑤 + 3)[1 + (1 + 𝑘 + 2𝑤)𝛼]
∑

∞

𝑚=0

(−1)𝑚(𝑚 + 1)𝑤 (𝜃
(𝑗 + 𝑖) − 1
𝑚

). 

The PDF of 𝑋𝑖:𝑛 can be expressed as  

𝑓𝜃,𝜆,𝛽
(𝑖:𝑛)(𝑥) = ∑

∞

𝑤,𝑘=0

∑

𝑛−𝑖

𝑗=0

 
(−1)𝑗  (

𝑛 − 𝑖
𝑗

) 𝑡𝑤,𝑘

B(𝑖, 𝑛 − 𝑖 + 1)
𝜋[1+(1+𝑘+2𝑤)𝛼],𝜆,𝛽(𝑥). 

Then, the density function of the BrXELx order statistics is a mixture of ELx. Based on 

the last equation, we note that the properties of 𝑋𝑖:𝑛 follow from those properties of 

𝑌2𝑤+𝑘+2. For example, the moments of 𝑋𝑖:𝑛 can be expressed as 

𝐄(𝑋𝑖:𝑛
𝑞 ) = ∑

∞

𝑤,𝑘=0

∑

𝑛−𝑖

𝑗=0

∑

𝑞

𝑚=0

 𝑡𝑤,𝑘,𝑗,𝑚𝛽
𝑞 (
𝑞
𝑚
) 

× 𝐁([1 + (1 + 𝑘 + 2𝑤)𝛼], 1 +
𝑚 − 𝑞

𝜆
) |(𝜆>𝑞). 

where 

𝑡𝑤,𝑘,𝑗,𝑚 =
𝑡𝑤,𝑘(−1)

𝑗+𝑚 B−1(𝑖, 𝑛 − 𝑖 + 1)

[1 + (1 + 𝑘 + 2𝑤)𝛼]
(
𝑛 − 𝑖
𝑗

) (
𝑞
𝑚
) 

 

 

4.  Parameter etimation 

Several approaches for estimating parameters were proposed in the literature but the 

maximum likelihood method is the most commonly employed. So, we consider the 

estimation of the unknown parameters of this family from complete samples only by 

maximum likelihood. Let 𝑥1, … , 𝑥𝑛 be a random sample from the BrXELx model with 

parameters 𝜃  and 𝛗. Let Θ =(𝜃, 𝛼, 𝜆, 𝛽) ⊺ be the 4 × 1 parameter vector. For determining 

the MLE of Θ, we have the log-likelihood function 
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𝐋 = 𝐋(Θ) = 𝑛log2 + 𝑛log𝜃 + 𝑛log𝛼 + 𝑛log𝜆 − 𝑛log𝛽 − (1 + 𝜆)∑

𝑛

𝑖=1

 log(1 + 𝑥𝑖𝛽
−1) 

−∑

𝑛

𝑖=1

(
𝑠𝑖

1 − 𝑠𝑖
)
2

+ (𝜃 − 1)∑

𝑛

𝑖=1

 log {1 − exp [−(
𝑠𝑖

1 − 𝑠𝑖
)
2

]}, 

where 

𝑠𝑖 = [1 − (1 + 𝑥𝑖𝛽
−1)−𝜆]

𝛼
. 

The components of the score vector, 𝐔(Θ) = (
𝜕

𝜕𝜃
𝐋(Θ),

𝜕

𝜕𝛼
𝐋(Θ),

𝜕

𝜕𝛌
𝐋(Θ),

𝜕

𝜕𝛃
𝐋(Θ))

⊺

, are 

availble if needed, Setting the nonlinear system of equations 𝑈𝜃 = 0,𝑈𝛼 = 0,𝑈𝛾 = 0 and 

𝑈𝛽 = 0 and solving them simultaneously yields the MLE Θ̂ = (𝜃, 𝜆̂, 𝛽̂, )⊺. To solve these 

equations, it is usually more convenient to use nonlinear optimization methods such as 

the quasi-Newton algorithm to numerically maximize 𝐋(Θ). 
 

5.  Simulation studies 

We simulate the BrXELx model by taking 𝑛 = 20,50,150,500 and 1000. For each 

sample size, we evaluate the ML estimations (MLEs) of the parameters using the optim 

function of the R software. Then, we repeat this process 1000 times and compute the 

averages of the estimates (AEs), biases (Bias) and mean squared errors (MSEs). Table 1 

gives all simulation results. The values in Table 1 indicate that the MSEs and the Bias of 

𝜃, 𝛼̂, 𝜆̂ and 𝛽̂ decay toward zero when 𝑛 increases for all settings of 𝜃, 𝛼, 𝜆 and 𝛽, as 

expected under first-under asymptotic theory. The AEs of the parameters tend to be 

closer to the true parameter values ( 𝜃 = 2, 𝛼 = 1.5, 𝜆 = 0.6 and 𝛽 = 0.8) when 𝑛 

increases. This fact supports that the asymptotic normal distribution provides an adequate 

approximation to the finite sample distribution of the MLEs. Table 1 gives the AEs, Bias 

and MSEs based on 1000 simulations. 
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Table 1: AEs, Bias and MSE based on 1000 simulations.

n  AE Bias MSE

20  2.2099493 0.2099493 0.0207493

 1.5106461 0.0187636 0.9024658

 0.6003500 0.0003500 0.0009674

 0.8149436 0.0149436 0.0199576

50  2.1166858 0.11668580 0.5357800

 1.5092566 0.00925660 0.0094288

 0.5995366 0.0004634 0.0005031

 0.8101070 0.01010700 0.0080147

150  2.1475741 0.1475741 0.9024658

 1.5190324 0.0190324 0.0024648

 0.5959778 0.0040222 0.0002627

 0.8174878 0.0174878 0.0037165

500  2.1359867 0.1359867 0.0774530

 1.5197785 0.0197785 0.0016683

 0.5950373 0.0049627 0.0001079

 0.8174235 0.0174235 0.0012894

1000  2.1366144 0.0136614 0.0470211

 1.5203488 0.0203488 0.0010398

 0.5946883 0.0053117 0.0000703

 0.8177539 0.0177539 0.0007934
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6.  Applications 

In this section, we provide two applications to two real data sets to show the importance 

and flexibility of the BrXELx distribution. We compare the fit of the BrXELx with 

competitve Lx models namely: the ELx model (Gupta et al., 1998), the gamma Lomax 

(GaLx) model (Cordeiro et al., 2015), the beta Lomax (BLX) model (Lemonte and 

Cordeiro, 2013) and Lx model. The CDFs of these distributions are, respectively, given 

by (for 𝑥 > 0 and 𝛼, 𝛽, 𝜆, 𝑎 > 0):  

 𝐹𝐸𝐿𝑥(𝑥; 𝛼, 𝛽, 𝜆) = [1 − (1 + 𝑥𝛽
−1)−𝜆]

𝛼
, 

 

 𝐹𝐺𝑎𝐿𝑥(𝑥; 𝛼, 𝛽, 𝜆) = Γ
−1(𝛼)Γ(𝛼; 𝜆log(1 + 𝑥𝛽−1)), 

and 

 𝐹𝐵𝐿𝑥(𝑥; 𝛼, 𝛽, 𝜃, 𝜆) =
1

𝐵(𝛼,𝜃)
𝐵
[1−(1+𝑥𝛽−1)

−𝜆
]
(𝛼, 𝜃), 

where Γ(⋅) is the gamma function, Γ(  ⋅;⋅) is the incomplete gamma function. 

 

The first real data set represents the data on failure times of 84 aircraft windshield given 

in Murthy et al. (2004). The data are: 

0.0400, 1.866, 2.3850, 3.443, 0.3010, 1.876, 2.4810, 3.467, 0.309, 1.8990, 2.610, 3.4780, 

0.55700, 1.9110, 2.625, 3.5780, 0.943, 1.9120, 2.632, 3.5950, 1.0700, 1.914, 2.6460, 

3.699, 1.1240, 1.981, 2.661, 3.7790,1.248, 2.0100, 2.688, 3.9240, 1.2810, 2.038, 2.820, 3, 

4.035, 1.281, 2.0850, 2.890, 4.121, 1.3030, 2.089, 2.902, 4.167, 1.4320, 2.097, 2.934, 

4.2400, 1.480, 2.135, 2.962, 4.2550, 1.505, 2.154, 2.9640, 4.278, 1.506, 2.190, 3.000, 

4.3050, 1.56800, 2.1940, 3.103, 4.376, 1.615, 2.2230, 3.114, 4.449, 1.6190, 2.224, 

3.1170, 4.485, 1.652, 2.2290, 3.166, 4.570, 1.652, 2.3000, 3.344, 4.602, 1.7570, 2.324, 

3.3760, 4.663.  

 

The second real data set represents the data on service times of 63 aircraft windshield 

given in Murthy et al. (2004). The data are:  

0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.7190, 2.717, 

0.2800, 1.794, 2.819, 0.3130, 1.915, 2.820, 0.389, 1.9200, 2.878, 0.487, 1.9630, 2.950, 

0.622, 1.978, 3.0030, 0.9000, 2.053, 3.1020, 0.952, 2.065, 3.3040, 0.9960, 2.117, 3.483, 

1.0030, 2.137, 3.500, 1.0100, 2.141, 3.6220, 1.085, 2.163, 3.6650, 1.092, 2.183, 3.695, 

1.1520, 2.2400, 4.015, 1.183, 2.3410, 4.628, 1.2440, 2.435, 4.806, 1.249, 2.4640, 4.881, 

1.262, 2.5430, 5.140. These data sets were recently studied by Tahir et al. (2015). The 

unit for measurement is 1000 h for both data sets.  

  

The total time test (𝑇𝑇𝑇) plot is an important graphical approach to verify whether the 

data can be applied to a specific distribution or not (see Aarset, 1987). According to 

Aarset (1987), the empirical version of the 𝑇𝑇𝑇 plot is given by plotting  

𝑇(𝑟/𝑛) = [∑

𝑟

𝑖=1

𝑦𝑖:𝑛 + (𝑛 − 𝑟)𝑦𝑟:𝑛] (∑

𝑛

𝑖=1

𝑦𝑖:𝑛)

−1

 

against 𝑟/𝑛, where 𝑟 = 1,… , 𝑛 and 𝑦𝑖:𝑛(𝑖 = 1,… , 𝑛) are the order statistics of the 

sample. Aarset (1987) showed that the HRF is constant if the 𝑇𝑇𝑇 plot is graphically 

presented as a straight diagonal, the HRF is increasing (or decreasing) if the 𝑇𝑇𝑇 plot is 
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concave (or convex). The HRF is U-shaped (bathtub) if the 𝑇𝑇𝑇 plot is firstly convex and 

then concave, if not, the HRF is unimodal. The 𝑇𝑇𝑇 plots the three real data sets is 

presented in Figure 3. This plot indicates that the empirical HRFs of the the three data 

sets are decreasing, decreasing and unimodal. Figure 3 indicates that the empirical HRFs 

of the both data sets are decreasing. 

 

Data Set I Data Set II

Figure 3: TTT plots.

 

In order to compare the distributions, the estimated log-likelihood values 𝐋̂, Akaike 

Information Criteria (AIC), Cramer von Mises (𝑊∗) and Anderson-Darling (𝐴∗) 
goodness of-fit statistics were calculated for all models. The statistics 𝑊∗ and 𝐴∗ are 

described in detail in Chen and Balakrishnan (1995). In general, it can be chosen as the 

best model which has the smaller values of the AIC, 𝑊∗ and 𝐴∗ statistics and the larger 

values of 𝐋̂. The required computations are obtained by using the "maxLik" and "goftest" 

sub-routines in R-software. The analysis results of both these applications are listed in 

Tables 2-5. MLEs, standard errors (SEs) of the estimates (in parentheses) for the two data 

sets are listed on Tables 2 and 4. These results show that the new distribution has the 

lowest 𝐴𝐼𝐶, 𝑊∗ and 𝐴∗ values and, has the biggest estimated −𝐋̂ among all the fitted 

models. Hence, it could be chosen as the best model under these criteria. From tables 3 

and 5, the proposed BrXELx lifetime model is much better (preferable) than gamma 

Lomax, beta Lomax, exponentiated Lomax and Lomax models so the exponentiated 

Lomax, model is a good alternative to these models in modeling aircraft windshield data. 

MLEs, standard erros (SEs) of the estimates (in parentheses) for the two data sets are 

lised on Tables 2 and 4. 
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Table 2: MLEs and SEs for the first data set.

Model











BrXELx 9.963e1 3.389e5 8.347e1 7.539e4

(0.0001) (124.7505) (0.0001) (0.0001)

BLx 3.604 118.837 33.639 4.831

(0.6187) (63.7145) (9.238) (429.00)

ELx 3.626 26257.680 20074.509

(0.624) (99.742) (2041.826)

GLx 3.588 3703 52001

(0.513) (81.164) (7955)

Lx 131789 51425

(296.120) (5933.49)

 

Table 3: Goodness-of-fits statistics for the first data set.

Model L AIC W A

BrXELx 127.650 263.300 0.077 0.159

BLx 138.718 285.435 1.408 0.168

ELx 141.399 288.799 1.744 0.219

GLx 138.404 282.809 1.367 0.162

Lx 164.990 333.977 1.398 0.167
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Figure 3: The fitted PDF, CDF, HRF, PP plot and Kaplan-Meier Survival Plot for the first data set.
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Table 4: MLEs and SEs for the second data set.

Model











BrXELx 1.056 11.804 0.5414 3.154

(1.049) (23.106) (0.420) (4.354)

BLx 1.922 169.580 31.259 4.969

(0.319) (339.209) (316.841) (50.528)

ELx 1.915 32881.9 22971.2

(0.348) (162.223) (3209.5)

GLx 1.907 39197.6 35842.4

(0.321) (151.65) (6945)

Lx 207019 99269

(301.237) (11863.5)

 

Table 5: Goodness-of-fits statistics for the second data set.

Model L AIC W A

BrXELx 98.266 204.5317 0.0470 0.1303

BLx 102.961 213.922 1.134 0.187

ELx 103.547 213.922 1.233 0.204

GLx 102.833 211.666 1.112 0.204

Lx 109.299 222.598 1.127 0.186
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Figure 4: The fitted PDF, CDF, HRF, PP plot and Kaplan-Meier Survival Plot for the second data set.
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7.  Conclusions 

 

In this article, a new lifetime model called the Burr X exponentiated Lomax (BrXELx) is 

introduced and studied. The major justification for the practicality of the BrXELx model 

is based on the wider use of the Lx model. We are also motivated to introduce the 

BrXELx model since the density of the BrXELx distribution exhibits various important 

shapes such as the unimodal, the right skewed and the left skewed. The new model can be 

viewed as a mixture of the exponentiated Lx distribution. It can also be considered as a 

suitable model for fitting the symmetric, left skewed, right skewed, and unimodal data 

sets. The maximum likelihood estimation method is used to estimate the BrXELx 

parameters. We prove empirically the importance and flexibility of the BrXELx in 

modeling two types of aircraft windshield lifetime data. The proposed BrXELx lifetime 

model is much better (preferable) than gamma Lomax, beta Lomax, exponentiated 

Lomax and Lomax models so the exponentiated Lomax, model is a good alternative to 

these models in modeling aircraft windshield data. 
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