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Abstract

In this paper, we have introduced a new general family of transmuted distributions and have studied
the cubic transmuted family of distributions in detail. This new class of distributions offers more
distributional flexibility when bi-modality appear in the data. Some special members of the proposed
cubic transmuted family of distributions have been discussed. We have investigated, in detail, the
proposed cubic transmuted family of distributions for parent exponential distribution. Statistical
properties along with the reliability analysis for the cubic transmuted exponential distribution have
been studied. We have obtained the expressions for single and joint order statistics when a sample
is available from the cubic transmuted exponential distribution. Maximum likelihood estimation of
parameters for cubic transmuted exponential distribution has been discussed. We have also discussed
simulation study and real data applications of the proposed distribution.

Keywords: Cubic transmuted distribution, Exponential distribution, General rank
transmutation, Maximum likelihood estimation, Order Statistics, Reliability analysis.

1. Introduction

Standard probability models have been extensively used in many areas of life to
modeling data. The standard probability models are being extended to model more
complex data sets. Several methods of extending and generalizing probability dis-
tributions have been proposed in literature. One popular method of extending the
probability distributions has been proposed by Alzaatreh et al. (2013) and is known
as T — X family of distributions. The T — X family of distributions has been used
by several authors to propose new families of distributions, for example the Beta — G
family of distributions by Eugene et al. (2002) and Kum — G family of distributions
by Cordeiro and Castro (2010) are special cases of T'— X family of distributions.
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Shaw and Buckley (2007), have proposed a different method of extending probability
distributions and is known as transmuted family of distributions. The method is based
upon quadratic ranking transmutation and extends a baseline distribution G(x) as

F(z) = (1+ NG(x) — A\G2(z), A€ [-1,1]. (1)

This transmuted family of distributions introduced by Shaw and Buckley (2007),
has opened doors to modify the available probability distributions to capture the
quadratic behavior of the data. The quadratic transmuted family was further high-
lighted and extended by Aryal and Tsokos (2009, 2011); Yousof et al. (2015); Alizadeh
et al. (2016); Merovci et al. (2016) and Nofal et al. (2017). The quadratic transmuted
distributions are very common in the literature. Several proposed distributions have
been listed in Table 1 by Tahir and Cordeiro (2016).

Recently Granzotto et al. (2017) proposed a new family of distributions to capture
the complexity of the data and to increases the flexibility of transmuted distributions.
Rahman et al. (2018a) introduced a general transmuted family of distributions with
emphasis on the cubic transmuted family of distributions which provides additional
flexibility in modeling bi-modal data.

In this article, we have proposed a general transmuted family of distributions and
have introduced the cubic transmuted family of distributions. This family captures
the complexity of the data arising in engineering, finance, environmental sciences
and other areas of life. We have focused on exponential distribution to illustrate the
applicability of this new class of distributions.

1.1 Organization of the Paper

The article is structured as follows. In Section 2, we have proposed a new general class
of transmuted distributions. Section 3 provides a new family of cubic transmuted
distributions. Special cases for the cubic transmuted family of distributions have
been discussed in Section 4. The cubic transmuted exponential distribution have
been introduced in Section 5. Some desirable properties of the cubic transmuted
exponential distribution have been explored in Section 6. In section 7, we have
obtained the distribution of single order statistic and joint distribution of two order
statistics when sample is available from cubic transmuted exponential distribution.
The estimation of parameters and inference are described in Section 8. In Section
9, simulation results and applications to real-life data sets are presented. Finally,
Section 10 provides some concluding remarks.

2. General Transmuted Family of Distributions

In this section, we have proposed a general family of transmuted distributions. For
this, let X be a random variable with cdf G(z), then a general transmuted family;
called k— transmuted family; is defined as
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F(z) =

k
L+ ) Al =Gz
=1

where A\; € [—1,1] and \; € [0,1] for i =2,3,--- | k. The cdf can also be written as

e p($ e )

=0 j7=0

with \g = 1. The proposed family of distributions reduces to the base distribution
for, \; =0 fori =1,2,--- k. The pdf corresponding to (2) is

DY S (e )

1=0 j=0

j
where \g = 1, \; € [-1,1] and \; € [0,1] for i =2,3,--- | k.

2.1 Moments

The expression for the moments of general transmuted family of distributions has
been obtained in terms of probability weighted moments of base distribution G ().
For this, consider the expression for probability weighted moments of a distribution
G (x) is given as

Moo = E[X{GXOY{1-GxX)}]
- [ SG@y -G @ s (4)

[e.e]

The rth moment for general transmuted family of distributions is given as

p= B = [ af @) e (5)

[e.e]

Now using (3) in (5), the expression for rth moment is given as

R /_ d:L'—i—Z)\/ "g (2) {1 =G (x)} dx
—Zz)\/ 2"g (z) G (x) {1 — G (z)} " da.

Using (4) the rth moment for general transmuted family of distributions is

k k
M; = M, o0+ Z ANl — Z N M1 i (6)

i=1 i=1
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From (6) it can be easily observed that the moments for general transmuted family
of distributions can be expressed as weighted sum of probability weighted moments
of the base distribution g(z).

3. The Cubic Transmuted Family of Distributions

The cubic transmuted (CT') family of distributions is obtained by setting & = 2 in
(2). The cdf of cubic transmuted family of distributions is given as

F(z) = G(z) + MG(2)[1 — G(2)] + \aG(2)[1 — G(2)]?,

which can also be written as

where \; € [—1,1] and A, € [0, 1].

The family given in (7) is new as compared with the families developed by Granzotto
et al. (2017) and Rahman et al. (2018a).

In following theorems, we have provided link of cubic transmuted family given in (7)
with distribution of order statistics and with T — X family of distributions.

Theorem 3.1. Let X, X5 and X3 be 1id random variables each with distribution
function G(x), then the cubic transmuted family of distributions given in (7) can be
obtained as a weighted sum of three order statistics.

Proof. Consider following order statistics

X3 = min(Xy, Xo, X3), Xos and Xs.5 = maz(Xy, Xo, X3),

and set the random variable Y as
Y £ X35, with probability pi,
y 4 Xo.3, with probability ps,
yLx 1:3, with probability ps,

where Zf’zl pi = 1= p3 =1—p; — py. Hence, evidently Fy(z) is given by

Fy(z) = pilFss(x) + polhs(x) + psFis(z)
(3 —3p1 — 3p2)G(x) — (3 — 3p1 — 6p2)G*(z) + (1 — 3p2)G3(x).  (8)

Now if we set 1 — 3p; = Ay and 1 — 3p, = A9 then the distribution function given in
(8) corresponds to the cubic transmuted family of distributions given in (7). O
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Theorem 3.2. Let G(z) be cdf of a random variable X and p(t) be pdf of a bounded
random variable T with support on [0,1], then cubic transmuted family given in (7)
can be obtained by using T'— X family of distributions, introduced by Alzaatreh et al.
(2013), for suitable choice of p(t). Also, the pdf p(t) can be written as weighted sum
of three bounded densities py(t), p2(t) and ps(t) with support on [0,1].

Proof. A new family of distributions, introduced by Alzaatreh et al. (2013), for a
general baseline cdf G(x) is given as

G(z)
F(x) = /0 p(t) dt, x € R, 9)

where p(t) denotes a pdf with support on [0,1]. As noticed by Alizadeh et al. (2017),
the cdf given in (1), corresponds to the cdf given by (9) defined with the pdf p(t) =
14+ X — 2Xt. We have developed a new pdf p(t) = 1+ Ay — 2\1t + Ao — 4ot + 3\at?,
that can be expressed as a mixture of three pdf’s with support on [0, 1] as follows

p(t) = (1 = A = A2)p1(t) + Aipa(t) + Aaps(t), (10)
where p;(t) = 1, pa(t) = 2(1 — t) and p3(t) = 2(1 — 2t) + 3t2.

Now using (10) in (9) we have

G(z)
F@) = [ 0= 2= Xpnl0) + dan(0) + e (0] . (1)
0
On simplification, the cdf provided in (11), turned out to be the cdf of cubic trans-

muted family of distributions given in (7). O

Definition 3.1 (Cubic transmuted distribution). A random wvariable X is said to
have a cubic transmuted distribution, with parameters Ay € [—1,1] and Xy € [0,1] if
its pdf is given by

f(@) = g(x) [1+ X + X2 — 2(A +2X2)G(2) + 3X0G(2)], z € R, (12)
where g(x) is the pdf associated with cdf G(x).

It can be seen that the pdf of quadratic transmuted distribution is easily obtained
from the pdf of cubic transmuted distribution by setting Ay = 0. Also observe that for
A1 = Ay = 0, we have the pdf of the baseline random variable. The density function
of cubic transmuted family of distributions given in (12) can be obtained by using k
= 2 in the density function of general transmuted family of distributions given in (3).

Lemma 3.1. The pdf f(x) given in (12) is well defined.

Proof. The proof is simple. O]

4. Special Cases for Cubic Transmuted Family of Distributions

In the following we have given some members of cubic transmuted family of distribu-
tions obtained by using various G(x) in (7).
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4.1 Cubic Transmuted Normal Distribution

Let X has normal distribution with mean p, variance 0% and cdf ®(X). Using (7),
the cubic transmuted normal distribution has the cdf

F(z) = (14 X + X)®(2) — (AL + 2X)P%(2) + X ®? (1),
where A\; € [—1,1] and Ay € [0,1].

4.2 Cubic Transmuted Gamma Distribution

Let X be a continuous random variable having gamma distribution with shape and
scale parameters « and 1/f respectively. The cdf of X is given by

['(a) = (e, fz)
INGY!

G(x) = , v € RY,
where «, 5 € R*. Here, I'(a) and I'(av, fx) are the complete and incomplete gamma
function. Using (7), the cdf of cubic transmuted gamma distribution is

PERCERCED NG SO NGRS R

where A\; € [—1,1] and Ay € [0,1].

4.3 Cubic Transmuted Log-logistic Distribution
Let X follows Log-logistic distribution with cdf given as

B 4B

G(x)

where «, 3 € Rt are the scale and shape parameters respectively. Using (7), the cdf
of cubic transmuted log-logistic distribution is given by

x € [0, 00),

2? | X0 + Ao (o + 27) + (o + xﬁ)z}
F(I‘) = (Oéﬁ+$ﬂ)3 ’ MRS [07OO>7

where \; € [—1,1] and X\, € [0, 1].

4.4 Cubic Transmuted Pareto Distribution

Suppose the random variable X has Pareto distribution with cdf

Glz)=1— (EY, v € [k, 00),

T

where k,0 € Rt are the scale and shape parameters. Using (7), the c¢df of the cubic
transmuted Pareto distribution is given by
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Figure 1: Plots of Density Function f(z) for Selected Base Distributions.

k [ k 0 k 26
F(IL'): 1—(— A1 ; + Ao E +1 ,:L’E[k,OO),

where A\; € [—1,1] and Ay € [0, 1].

4.5 Cubic Transmuted Rayleigh Distribution

Let X be a Rayleigh random variable with cdf

22

G(x)=1—e"22, 2 €[0,00),

where o € R is the scale parameter of the distribution. Using (7), the cdf of the
cubic transmuted Rayleigh distribution is given by
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»

3z

12 12 12
F(I‘) = e 202 (6%2 — 1) ()\16%2 + €02 + )\2) y T E [Oa OO),

where A\; € [—1,1] and Ay € [0,1].

N

4.6 Cubic Transmuted Gumbel Distribution

Let X be a continuous random variable having Gumbel distribution. The cdf of
Gumbel distribution is given as

T—p

Giz)=1—¢* 7 z€R,

where 1 € R, € R are the location and scale parameters respectively. Using (7),
the cdf of the cubic transmuted Gumbel distribution is

Flz)=e2" (eeﬁ - 1) (626 Tt T+ /\2) , v €R,
where A\; € [—1,1] and Ay € [0,1].

The plots of density functions for above defined distributions are given in Figure 1.

5. Cubic Transmuted Exponential Distribution

The exponential distribution is a widely used lifetime distribution. The distribution
is popular in many applications due to it’s simplicity. The distribution has been
generalized by many authors, see for example generalized exponential by Gupta and
Kundu (1999, 2007), exponentiated exponential (EE) by Gupta and Kundu (2001)
and beta exponential (BE) distribution by Nadarajah and Kotz (2006). These pro-
posed generalizations are more flexible than exponential distribution when applied to
real-life data sets.

In the following, we propose another generalization of the exponential distribution
by using it as a baseline distribution in the cdf of cubic transmuted family of distri-
butions given in (7). This proposed distribution is referred as the cubic transmuted
exponential (CTE) distribution and have much wider applicability as compared with
the available generalizations of the exponential distribution.

Let X be a continuous random variable having the exponential distribution with cdf

e, x€[0,00), (13)

where 6 € RT is the scale parameter. Owoloko et al. (2015) have proposed the
quadratic transmuted exponential distribution with cdf

Fx)=[1—e?][1+Xe %], 2 €[0,00),
where A € [—1,1].
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Figure 2: Density and distribution functions plots for CT E(0,A1,\2) distribution.

The cubic transmuted exponential distribution is defined below.

Proposition 5.1. Let X has an exponential distribution with parameter @ € R, then
the pdf of cubic transmuted exponential distribution with parameters § € RT, A\ €
[—1,1] and Xy € [0,1] is given by

flz) = (%e) l(l —A)et +2(A\ — Ag)ed +3A2], ze0,00). (14)

Proof. Using the cdf (13) in (7), we can obtain the cdf of cubic transmuted exponen-
tial distribution and is given as

3z

Flz) = e 7 (eh —1) [e* Fhef + |, 2 €[0,00). (15)

The pdf in (14) can be easily obtained by differentiating (15) with respect to z. [

The plots of density and distribution functions of cubic transmuted exponential
distribution are given in Figure 2.

6. Statistical Properties

We have discussed some important properties of cubic transmuted exponential dis-
tribution. We have obtained expression for raw moments and moment generating
function of the distribution. We have also obtained quantiles by using quantile func-
tion along with the method of generating random sample from the distribution. The
survival and hazard functions are also obtained.
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6.1 Moments

Moments are very useful to know the location, distribution and shape of a distribution.
In the following we have obtained the expression for moments of a random variable
X having cubic transmuted exponential distribution. The rth moment for cubic
transmuted exponential distribution is stated by the following theorem.

Theorem 6.1. Let X follows C'T'E distribution then rth moment of X is given by

Q’I"

n, = E(X") = G 6 =372 = Dh = (3= 2]
Further the mean and variance of the distribution are
0
uw=FEX)= 6 (6 —3X1 — A\2) and,
6)2
o?=V(X)= % (36 — 18X +2X2 — 9A] — 6A1 X2 — A]) .

Proof. The rth moment is obtained by

W= B(X") = / " f(a)da.

Using f(z) from (14) and on simplification the rth moment of cubic transmuted
exponential distribution can be obtained as

E(X") = grl (6" — 37(2" — 1)A; — (3" — 27)\g). (16)

Mean and variance can be easily obtained from (16) and are given as

E(X) = g (6 - 3/\1 - /\2) and,

and
V(X) = E(@®) —[E(2))
= % (36 — 18A1 + 23 — 9AT — 6A1 A0 — A3) .
The higher moments can also be obtained from (16) for r > 2. O

The means of C'T'E distribution for various combination of model parameters are
given in Table 1.

6.2 Moment Generating Function

The moment generating function (MGF') is used to determine the moments of a
distribution. The MGF for C'TE distribution is stated by the following theorem.
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Table 1: Means for the cubic transmuted exponential distribution

)\1 =—1 )\1 = —05 )\1 - O )\1 - 05 )\1 =1

Ao =0 1.500 1.250 1.000 0.750 0.500
=1 A2 =0.5 1.417 1.167 0.917 0.667 0.417
Ao =1 1.333 1.083 0.833 0.583 0.333
Ao =0 3.000 2.500 2.000 1.500 1.000
0=2 A2 = 0.5 2.833 2.333 1.833 1.333 0.833
Ao =1 2.667 2.167 1.667 1.167 0.667
Ao =0 4.500 3.750 3.000 2.250 1.500
0=3 A2 = 0.5 4.250 3.500 2.750 2.000 1.250
Ao =1 4.000 3.250 2.500 1.750 1.000
Ao =0 6.000 5.000 4.000 3.000 2.000
0 =4 Ao = 0.5 2.667 4.667 3.667 2.667 1.667
Ao =1 5.333 4.333 3.333 2.333 1.333
Ao =0 7.500 6.250 5.000 3.750 2.500
0=5 Ao =0.5 7.083 5.833 4.583 3.333 2.083
Ao =1 6.667 5.417 4.167 2.917 1.667

Theorem 6.2. Let X follows the CTE distribution, then MGF, Mx(t) is

Mx(t) = ——rl 6" =3"(2" — )A — (3" — 2") A, (17)
where t € R.

Proof. The moment generating function is given by

Mx(t) = E[e"] = /OO e f(z)dx

0

where f(x) given in (14) and for exponential series representation, see Gradshteyn
and Ryzhik (2007), can further expressed as

M) = 3 T = 32 B0 (1

r=0
Setting F(X") from (16) in (18) turned out to be (17). O

It is observed from the series expansion (18) that moments are the coefficients of i—:
for different choices of r.

6.3 The Quantile Function

The gth quantile x4 of the cubic transmuted exponential distribution can be obtained
as inverse function of (15) and is given as

Pak.j.stat.oper.res. Vol.14 No.4 2018 pp807-829 817
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zq =0 [=In(y)], (19)

where,

b 21/3¢, (£2+\/M)1/3

+ VE )
3a 3a<§2+ /—45%4‘5%)1/3 3(21/3)a (20)
& = —b* + 3ac, & = —2b3 + 9abe — 27a%d,
a=—-Xg, b=X— A, c=X\—landd=1-—gq.

The lower quartile, median and upper quartile can be obtained by using ¢ = 0.25, 0.50 and 0.75
respectively in (19).

6.4 Reliability Analysis

Let T' be a nonnegative random variable which represents the failure times of the
components. The reliability function is defined by R(t) = 1 — F'(t) and represents the
probability of an element not failing prior to some time t. The reliability function of
cubic transmuted exponential distribution is given by

3t

Rt)y=1—e¢"7 (65 — 1) [e% + )\165 + )\2] , teRT.
The hazard rate function, h(t), is defined by

O
1— F(t)

which for cubic transmuted exponential distribution is given as

h(t)

(ge—%> [(1 A EF 200 = Ao)ed + 3&}

o) = ——— (e —1) [e¥ + Aeh + 0

, teRT,

The hazard function specifies the instantaneous rate of death at time ¢, given that
the individual survives up to time t.

Figure 3 provides plot of reliability and hazard functions for the selected values of
model parameters A\; and Ay keeping # = 3. According to the failure time ¢, we
observed increasing and decreasing hazard rates from the shapes.

6.5 Random Numbers Generation

We can easily generate random numbers from the cubic transmuted exponential dis-
tribution using the method of inversion; see, for example, Aryal and Tsokos (2009).
A random observation from the distribution is, therefore

_ 3z

e 0 (e% — 1) [e% + A\ed + )\2] = u,
where u ~ U(0,1). On simplification, this can be written as
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Figure 3: Reliability and hazard functions plots for CT E(0,A1,\2) distribution.

where y is given in (20) with d = 1 — u. Now, one can generate random numbers

X =6 [~In(y)),

using (21), when the parameters 6, A; and Ay are known.

7. Order Statistics

Order statistics play an important role in statistical theory. In this section, we have

obtained the pdf of single order statistic and joint pdf of two order statistics.

7.1 Distribution of a Single Order Statistic

The pdf of the rth order statistics for cubic transmuted exponential distribution is

given below

n!

fxpn(T) =

(r—=1ln —r)! [6—371 (¢ =1) (AQ e 6271)]

X [1 e (e”/a — 1) ()\24—)\16””/9—#627:6)] B

where r = 1,2, ---
statistic, X4.,, is given by

3z

,n. Therefor, for r

1 we have the pdf of the smallest order

lem(SE) - [1 - ei%w (em/e - 1) ()\2 + )\1690/‘9 —+ 627:8) }n_l

G

3z
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Also, for » = n the pdf of the largest order statistic, X,,.,, is given by

o) = 7% 0 (e )]

X <ge “) [(1—)\1)69 +2(\ — A2)63+3A2].

Note that A\; = Ay = 0, we have the pdf of the rth order statistic for exponential
distribution, as follows

n' 1 _Zz _z r—1 _zn—r
gXM(x):(T—l)!(n—T)!@e P[l—emo] el r=12

The expression of kth order moment of X,., for cubic transmuted exponential distri-
bution is given by

E(an) = /OOO l‘,lf - fx,. (x) - dx

where fy,. (x) is presented in (22).

7.2 Joint Distribution of Two Order Statistics

The joint pdf of X,., and X, (1 < r < s < n) for cubic transmuted exponential
distribution is given by

1
P30 09) = G e O

X qe 7I(”C/g—l) </\2—|—)\16””/9—|—6%1>}
M (=e%) (77— 2) 4y (8 27 4 c¥ )

{
{
{6 + M <677x_ 75_67%4‘67%)
A
{ar

_3(z+y)
]

r—1

X

X
%\a

_I 3y 2y _y s—r—1
9 b — e —e 0 +¢e 0| —e 0

ey/e ey/e )+)\2(3—2€y/9)+6%}

+

X

y 677 {)\1 (_ey/g) (ey/e _ 1) — Ao (ey/9 _ 1) -+ 6%}”—5].

The joint pdf of smallest and largest order statistics for the cubic transmuted expo-
nential distribution can be easily obtained from above equation by using r = 1 and
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s =n and is given as

3(1+y)
nle”

P (0:) = g AN (Ce) (7 = 2) 20 (3= 26777) 7 |

—

_z _ 2z _z _2y _y
X{e 9—1—)\1(6 9 —e 6 —e 9 t+e 9>

3z 2x 3y

2y y n—2
+ A (6_7 —e 0 —e 0+ 6_7> — e_?}
X {)\1 (—ey/a) (ey/9 —2)+ A (3 2e4/%) + e%y} .

8. Parameter Estimation and Inference

Maximum likelihood estimation (M LE) is most commonly employed technique for
the estimation of the model parameters. In the following we have given the maximum
likelihood estimation for the cubic transmuted exponential distribution.

Let X1, X5, -+, X,, be arandom sample of size n from the cubic transmuted exponential
distribution. The likelihood function is

D v o i z
L= e =5 H[Q—Al)e?e+2(A1—A2)ee+3A2].
The log-likelihood function | = In(L) is

). (23)

[ = ilog{(l —A)eT 4200 — M) et +3>\2}

i=1 =

Therefore likelihood equations are obtained by differentiating (23) wrt 6, Ay and Ay
and equating the resulting derivatives to zero and are

2z T4
n 2(17/\1)9614@ 0 . 2(/\17A2):E1‘6 [ 31:1

Z — 222 9211- +Z QQ_g:Oa

S (I=XM)ed +2(M —X)ed +3X I

n 2z

Z 27 —e 0
2z, z; = O? and
i=1 (1 — )\1) BT + 2 ()\1 — )\2) e + 3)\2

Zn: 3— 27 _0
1—)\1)69 +2()\1 )\2)6%+3)\2 .

=1

Solving above nonlinear system of equations numerically, we obtain the maximum
likelihood estimators

~ ~ A ~ /
6= (9,A1,AQ> of @ = (6,1, \o)' .
It is well known fact that as n — oo, the asymptotic distribution of the MLFE
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<é, ):1, ):2> is given by, see for example, modified Weibull distribution by Zaindin and
Sarhan (2009) and cubic transmuted Pareto distribution by Rahman et al. (2018b),

0 0 Vii Via Vig

>\1 ~ N )\1 ) Var Vo ‘/23 )

A2 Az Vi Vay Vi

where
52 521 521
25 5938 3097z
-1 521 520 521

V7= =—-E| %ox 2 o |- (24)

521 521 521

50-0x2  SAi-0A2 Y

The inverse of the observed information matrix given in (24) gives the asymptotic
variance-covariance matrix of the maximum likelihood estimators é, M1 and ):2, See
Appendix. An approximate 100(1 — @)% two sided confidence intervals for 6, A\; and
Ay are, respectively, given by:

0+ Za/2 \/ ‘7117 5\1 + Za/2 \V ‘722 and 5\2 + Za/Z \/ ‘7337

where Z, is the ath percentile of the standard normal distribution.

9. Numerical Studies

In this section, we assess the performance of estimation procedure by simulation. In
addition to this, we have applied the cubic transmuted exponential distribution on
two real-life data sets to show its applicability.

9.1 Simulation Study

For simulation study, we have considered five sample sizes 50, 100, 200, 500 and 1000
from cubic transmuted exponential distribution respectively. In each setup 10000
random samples are generated for fixed parameters # = 3, Ay = 0.3 and Ay = 0.7.
The maximum likelihood estimates of the parameters are obtained and the average
value of these estimates along with the mean square errors (MSE's) are computed
and are given in Table 2. It has been observed that the estimated values of parameters
are very close to the fixed values of parameters used in the simulation. The M SE's
of the estimates decreases with increase in the sample size which shows that the
estimates are consistent.

In the following we have applied the cubic transmuted exponential distribution on
two real data sets.

9.2 The Wheaton River Data

The data set provides 72 exceedances of flood peaks in m?/s of the Wheaton River
for the year 1958 — 1984. The data has been previously used by Choulakian and
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Table 2: Average estimates of parameters and M SFE’s for CTE distribution

Sample Estimate MSE
Size 0 A1 A2 0 A1 Ao
50 2.989 0.349 0.565 3.197 0.725 1.063
100 3.001 0.316 0.637 1.679 0.491 0.428
200 2.999 0.291 0.696 0.457 0.115 0.128
500 2.992 0.286 0.714 0.137 0.034 0.042
1000 2.999 0.289 0.716 0.062 0.016 0.020

Stephens (2001) and Akinsete et al. (2008). The summary statistics of the data are
given in Table 3.

Table 3: Summary statistics for selected data sets

Min. Q1 Median ~ Mean Qs Max.
The Wheaton River data 0.10 2.13 9.50 12.20 20.13 64.00
The Floyd River data 318 1590 3570 6771 6725 71500

Table 4: M LE's of parameters and respective SE's for selected models

Distribution Parameter Estimate SE
0 10.657 1.767
CTE A -0.582 0.557
Ao 0.951 0.748
0 13.249 2.766
TE
A 0.167 0.317
0 0.194 0.332
BE A 0.801 0.147
Ao 0.385 0.637
0 0.096 0.014
EE A 0.975 0.144

We have fitted transmuted exponential, cubic transmuted exponential, beta expo-
nential and exponentiated exponential distributions on this data. Estimated pdf and
cdf for the Wheaton River data set are presented in the upper panels of Figure 4.
The MLE's with their corresponding SE’s are given in Table 4. The computed
log-likelihood, Akaike’s information criterion (AIC), corrected Akaike’s information
criterion (AICc), Bayesian information criterion (BIC), Kolmogorov-Smirnov statistic
(D,.), Anderson-Darling statistic (A?) and Cramér-von Mises statistic (1W?) are given
in Table 5. It is observed, on the basis of those criteria, that the cubic transmuted
exponential distribution is the most appropriate model for fitting of this data.

Pak.j.stat.oper.res. Vol.14 No.4 2018 pp807-829 823



Md. Mahabubur Rahman, Bander Al-Zahrani, Muhammad Qaiser Shahbaz

Table 5: Selection criteria estimated for selected models

Distribution  logLike AIC AlCc BIC D, A? |

CTE -248.994  503.987 504.340 510.817 0.090 1.411 0.069
TE -2561.965 507.930 508.104 512.484 0.131 2.587 0.115
BE -251.225  508.449 508.802 515.279 0.102 1.660 0.081
EE -253.057  510.114 510.288  514.667 0.108 2.383 0.114

9.3 The Floyd River Data

We have considered the Floyd River data set which provides the consecutive annual
flood discharge rates for the year 1935 — 1973. The data set has been previously used
by Akinsete et al. (2008). For the source and details of the data see Mudholkar and
Huston (1996). The summary statistics of the data are given in Table 3.

Table 6: M LE's of the parameters and respective SE’s for selected models

Distribution Parameter Estimate SE
0 14.69 x 103 8.89 x 1075
CTE A1 8.42 x 1071 1.60 x 107!
Ao 8.92 x 1071 5.08 x 107!
TE 0 10.51 x 103 8.86 x 1076
A 8.07 x 1071 1.65 x 107!
0 9.71 x 107 1.08 x 10713
BE A1 9.21 x 1071 1.91 x 10719
Ao 1.40 x 10! 1.74 x 1076
FE 0 1.44 x 1074 2.34 x 107°
A 9.69 x 1071 2.42 x 1079

Table 7: Selection criteria estimated for selected models

Distribution  logLik AIC AlICc BIC D, A? W32

CTE -379.399  764.799 765.484 769.789 0.090 0.044 0.003
TE -380.662  765.323  765.657 768.650 0.109 0.048 0.003
BE -382.906  771.812  772.497 776.802 0.147 0.059 0.004
EE -382.986  769.972  770.305 773.299 0.152 0.063 0.005

We have considered transmuted exponential, beta exponential and exponentiated
exponential distributions as an alternative of the cubic transmuted exponential dis-
tribution for the comparison purposes. Estimated pdf and cdf for the Floyd River
data set are presented in the lower panels of Figure 4. Table 6 provides the M LE's
with their corresponding SE’s for selected models.
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Figure 4: Estimated pdf and cdf for the Wheaton River and Floyd River data sets.

The performances of fitted models have been compared by computing values of the
selection criterion’s like log-likelihood, AIC, AICc, BIC, D,,, A? and W? are computed
and are given in the Table 7. The above mentioned criteria provides confirmation in
favor of the cubic transmuted exponential distribution.

10. Concluding Remarks

In this paper, we have developed a new general transmuted family of distributions
and have introduced a cubic transmuted family of distributions as well. These cubic
transmuted distributions are found to be flexible enough when bi-modality appear in
the data sets. We have considered exponential distribution to clarify the applicability
of this new class of distributions. We have investigated some of its statistical proper-
ties including moments, moment generating function, expressions for reliability and
hazard rate functions and have discussed the random number generation. Distribu-
tions of order statistics have also been discussed. The proposed cubic transmuted
exponential distribution have been applied on two real data sets and we have found
that the cubic transmuted exponential distribution provides a better fit to these data
as compared with the other models used. We have also conducted extensive simula-
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tion study to see the performance of estimation procedure and have found that the
estimated parameters are close to the actual parameters used in the simulation study
and hence the estimation is adequate.
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Appendix: The Hessian Matrix for the C'I'— Exponential Distribution

The Hessian matrix is given as
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where the variance-covariance matrix V' is obtained by
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