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Abstract 
The usual second order nonparametric kernel estimators are of wide uses in data analysis and visualization 

but constrained with slow convergence rate. Higher order kernels provide a faster convergence rates and 

are known to be bias reducing kernels. In this paper, we propose a hybrid of the fourth order kernel which 

is a merger of two successive fourth order kernels and the statistical properties of these hybrid kernels were 

studied. The results of our simulation with real data example reveals that the proposed hybrid kernels 

outperformed their corresponding parent’s kernel functions using the asymptotic mean integrated squared 

error as the criterion function. 
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1. Introduction.  

One of the very important and fundamental topics in modern statistics is density 

estimation. Density estimation is the construction of a probability density estimate from a 

given set of observation. Probability density estimation has wider applications in virtually 

every field of studies particularly in biological, management, medical, social and pure 

sciences. There are two basic approaches to density estimation; the parametric and 

nonparametric approaches. In the parametric approach, a functional form is usually 

imposed on the density estimate and the required parameters will be the only information 

needed to be estimated. The functional form and the parameters estimated will produce a 

parametric density estimator. The maximum likelihood estimators are the commonest 

parametric estimators with wide ranges of applications. The nonparametric approach 

allows the set of observations to speak for themselves in determining the unknown 

distribution without the imposition of a particular distribution. This paper will center on 

the nonparametric approach with emphasis on one of its methods, the kernel density 

estimation technique.  

In nonparametric density estimation, the kernel method is one of the popular methods due 

to its significant role of structures identification in a given distribution. As a data 

smoothing techniques, the kernel method is for inferences and conclusions regarding 

random variables. As a nonparametric method, kernel density estimation is a very useful 
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tool for analysis and visualization of the distribution of a given data set (Simonoff, 1996; 

Imaizumi et al., 2018). The univariate kernel density estimator is compactly written as 

𝑓(x) =
1

𝑛ℎx
∑ 𝐾

𝑛

𝑖=1

(
x − X𝑖

 ℎx
),                                                                                                        (1) 

where 𝐾(∙) is the kernel function,  ℎx is the bandwidth also called the smoothing 

parameter, X𝑖  are the set of observations and 𝑛 is the sample size. The shape of the 

resulting estimate is determined by the kernel function while the smoothing applied in the 

estimation of 𝑓(x)  is regulated by the bandwidth. The quality of the estimate in Equation 

(1) is majorly determined by the magnitude of the smoothing parameter, therefore effort 

has been geared towards an objective choice of the smoothing parameter (Siloko et al., 

2018). The kernel function posses the non-negativity property and must satisfy the 

following conditions 

∫ 𝐾(x)𝑑x = 1,  ∫ x𝐾(x)𝑑x = 0    and  ∫ x2𝐾(x)𝑑x = 𝜇2(𝐾) ≠ 0 .                                (2) 

The implication of Equation (2) in kernel density estimation is that the kernel function 

must be a probability density function which must integrate to unity having zero mean 

and the variance denoted by 𝜇2(𝐾) is greater than zero (Scott, 1992).  

The computational simplicity and efficiency of the kernel density estimator with its easy 

interpretation of results has contributed to the popularity of the method over other 

nonparametric density estimation methods. Some recent areas of the application of kernel 

density estimation include image and video processing (Koloda et al., 2013) and 

estimation of the direction of wind (Hu et al., 2017). In modeling, kernel density 

estimation is of immerse applications especially in the construction of probability 

distributions of observations obtained from a system or process (Martinez and Martinez, 

2008) and with applications in data streams of very high speed and large volume (Cao et 

al.,2012). 

This paper introduces new hybrid kernels of the classical fourth order kernel of the beta 

polynomial family with better performance. The remaining part of this article is 

organized as follows. In Section 2, we briefly discuss higher order kernels and state its 

asymptotic mean integrated squared error which is the error criterion function. In Section 

3, we discuss the beta polynomial kernel family and introduce the higher order kernel 

with its hybrid using the Jones and Foster (1993) addition construction rule. The 

simulation results are presented in Section 4 while Section 5 concludes the article. 

 

2. Asymptotic Mean Integrated Squared Error and Higher Order Kernel. 

The performance of the kernel estimator in Equation (1) is mainly measured by the 

asymptotic mean integrated squared error (AMISE). An approximation of Equation (1) 

using Taylor’s series expansion yields the two components of the AMISE; the integrated 

variance and the integrated squared bias given by 

𝐴𝑀𝐼𝑆𝐸 (𝑓(x))  =
𝑅(𝐾)

𝑛ℎ 
+

1

4
𝜇2(𝐾)2

 ℎ
4𝑅(𝑓″),                                                                    (3) 

where 𝑅(𝐾) is the roughness of the kernel, 𝜇2(𝐾)2
 
 is the variance or second moment of 

the kernel function and 𝑅(𝑓″) =  ∫ 𝑓″(x)2𝑑x is usually referred to as the roughness of 

the unknown probability density function. There is the usual bias-variance trade-off 

between the terms of the AMISE, that is, the bias can be reduced while the variance 

increases and vice versa as a result of the variation in the size of the bandwidth. The 



On Hybridizations of Fourth Order Kernel of the Beta Polynomial Family 

Pak.j.stat.oper.res.  Vol.XV  No.III 2019  pp819-829 821 

optimal bandwidth that will minimize the AMISE is the solution to the differential 

equation  
𝜕

𝜕ℎ
𝐴𝑀𝐼𝑆𝐸(ℎ) =

−𝑅(𝐾)

𝑛ℎ2
+ 𝜇2(𝐾)2ℎ3𝑅(𝑓″) = 0. 

Therefore, the bandwidth with the minimum AMISE value denoted by  ℎAMISE  also 

known as the optimal bandwidth is 

ℎAMISE = [
𝑅(𝐾)

𝜇2(𝐾)2𝑅(𝑓″) 
]

1 5⁄

× 𝑛−1 5⁄ .                                                                                      (4) 

The contribution of the bias component to the asymptotic mean integrated squared error 

can be carefully reduced by employing higher order kernels. On relaxation of the 

conditions that every kernel function must satisfy as stated in Equation (2), it will be 

possible to achieve a better AMISE value in terms of the performance of the kernel. 

Assuming the order of the kernel function is denoted by 𝑝, on relaxation of the above 

conditions, we have  

∫ 𝐾(x)𝑑x = 1, ∫ x𝑖𝐾(x)𝑑x = 0, 𝑖 = 1,3, … , 𝑝 − 1  and   ∫ x𝑝𝐾(x)𝑑x ≠ 0,       (5) 

where 𝑝 is the order of the kernel. The order of a kernel function 𝑝 is simply the nonzero 

moment of the kernel and is usually even because all odd moments of symmetric kernels 

are zero. Non-negative kernel functions are often regarded as second order kernel while 

higher order kernels usually exhibit negativity over its support interval (Müller, 1988). 

Generally, a kernel function is of higher order when its order 𝑝 is greater than two, that 

is , 𝑝 > 2. If the unknown probability density function is continuously differentiable and 

the kernel 𝐾 is of order  𝑝, then its corresponding AMISE using Taylor’s series expansion 

is of the form 

𝐴𝑀𝐼𝑆𝐸∗ (𝑓(x))  =
𝑅(𝐾)

𝑛ℎ 
+

1

(𝑝!)2
𝜇𝑝(𝐾)2

 ℎ
2𝑝𝑅(𝑓(𝑝)),                                                         (6) 

where 𝜇𝑝(𝐾)2
  is the 𝑝𝑡ℎ moment of the kernel function. The corresponding smoothing 

parameter that will minimize Equation (6) is of the form 

ℎAMISE
∗ = [

(𝑝!)2𝑅(𝐾)

2𝑝𝜇𝑝(𝐾)2𝑅(𝑓(𝑝)) 
]

1 (2𝑝+1)⁄

× 𝑛−1 (2𝑝+1)⁄ .                                                            (7) 

The smoothing parameter from Equation (7) increases with increase in the kernel order 

which indicates that much benefit is associated with higher order kernel. The smoothing 

parameter value in Equation (7) will usually result in the smallest value of the asymptotic 

mean integrated squared error given by (Scott, 1992) 

𝐴𝑀𝐼𝑆𝐸∗ (𝑓(x))  = [
𝑅(𝐾)2𝑝𝑅(𝑓(𝑝))

𝜇𝑝(𝐾)−2
 

]

1 (2𝑝+1)⁄

× 𝑛−2𝑝 (2𝑝+1)⁄ .                                             (8) 

It should be noted that in Equation (7) and Equation (8), the smoothing parameter with 

the minimum AMISE value is of order 𝑂(𝑛−1 (2𝑝+1)⁄ ) while the AMISE is of 

order 𝑂(𝑛−2𝑝 (2𝑝+1)⁄ ). Higher order kernels are generally known as bias reducing kernels 

and their resulting estimates do have negative components. 

 

3. The Beta Polynomial Kernel Functions. 

The family of the beta polynomial kernels are nonparametric kernel estimators such that 

the function with higher power tends to produce smoother estimates and with higher 
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degree of differentiability. The general form of this kernel family for 𝑠 ≥ 0 with {𝑡 ∈
[−1, 1]} is  

𝐾[𝑠](𝑡) =
(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠,                                                                                                   (9) 

where 𝑠 = 0, 1, 2, … , ∞ is the power of the polynomial function (Scott, 1992). It should 

be known that kernels of this family are supported on the interval [−1, 1]. In this 

polynomial kernel family, if 𝑠 takes values from 0 to 3, the corresponding kernels will be 

the Uniform, Epanechnikov, Biweight and Triweight kernels, respectively.  

The Uniform kernel is the simplest kernel in this family while the popular Normal kernel 

is obtained when 𝑠 tends to infinity. The beta polynomial kernels are of great importance 

especially the Epanechnikov kernel in the computation of the efficiencies of other 

members of this family. The first four members of this family known as the 

Epanechnikov, Biweight, Triweight and Quadriweight kernels excluding the Uniform 

kernel are as follows 

𝐾1(𝑡) =
3

4
 (1 − 𝑡2).                                                                                                                     (10) 

𝐾2(𝑡) =
15

16
 (1 − 𝑡2)2.                                                                                                                (11) 

𝐾3(𝑡) =
35

32
 (1 − 𝑡2)3.                                                                                                                (12) 

𝐾4(𝑡) =
315

256
 (1 − 𝑡2)4.                                                                                                              (13) 

However, as the value of 𝑠 tends to infinity, the resulting kernel is the popular Gaussian 

kernel given by 

𝐾∅(𝑡) =
1

√2𝜋
 𝑒x𝑝 (− 

𝑡2

2
).                                                                                                          (14) 

The given kernels are second order kernels whose higher order form can be constructed 

by using either the multiplicative principle of Terrell and Scott (1980) or the additive 

principle of Jones and Foster (1993). As a result of the slow convergence rate of the 

second order nonparametric kernel estimators, higher order kernels are usually employed 

because they can provide a faster convergence rates and are known to be bias reducing 

kernels (Marron, 1994). In the construction of the higher order forms of the above 

kernels, we shall employ the additive principle of Jones and Foster (1993) given as 

𝐾[𝑝+2](𝑡) =
3

2
𝐾[𝑝,𝑠](𝑡) +

1

2
𝑡𝐾[𝑝,𝑠]

′ (𝑡).                                                                                      (15) 

On differentiating Equation (9) with respect to 𝑡, we have 

𝐾[𝑠]
′ (𝑡) =

(2𝑠 + 1)!

22𝑠+1(𝑠!)2
𝑠(1 − 𝑡2)𝑠−1(−2𝑡).                                                                               (16) 

Substituting Equation (9) and Equation (16) into Equation (15), we have 

𝐾[𝑝+2](𝑡) =
3

2
[

(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠] +

1

2
𝑡 [

(2𝑠 + 1)!

22𝑠+1(𝑠!)2
𝑠(1 − 𝑡2)𝑠−1(−2𝑡)] 

      =
3

2
[

(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠] − 𝑠𝑡2 [

(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠−1] 

= (
(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠) [

3

2
−

𝑠𝑡2

1 − 𝑡2
]           
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= (
(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠) [

3(1 − 𝑡2) − 2𝑠𝑡2

2(1 − 𝑡2)
] 

=
1

2
{(

(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠−1) {3 − (3 + 2𝑠)𝑡2}} 

Hence, the generalised fourth order kernel of the beta polynomial family is of the form 

𝐾[4](𝑡) =
1

2
{(

(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠−1) {3 − (3 + 2𝑠)𝑡2} }.                                             (17) 

The first four members of the fourth order kernel known as the Epanechnikov, Biweight, 

Triweight and Quadriweight kernels are as follows 

𝐾4,1(𝑡) =
3

8
 (3 − 5𝑡2).                                                                                                                (18) 

𝐾4,2(𝑡) =
15

32
 (3 − 7𝑡2)(1 − 𝑡2).                                                                                             (19) 

𝐾4,3(𝑡) =
35

64
 (3 − 9𝑡2)(1 − 𝑡2)2.                                                                                           (20) 

𝐾4,4(𝑡) =
315

512
 (3 − 11𝑡2)(1 − 𝑡2)3.                                                                                      (21) 

Again, as the value of 𝑠 tends to infinity, the resulting fourth order Gaussian kernel is  

𝐾4,∅(𝑡) =
1

2√2𝜋
 (3 − 𝑡2)𝑒x𝑝 (− 

𝑡2

2
).                                                                                    (22) 

The negativity of the resulting estimates of higher order kernels implies that they are not 

probability densities estimates. In ensuring that the resulting estimates of the higher order 

kernels are probability density estimates and with faster convergence rate, we propose the 

hybrid kernel of the beta polynomial family. 

 

3.1 The Proposed Fourth Order Hybrid Kernel Functions. 

Let 𝑠 + 1 be the immediate next kernel function of the beta polynomial family such that 

it is the (𝑠 + 1)𝑡ℎ  power of Equation (9). Therefore, the required polynomial will take 

the form  

𝐾[𝑠+1](𝑡) =
(2𝑠 + 3)!

22𝑠+3[(𝑠 + 1)!]2
(1 − 𝑡2)𝑠+1.                                                                             (23) 

On differentiating Equation (23) with respect to 𝑡, we have 

𝐾[𝑠+1]
′ (𝑡) =

(2𝑠 + 3)!

22𝑠+3[(𝑠 + 1)!]2
(𝑠 + 1)(1 − 𝑡2)𝑠(−2𝑡).                                                        (24) 

Now, the modified construction rule is of the form 

𝐾[𝑝+2](𝑡) =
3

2
𝐾[𝑝,𝑠+1](𝑡) +

1

2
𝑡𝐾[𝑝,𝑠+1]

′ (𝑡).                                                                             (25) 

On substituting Equations (23) and (24) into Equation (25) we have 

𝐾[𝑝+2](𝑡) =
3

2
[

(2𝑠 + 3)!

22𝑠+3[(𝑠 + 1)!]2
(1 − 𝑡2)𝑠+1]

+
1

2
𝑡 [

(2𝑠 + 3)!

22𝑠+3[(𝑠 + 1)!]2
(𝑠 + 1)(1 − 𝑡2)𝑠(−2𝑡)] 

=
3

2
[

(2𝑠 + 3)!

22𝑠+3[(𝑠 + 1)!]2
(1 − 𝑡2)𝑠+1] − 𝑡2(𝑠 + 1) [

(2𝑠 + 3)!

22𝑠+3[(𝑠 + 1)!]2
(1 − 𝑡2)𝑠]     
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 = (
(2𝑠 + 3)! (1 − 𝑡2)𝑠

22𝑠+3[(𝑠 + 1)!]2
) [

3

2
(1 − 𝑡2) − 𝑡2(𝑠 + 1)]                                                       

    = (
(2𝑠 + 3)! (1 − 𝑡2)𝑠

22𝑠+3[(𝑠 + 1)!]2
) [

3(1 − 𝑡2) − 2𝑡2(𝑠 + 1)

2
]                                                         

 

   = (
(2𝑠 + 3)! (1 − 𝑡2)𝑠

22𝑠+3[(𝑠 + 1)!]2
) [

3 − {3 + 2(𝑠 + 1)}𝑡2

2
]                                                                

 

   =
1

2
{(

(2𝑠 + 3)! (1 − 𝑡2)𝑠

22𝑠+3[(𝑠 + 1)!]2
) [3 − {3 + 2(𝑠 + 1)}𝑡2]} .                                       (26)  

For any value of  𝑠, Equation (26) will result in the immediate next kernel function of 

Equation (17). If  𝑠 = 1, the corresponding fourth order kernel is the Biweight kernel 

given in Equation (19) and when 𝑠 = 2, the resulting kernel is the Triweight kernel given 

in Equation (20). The proposed hybrid kernel is the resulting kernel from the product of 

two successive kernel functions of Equation (26) and Equation (17). The hybrid kernel 

obtained from their merger is of the form 

𝐾[4,𝐻𝑦𝑏𝑟𝑖𝑑](𝑡) =
1

2
{(

(2𝑠 + 3)! (1 − 𝑡2)𝑠

22𝑠+3[(𝑠 + 1)!]2
) [3 − {3 + 2(𝑠 + 1)}𝑡2]}

×
1

2
{(

(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠−1) {3 − (3 + 2𝑠)𝑡2} } 

=
1

2
{(

(2𝑠 + 3)(2𝑠 + 2)(2𝑠 + 1)! (1 − 𝑡2)𝑠

22𝑠+122[(𝑠 + 1)]2[(𝑠!)]2
) [3 − {3 + 2(𝑠 + 1)}𝑡2]}

×
1

2
{(

(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠−1) {3 − (3 + 2𝑠)𝑡2} } 

=
1

4
{(

(2𝑠 + 1)! (1 − 𝑡2)𝑠

22𝑠+1[(𝑠!)]2
) (

2𝑠 + 3

𝑠 + 1
) [3 − {3 + 2(𝑠 + 1)}𝑡2]}

×
1

2
{(

(2𝑠 + 1)!

22𝑠+1(𝑠!)2
(1 − 𝑡2)𝑠−1) {3 − (3 + 2𝑠)𝑡2} } 

=
1

8
{(

(2𝑠 + 1)! (1 − 𝑡2)𝑠

22𝑠+1[(𝑠!)]2
)

2

(
2𝑠 + 3

𝑠 + 1
) [3 − {3 + 2(𝑠 + 1)}𝑡2] {

3 − (3 + 2𝑠)𝑡2

(1 − 𝑡2)
}} 

=
1

8
{(

(2𝑠 + 1)!

22𝑠+1[(𝑠!)]2
)

2

(1 − 𝑡2)2𝑠−1 (
2𝑠 + 3

𝑠 + 1
) [3 − {3 + 2(𝑠 + 1)}𝑡2][3 − (3 + 2𝑠)𝑡2]} 

This can be simply written as 

𝐾[4,𝐻𝑦𝑏𝑟𝑖𝑑](𝑡) =
1

8
(

(2𝑠 + 1)!

22𝑠+1[(𝑠!)]2
)

2

(1 − 𝑡2)2𝑠−1𝜶𝜷𝜸 ,                                                       (27) 

where 𝜶 = (
2𝑠+3

𝑠+1
) , 𝜷 = [3 − {3 + 2(𝑠 + 1)}𝑡2] and  𝜸 = {3 − (3 + 2𝑠)𝑡2}. 

The first four members of the hybrid kernels are as follows 

𝐾4,12
∗ (𝑡) =

45

256
(3 − 7𝑡2)(3 − 5𝑡2)(1 − 𝑡2).                                                                        (28) 

𝐾4,23
∗ (𝑡) =

525

2048
(3 − 9𝑡2)(3 − 7𝑡2)(1 − 𝑡2)3.                                                                   (29) 
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𝐾4,34
∗ (𝑡) =

11025

32768
(3 − 11𝑡2)(3 − 9𝑡2)(1 − 𝑡2)5.                                                              (30) 

𝐾4,45
∗ (𝑡) =

218295

524288
(3 − 13𝑡2)(3 − 11𝑡2)(1 − 𝑡2)7.                                                         (31) 

The smoothing parameter with the minimum AMISE value of the classical fourth order 

kernel is 𝑂(𝑛−1 9⁄ ) while the AMISE of the fourth order kernel is 𝑂(𝑛−8 9)⁄ ). However, 

the smoothing parameter that minimizes the AMISE of the hybrid kernels is 𝑂(𝑛−1 17⁄ ) 

while the AMISE is 𝑂(𝑛−16 17)⁄ ).  

The proposed hybrid kernel is a bias reduction technique from order four to order eight 

because it involves the product of two fourth order kernels and unlike the classical fourth 

order kernel, the resulting estimates is a probability density estimate due to absence of 

negative components. The proposed hybrid kernel is similar to boosting in kernel density 

estimation introduced by Marzio and Taylor (2005) which involves the multiplication of 

kernel estimates that resulted in reducing the asymptotic mean integrated squared error. 

 

4. Results and Discussion. 

The statistical properties of the proposed hybrid kernels will be considered for the first 

four members of the family. Also, their performance will be examined using the AMISE 

as the error criterion function. The first four members of the classical second order kernel 

of this family are of wide applications because they form the basis when discussing this 

class of kernels especially the Epanechnikov kernel in terms of optimality with respect to 

the AMISE. In the investigation of the AMISE of the fourth order kernels and their 

hybrids, a sample size of one thousand will be used because higher order kernels are only 

beneficial if the sample size is reasonably large. Also, higher order kernels require larger 

bandwidth as the order of the kernel increases but with a smaller value of the AMISE. 

The estimates of the first four members of the beta kernels (i.e. Epanechnikov, Biweight, 

Triweight and Quadriweight denoted by Ep, Bi, Tr and Qu) of the fourth order kernel and 

their hybrids are in Figure 1 and Figure 2 respectively. The hybrid kernels produced 

estimates which are probability densities unlike their parent’s kernels. The statistical 

properties of the fourth order kernel and their hybrids such as their roughnesses and 

moments are shown in Table 1 with their AMISE values. 

The data set used to illustrate the performance of the proposed hybrid kernels is the 

waiting time in minutes between eruptions of the Old Faithful Geyser in Yellowstone 

National Park, Wyoming, USA which is made up of 272 observations (Azzalini and 

Bowman 1990). This data set exhibits a multimodal feature from their kernel estimates in 

Figure 3 using the fourth order kernels and their hybrid and it shows that the waiting time 

before the next eruption has distribution that is not unimodal. The statistical properties of 

the fourth order Biweight kernel, Triweight kernel and their hybrid kernel are shown in 

Table 2 with the hybrid exhibiting a promising behaviour in performance than the 

Triweight kernel in terms of the AMISE value. The AMISE values in all the studied cases  

were obtained from Equation (8). Although the AMISE of the Biweight kernel is smaller 

in value than the hybrid and this is because large sample sizes are required for higher 

order kernels to be beneficial. 
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Figure 2: Plots of the first four members of the fourth order hybrid kernels. 
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Figure 1: Plots of the fourth order kernels of the Ep, Bi, Tr and Qu. 
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Figure 3: Plots of fourth order Biweight and Triweight with their Hybrid kernel. 
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The choice of the Biweight kernel and its immediate neighbour, the Triweight kernel with 

their hybrid in the illustration of the performance of the hybrid kernel using real data 

example is due to the fact that in fourth order kernel, the optimal kernel with respect to 

the asymptotic mean integrated squared error is the Biweight kernel. The optimal kernel 

with respect to the AMISE in second order kernel is the Epanechnikov kernel while the 

optimal kernel in the fourth order kernel with respect to the AMISE is the Biweight 

kernel. As the order of the kernel increases, the optimal kernel with respect to the AMISE 

also varies (Müller, 1984). Optimality of a kernel function with respect to the AMISE 

simply means the kernel function with the minimum AMISE value. The kernel estimate 

of the hybrid kernel in Figure 3 is above the estimates of its parent’s kernel along the 

waiting time axis implying that there is the tendency for the estimate of its parents to 

possess a negative component. Again, the estimates of the Biweight and Triweight are 

similar because they are of the same order.  

Table 1 shows the classical fourth order kernels of the beta polynomial kernels and their 

hybrid kernels with their performance using the AMISE. As generally known, one 

method is better than another when it produces a smaller value of the AMISE (Jarnicka, 

2009). The kernel functions denoted by 𝐾∗(𝑡) are the hybrids of the fourth order kernels. 

The performance of each hybrid kernel is better than the two successive parent’s kernels 

and this suggests that with large sample sizes, the hybrid kernels of the fourth order 

kernels will produce better kernel estimates. The results in Table 2 also show that hybrid 

kernel of the Biweight and Triweight kernels outperformed one of its parents despite the 

small size of the sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑲(𝒕) 𝑹(𝑲) 𝝁𝟐(𝑲) 𝐀𝐌𝐈𝐒𝐄 

𝑲𝟒,𝟏𝟐
∗ (𝒕) 84195

64064
 

15

1144
 

0.00123469 

𝑲𝟒,𝟐(𝒕) 5

4
 

−1

   21
 

0.00373406 

𝑲𝟒,𝟐𝟑
∗ (𝒕) 220578

100000
 

105

28424
 

0.00206163 

𝑲𝟒,𝟑(𝒕) 807

572
 

−1

   33
 

0.00623031 

𝑲𝟒,𝟑𝟒
∗ (𝒕) 323876

100000
 

1575

1062347
 

0.00282916 

𝑲𝟒,𝟒(𝒕) 3780

2431
 

−3

 143
 

0.00734711 

𝑲𝟒,𝟒𝟓
∗ (𝒕) 439512

100000
 

147

203320
 

0.00387746 

𝑲𝟒,𝟓(𝒕) 28413

16796
 

−1

 65
 

0.00734313 

 

Table 1: Kernel Functions, Roughnesses, Moments and AMISE. 
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Higher order kernels are bias reducing kernels resulting in a reduction in the AMISE but 

associated with the production of estimates with negative components, a situation that 

requires statistical explanation because the negative components do not improve the 

AMISE. However, the hybrids of the fourth order kernels as presented in Figure 2 is a 

probability density estimate with a better performance in terms of the AMISE. 

 

5. Conclusion. 

This paper proposed hybrids kernels of the classical fourth order kernels of beta 

polynomial kernels and investigates their performance using the asymptotic mean 

integrated squared error as the criterion function. The proposed hybrid kernels are 

comparable with boosting in kernel density estimation that involves the multiplication of 

kernel estimates. The results of our simulation and real data example show that the hybrid 

kernels outperformed the classical fourth order kernels and their estimates are also 

probability densities. 
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